Nrf2-Related Therapeutic Effects of Curcumin in Different Disorders
Abstract
:1. Introduction
2. Digestive System Diseases
3. Ischemia-Reperfusion (IR) Injury
4. Diabetes Mellitus and Its Related Complications
5. Nervous System Diseases
6. Renal Diseases
7. Pulmonary Diseases
8. Other Conditions
Type of Disease | Animals | Dose Range | Cell Line | Targets and Other Pathways | Function | Ref. |
---|---|---|---|---|---|---|
- | - | - | L02 | HO-1, NF-κB, iNOS, HO-1, Caspase-3/9 | CUR via inhibiting the NF-κB and activating Nrf2/HO-1 axis could effectively inhibit quinocetone (QCT) induced apoptosis. | [54] |
Osteoporosis | - | - | MC3T3-E1 | ALP, OCN, COLI, Runx2 | CUR through the GSK3β-Nrf2 axis could protect osteoblasts against oxidative stress-induced dysfunction. | [55] |
- | - | - | hPDLSCs | AKT, PI3K, ALP, COL1, RUNX2 | CUR via the PI3K/AKT/Nrf2axis could promote osteogenic differentiation of hPDLSCs. | [56] |
Temporomandibular Joint Osteoarthritis (TMJ OA) | - | - | Chondrocytes | ARE, HO-1, SOD2, NQO-1, IL-6, iNOS, MMP-1/3/p | CUR via the Nrf2/ARE axis could inhibit oxidative stress, inflammation, and the matrix degradation of TMJ inflammatory chondrocytes. | [57] |
Muscle Damage | Male Wistar rat | 100 mg/kg, orally, daily, 6 weeks | - | NF-κB, GLUT4, HO-1, PGC-1α, SIRT1, TRX-1 | CUR via regulating the NF-κB and Nrf2 pathways could prevent muscle damage. | [58] |
Skin Damage | Female ICR mice | 0.1–1 μmol, topically | JB6, 293T, MEFs | HO-1, Cullian3, Rbx1 | CUR via the Keap1 cysteine modification could induce stabilization of Nrf2. | [59] |
Heat-Induced Oxidative Stress | - | - | CEF | ARE, SOD1, MAPK, ERK, JNK, p38 | CUR via activating the MAPK-Nrf2/ARE axis could inhibit heat-induced oxidative stress in chicken fibroblasts cells. | [60] |
- | - | - | Mouse cortical neuronal cells, 293T, MEFs | HO-1, NQO1, GST-mu1, p62, NDP52, | CUR via the PKCδ-mediated p62 phosphorylation at Ser351 could activate the Nrf2 pathway. | [61] |
H2O2-Induced Oxidative Stress | - | - | HTR8/SVneo | HO-1, GCLC, GCLM, NQO1, SLC2A1/3, Bax, Bcl-2, Caspase-3 | CUR via activating the Nrf2 could protect HTR8/SVneo cells from H2O2-induced oxidative stress. | [62] |
- | - | - | SKBR3, U373 | HO-1, p62, SQSTM1 | In response to Zn(II)–curcumin complex, p62/SQSTM1/Keap1/Nrf2 axis could reduce cancer cells death-sensitivity. | [63] |
Zearalenone (ZEA)-Induced Apoptosis And Oxidative Stress | - | - | TM3 | PTEN, HO-1, Bip, AKT, Bax, Bcl-2, JNK, Caspase-3/9/12 | CUR by modulating the PTEN/Nrf2/Bipaxis could inhibit ZEA-induced apoptosis and oxidative stress. | [64] |
- | - | - | HepG2-C8 | HO-1, UGT1A | Combining low doses of CUR and sulforaphane via Nrf2 could play a role in the prevention of several types of cancer. | [65] |
Cisplatin-Induced Drug Resistance | - | - | A549/CDDP | SQSTM1(P62), LC3-I, LC3-II, NQO1 | CUR via the Keap1/p62-Nrf2axis could attenuate CDDP-induced drug-resistance in A549/CDDP cell. | [66] |
Cisplatin-Induced Bladder Cystopathy | Female SD rats | 6 mg/kg, 5 consecutive days | RBSMCs, SV-HUC-1, ATCC, Manassas, VA | NGF, HO-1 | CUR via targeting NRF2 could ameliorate cisplatin-induced cystopathy. | [67] |
Pain | Male Swiss mice | 3, 10, 30 mg/kg, subcutaneously, 1 h before stimulation | - | NF-ĸB, HO-1, TNF-α, IL-10, IL-1β | CUR via reducing NF-κB activation and increasing Nrf2 expression could inhibit superoxide anion-induced inflammatory pain-like behaviors. | [68] |
Endotoxemia | Male Wistar rats | 25,50, and 100 mg/kg, orally, 2 consecutive days | - | TNF-α, IL1-β | CUR via modulating the activity of Nrf2 could prevent LPS-induced sickness behavior and fever possibly. | [69] |
Cadmium-Induced Testicular Injury | Kunming mice | 50 mg/kg, I.P., 10 days | - | GSH-Px, γ-GCS | CUR by activating the Nrf2/ARE axis could protect against cadmium-induced testicular injury. | [70] |
Oxidative Damage | - | - | RAW264.7 | HO-1, GCLC, GLCM | CUR via activating the Nrf2-Keap1 pathway and increasing the activity of antioxidant enzymes could attenuate oxidative stress in RAW264.7 cells. | [71] |
Nasal Diseases | - | - | Nasal fibroblasts | HO-1, ERK, SOD2 | CUR via activating of the Nrf2/HO-1 axis could reduce ROS production caused by urban particulate matter (UPM) in human nasal fibroblasts. | [72] |
Aβ25-35-Induced Oxidative Damage | - | - | PC12 | HO-1, Bcl-2, Bax, Cyt-c | CUR analogs via the Keap1/Nrf2/HO-1 axis could attenuate Aβ25-35-induced oxidative stress in PC12 cells. | [73] |
Thyroid dysfunction | Male Wistar rats | 30 mg/kg, orally, daily, 30 days | - | NF-ĸB, AKT, mTOR, SOD1, SOD2 | CUR/vitamin E via modulating the Nrf2 and Keap1 function could reduce oxidative stress in the heart of rats. | [74] |
9. Cancers
Type of Disease | Type of Curcumin | Animals | Dose Range | Cell Line | Targets and Other Pathways | Function | Ref. |
---|---|---|---|---|---|---|---|
Ovarian Carcinoma (OC) | CUR | Female Wistar rat | 100 mg/kg, orally, daily, 4 weeks | SKOV3 | ETBR, ET-1, Caspase-3/9, Bax, Bcl-2, N-cadherin, E-cadherin, Vimentin | CUR via the Nrf2/ETBR/ET-1 axis could prevent EMT-mediated OC progression. | [77] |
Lymphoblastoma | CUR | - | - | CL-45 | p53, Caspase-3/9, PARP, HMOX1 | CUR during oxidative stress-induced apoptosis could induce p53-independent inactivation of Nrf2. | [80] |
Prostate Cancer (PCa) | F10, E10 | - | - | TRAMP-C1, HepG2-C8 | ARE, HO-1, UGT1A1, NQO1, HDAC7,H3, DNMT3a, DNMT3b | Curcumin derivatives could reactivate Nrf2 in TRAMP C1 cells. | [81] |
Colorectal Cancer (CRC) | CUR | - | - | HCT-8/5-Fu, HCT-8 | NQO1, Bcl-2, Bax | CUR via the Nrf2 could affect multidrug resistance (MDR) in human CRC. | [78] |
Breast Cancer (BC) | CUR | - | - | MCF-7 | Fen1, AKR1B10, AKR1C1/3 | CUR via Nrf2-mediated down-regulation of Fen1 could inhibit the proliferation of BC cells. | [79] |
10. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Wei, W.; Ma, N.; Fan, X.; Yu, Q.; Ci, X. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches. Free Radic. Biol. Med. 2020, 158, 1–12. [Google Scholar] [CrossRef]
- Kim, J.; Cha, Y.N.; Surh, Y.J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 2010, 690, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Ashrafizadeh, M.; Ahmadi, Z.; Mohamamdinejad, R.; Farkhondeh, T.; Samarghandian, S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr. Mol. Med. 2020, 20, 116–133. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Metzler, M.; Pfeiffer, E.; Schulz, S.I.; Dempe, J.S. Curcumin uptake and metabolism. BioFactors 2012, 39, 14–20. [Google Scholar] [CrossRef]
- Lopresti, A.L. The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv. Nutr. 2018, 9, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.T.; Vaughn, A.R.; Sharma, V.; Chopra, D.; Mills, P.J.; Peterson, S.N.; Sivamani, R.K. Effects of Turmeric and Curcumin Dietary Supplementation on Human Gut Microbiota: A Double-Blind, Randomized, Placebo-Controlled Pilot Study. J. Evid.-Based Integr. Med. 2018, 23. [Google Scholar] [CrossRef]
- Burapan, S.; Kim, M.; Han, J. Curcuminoid Demethylation as an Alternative Metabolism by Human Intestinal Microbiota. J. Agric. Food Chem. 2017, 65, 3305–3310. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Luo, D.-D.; Chen, J.-F.; Liu, J.-J.; Xie, J.-H.; Zhang, Z.-B.; Gu, J.-Y.; Zhuo, J.-Y.; Huang, S.; Su, Z.-R.; Sun, Z.-H. Tetrahydrocurcumin and octahydrocurcumin, the primary and final hydrogenated metabolites of curcumin, possess superior hepatic-protective effect against acetaminophen-induced liver injury: Role of CYP2E1 and Keap1-Nrf2 pathway. Food Chem. Toxicol. 2018, 123, 349–362. [Google Scholar] [CrossRef]
- Li, B.; Wang, L.; Lu, Q.; Da, W. Liver injury attenuation by curcumin in a rat NASH model: An Nrf2 activation-mediated effect? Irish J. Med. Sci. 2016, 185, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Macías-Pérez, J.R.; Aldaba-Muruato, L.R.; Martínez-Hernández, S.L.; Muñoz-Ortega, M.H.; Pulido-Ortega, J.; Ventura-Juárez, J. Curcumin provides hepatoprotection against amoebic liver abscess induced by entamoeba histolytica in hamster: Involvement of Nrf2/HO-1 and NF-κB/IL-1β signaling pathways. J. Immunol. Res. 2019, 2019, 7431652. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhang, F.; Xu, W.; Wu, X.; Lian, N.; Jin, H.; Chen, Q.; Chen, L.; Shao, J.; Wu, L.; et al. Curcumin attenuates ethanol-induced hepatic steatosis through modulating N-rf2/FXR signaling in hepatocytes. IUBMB life 2015, 67, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Dai, C.; Liu, Q.; Li, J.; Qiu, J. Curcumin attenuates on carbon tetrachloride-induced acute liver injury in mice via modulation of the Nrf2/HO-1 and TGF-β1/Smad3 pathway. Molecules 2018, 23, 215. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, X.; Xiao, Y.; Wang, Y.; Wan, Y.; Li, X.; Li, Q.; Tang, X.; Cai, D.; Ran, B.; et al. Curcumin ameliorates mercuric chloride-induced liver injury via modulating cytochrome P450 signaling and Nrf2/HO-1 pathway. Ecotoxicol. Environ. Saf. 2021, 208, 111426. [Google Scholar] [CrossRef]
- Xie, Y.L.; Chu, J.-G.; Jian, X.-M.; Dong, J.-Z.; Wang, L.-P.; Li, G.-X.; Yang, N.-B. Curcumin attenuates lipopolysaccharide/d-galactosamine-induced acute liver injury by activating Nrf2 nuclear translocation and inhibiting NF-kB activation. Biomed. Pharmacother. 2017, 91, 70–77. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, S.; Xiang, B.; Li, L.; Lin, Y. Curcumin Attenuates Oxaliplatin-Induced Liver Injury and Oxidative Stress by Activating the Nrf2 Pathway. Drug Des. Dev. Ther. 2020, 14, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chang, X.; Zhan, H.; Zhang, Q.; Li, C.; Gao, Q.; Yang, M.; Luo, Z.; Li, S.; Sun, Y. Curcumin and Baicalin ameliorate ethanol-induced liver oxidative damage via the Nrf2/HO-1 pathway. J. Food Biochem. 2020, 44, 13425. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Xu, W.; Zheng, S. Nrf2 activation is required for curcumin to induce lipocyte phenotype in hepatic stellate cells. Biomed. Pharmacother. 2017, 95, 1–10. [Google Scholar] [CrossRef]
- Liu, Z.; Dou, W.; Zheng, Y.; Wen, Q.; Qin, M.; Wang, X.; Tang, H.; Zhang, R.; Lv, D.; Wang, J.; et al. Curcumin upregulates Nrf2 nuclear translocation and protects rat hepatic stellate cells against oxidative stress. Mol. Med. Rep. 2015, 13, 1717–1724. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Zhang, Y.; Zhang, X.; Aa, J.; Wang, G.; Xie, Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed. Pharmacother. 2018, 105, 274–281. [Google Scholar] [CrossRef]
- Abd El-Hameed, N.M.; Abd El-Aleem, S.A.; Khattab, M.A.; Hussein Ali, A.; Hassanein Mohammed, H. Curcumin activation of nuclear factor E2-related factor 2 gene (Nrf2): Prophylactic and thera-peutic effect in nonalcoholic steatohepatitis (NASH). Life Sci. 2021, 285, 119983. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Z.; Li, H.; Guo, M.; Yang, T.; Feng, S.; Xu, B.; Deng, Y. Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation. Hum. Exp. Toxicol. 2016, 36, 949–966. [Google Scholar] [CrossRef]
- Xu, G.; Gu, Y.; Yan, N.; Li, Y.; Sun, L.; Li, B. Curcumin functions as an anti-inflammatory and antioxidant agent on arsenic-induced hepatic and kidney injury by inhibiting MAPKs/NF-κB and activating Nrf2 pathways. Environ. Toxicol. 2021, 36, 2161–2173. [Google Scholar] [CrossRef] [PubMed]
- Kheiripour, N.; Plarak, A.; Heshmati, A.; Asl, S.S.; Mehri, F.; Ebadollahi-Natanzi, A.; Ranjbar, A.; Hosseini, A. Evaluation of the hepatoprotective effects of curcumin and nanocurcumin against paraquat-induced liver injury in rats: Modulation of oxidative stress and Nrf2 pathway. J. Biochem. Mol. Toxicol. 2021, 35, e22739. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, X.; Peng, B.; Zou, H.; Li, S.; Wang, J.; Cao, J. Curcumin improves necrotising microscopic colitis and cell pyroptosis by activating SIRT1/NRF2 and inhibiting the TLR4 signalling pathway in newborn rats. Innate Immun. 2020, 26, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, M.; Tang, L.; Pan, Y.; Liu, Z.; Zeng, C.; Wang, J.; Wei, T.; Liang, G. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. Toxicol. Appl. Pharmacol. 2014, 282, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.G.; El-Emam, S.Z.; Mohamed, E.A.; Abd Ellah, M.F. Dimethyl fumarate and curcumin attenuate hepatic ischemia/reperfusion injury via Nrf2/HO-1 activation and anti-inflammatory properties. Int. Immunopharmacol. 2020, 80, 106131. [Google Scholar] [CrossRef]
- Li, W.; Suwanwela, N.C.; Patumraj, S. Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R. Microvasc. Res. 2015, 106, 117–127. [Google Scholar] [CrossRef]
- Li, C.; Miao, X.; Wang, S.; Adhikari, B.K.; Wang, X.; Sun, J.; Liu, Q.; Tong, Q.; Wang, Y. Novel Curcumin C66 That Protects Diabetes-Induced Aortic Damage Was Associated with Suppressing JNK2 and Upregulating Nrf2 Expression and Function. Oxidative Med. Cell. Longev. 2018, 2018, 5783239. [Google Scholar] [CrossRef]
- Xiang, L.; Zhang, Q.; Chi, C.; Wu, G.; Lin, Z.; Li, J.; Gu, Q.; Chen, G. Curcumin analog A13 alleviates oxidative stress by activating Nrf2/ARE pathway and ameliorates fibrosis in the myocardium of high-fat-diet and streptozotocin-induced diabetic rats. Diabetol. Metab. Syndr. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Bucolo, C.; Drago, F.; Maisto, R.; Romano, G.L.; D’Agata, V.; Maugeri, G.; Giunta, S. Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated acti-vation of the Nrf2/HO-1 pathway. J. Cell. Physiol. 2019, 234, 17295–17304. [Google Scholar] [CrossRef]
- Abdelsamia, E.M.; Khaleel, S.A.; Balah, A.; Abdel Baky, N.A. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed. Pharmacother. 2019, 109, 2136–2144. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, D.; Guo, L.; Liang, W.; Jiang, Y.; Li, H.; Zhao, Y.; Lu, S.; Chi, Z.-H. Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1. Mol. Med. Rep. 2015, 12, 1347–1355. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Zhan, P.; Wang, Q.; Wang, C.; Liu, Y.; Yu, Z.; Zhang, S. Curcumin upregulates the Nrf2 system by repressing inflammatory signaling-mediated Keap1 expression in insulin-resistant conditions. Biochem. Biophys. Res. Commun. 2019, 514, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Wang, H.; Fang, J.; Zhu, Y.; Zhou, J.; Wang, X.; Zhou, Y.; Zhou, M.-L. Curcumin provides neuroprotection in model of traumatic brain injury via the Nrf2-ARE signaling pathway. Brain Res. Bull. 2018, 140, 65–71. [Google Scholar] [CrossRef]
- Dong, W.; Yang, B.; Wang, L.; Li, B.; Guo, X.; Zhang, M.; Jiang, Z.; Fu, J.; Pi, J.; Guan, D.; et al. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol. Appl. Pharmacol. 2018, 346, 28–36. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, Q.Y.; Li, H.Y.; Zhou, X.; Liu, Y.; Zhang, H. Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Pharmacol. Biochem. Behav. 2014, 126, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Qunli, C.; Zhu, H. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol. Med. Rep. 2015, 13, 1381–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Luo, H.; Liu, S.; Zhang, R.; Zhu, X.; Liu, M.; Xu, H.; Yang, Y.; Lv, Z.; Chen, M. Platelet microparticles-containing miR-4306 inhibits human monocyte-derived macrophages migration through VEGFA/ERK1/2/NF-κB signaling pathways. Clin. Exp. Hypertens. 2019, 41, 481–491. [Google Scholar] [CrossRef]
- Ikram, M.; Saeed, K.; Khan, A.; Muhammad, T.; Khan, M.S.; Jo, M.G.; Rehman, S.U.; Kim, M.O. Natural dietary supplementation of curcumin protects mice brains against ethanol-induced oxidative stress-mediated neurodegeneration and memory impairment via Nrf2/TLR4/RAGE signaling. Nutrients 2019, 11, 1082. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Zhao, J.; Guo, D.; Pang, H.; Zhao, Y.; Song, J. Curcumin mitigates axonal injury and neuronal cell apoptosis through the PERK/Nrf2 signaling pathway following diffuse axonal injury. NeuroReport 2018, 29, 661–677. [Google Scholar] [CrossRef]
- Santana-Martínez, R.A.; Silva-Islas, C.A.; Fernández-Orihuela, Y.Y.; Barrera-Oviedo, D.; Pedraza-Chaverri, J.; Hernández-Pando, R.; Maldonado, P.D. The Therapeutic Effect of Curcumin in Quinolinic Acid-Induced Neurotoxicity in Rats is Associated with BDNF, ERK1/2, Nrf2, and Antioxidant Enzymes. Antioxidants 2019, 8, 388. [Google Scholar] [CrossRef] [Green Version]
- Liao, D.; Lv, C.; Cao, L.; Yao, D.; Wu, Y.; Long, M.; Liu, N.; Jiang, P. Curcumin Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-Like Behaviors via Restoring Changes in Oxidative Stress and the Activation of Nrf2 Signaling Pathway in Rats. Oxidative Med. Cell. Longev. 2020, 2020, 9268083. [Google Scholar] [CrossRef] [PubMed]
- Daverey, A.; Agrawal, S.K. Curcumin protects against white matter injury through NF-κB and Nrf2 cross talk. J. Neurotrauma 2020, 37, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Al Fayi, M.; Otifi, H.; Alshyarba, M.H.M.; Dera, A.A.; Rajagopalan, P. Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling. J. Drug Target. 2020, 28, 913–922. [Google Scholar] [CrossRef]
- Tapia, E.; Garcia, F.; Silverio, O.; Rodríguez-Alcocer, A.N.; Jiménez-Flores, A.B.; Cristóbal, M.; Arellano, A.S.; Soto, V.; Osorio-Alonso, H.; Molina-Jijón, E.; et al. Mycophenolate mofetil and curcumin provide comparable therapeutic benefit in experimental chronic kidney disease: Role of Nrf2-Keap1 and renal dopamine pathways. Free Radic. Res. 2016, 50, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Osorio, A.S.; García-Niño, W.R.; González-Reyes, S.; Álvarez-Mejía, A.E.; Guerra-León, S.; Salazar-Segovia, J.; Falcón, I.; de Oca-Solano, H.M.; Madero, M.; Pedraza-Chaverri, J. The Effect of Dietary Supplementation with Curcumin on Redox Status and Nrf2 Activation in Patients with Nondiabetic or Diabetic Proteinuric Chronic Kidney Disease: A Pilot Study. J. Ren. Nutr. 2016, 26, 237–244. [Google Scholar] [CrossRef]
- Di Tu, Q.; Jin, J.; Hu, X.; Ren, Y.; Zhao, L.; He, Q. Curcumin improves the renal autophagy in rat experimental membranous nephropathy via regulating the PI3K/AKT/mTOR and Nrf2/HO-1 signaling pathways. BioMed Res. Int. 2020, 2020, 7069052. [Google Scholar] [CrossRef]
- Ke, S.; Zhang, Y.; Lan, Z.; Li, S.; Zhu, W.; Liu, L. Curcumin protects murine lung mesenchymal stem cells from H2O2 by modulating the Akt/Nrf2/HO-1 pathway. J. Int. Med Res. 2020, 48, 0300060520910665. [Google Scholar] [CrossRef] [Green Version]
- Mathew, T.; Sarada, S. Intonation of Nrf2 and Hif1-α pathway by curcumin prophylaxis: A potential strategy to augment survival signaling under hypoxia. Respir. Physiol. Neurobiol. 2018, 258, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, Y.; Li, M.; Han, X.; Wang, J.; Wang, J. Curcumin ameliorates asthmatic airway inflammation by activating nuclear factor-E2-related factor 2/haem oxygenase (HO)-1 signalling pathway. Clin. Exp. Pharmacol. Physiol. 2015, 42, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Wafi, A.M.; Hong, J.; Rudebush, T.L.; Yu, L.; Hackfort, B.; Wang, H.; Schultz, H.D.; Zucker, I.H.; Gao, L. Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle. J. Appl. Physiol. 2019, 126, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Li, B.; Zhou, Y.; Li, D.; Zhang, S.; Li, H.; Xiao, X.; Tang, S. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells. Food Chem. Toxicol. 2016, 95, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-J.; Wang, D.; Zhao, M.; Sun, X.-J.; Li, Y.; Lin, H.; Che, Y.-Q.; Huang, C.-Z. Serum lncRNAs (CCAT2, LINC01133, LINC00511) with Squamous Cell Carcinoma Antigen Panel as Novel Non-Invasive Biomarkers for Detection of Cervical Squamous Carcinoma. Cancer Manag. Res. 2020, 12, 9495–9502. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhao, B.; Zhang, W.; Jia, L.; Zhang, Y.; Xu, X. Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway. Iran. J. Basic Med. Sci. 2020, 23, 954–960. [Google Scholar] [CrossRef]
- Jiang, C.; Luo, P.; Li, X.; Liu, P.; Li, Y.; Xu, J. Nrf2/ARE is a key pathway for curcumin-mediated protection of TMJ chondrocytes from oxidative stress and inflammation. Cell Stress Chaperones 2020, 25, 395–406. [Google Scholar] [CrossRef]
- Sahin, K.; Pala, R.; Tuzcu, M.; Ozdemir, O.; Orhan, C.; Sahin, N.; Juturu, V. Curcumin prevents muscle damage by regulating NF-kB and Nrf2 pathways and improves performance: An in vivo model. J. Inflamm. Res. 2016, 9, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.W.; Chun, K.-S.; Kim, D.-H.; Kim, S.-J.; Kim, S.H.; Cho, N.-C.; Na, H.-K.; Surh, Y.-J. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Biochem. Pharmacol. 2020, 173, 113820. [Google Scholar] [CrossRef]
- Wu, J.; Ibtisham, F.; Niu, Y.F.; Wang, Z.; Li, G.H.; Zhao, Y.; Nawab, A.; Xiao, M.; An, L. Curcumin inhibits heat-induced oxidative stress by activating the MAPK-Nrf2/ARE signaling pathway in chicken fibroblasts cells. J. Therm. Biol. 2019, 79, 112–119. [Google Scholar] [CrossRef]
- Park, J.-Y.; Sohn, H.-Y.; Koh, Y.H.; Jo, C. Curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation at Ser351. Sci. Rep. 2021, 11, 8430. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Cui, H.; Li, Q.; Zhong, H.; Yu, J.; Li, P.; He, X. Upregulation of microRNA-218 reduces cardiac microvascular endothelial cells injury induced by coronary artery disease through the inhibition of HMGB1. J. Cell. Physiol. 2019, 235, 3079–3095. [Google Scholar] [CrossRef]
- Garufi, A.; Giorno, E.; Gilardini Montani, M.S.; Pistritto, G.; Crispini, A.; Cirone, M.; D’Orazi, G. p62/SQSTM1/Keap1/NRF2 Axis Reduces Cancer Cells Death-Sensitivity in Response to Zn (II)–Curcumin Complex. Biomolecules 2021, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Wu, Y.; Wang, Z.; Zhao, D.; Li, H.; Chong, T.; Zhao, J. Long Noncoding RNA LINC01133 Promotes the Malignant Behaviors of Renal Cell Carcinoma by Regulating the miR-30b-5p/Rab3D Axis. Cell Transplant. 2020, 29. [Google Scholar] [CrossRef]
- Fuentes, F.; Gomez, Y.; Paredes-Gonzalez, X.; Barve, A.; Nair, S.; Yu, S.; Kong, A.N.T. Nrf2-mediated antioxidant and detoxifying enzyme induction by a combination of curcumin and sulforaphane. J. Chin. Pharm. Sci. 2016, 25, 559. [Google Scholar] [CrossRef]
- Shen, J.; Chen, Y.-J.; Jia, Y.-W.; Zhao, W.-Y.; Chen, G.-H.; Liu, D.-F.; Chen, Y.-Y.; Zhang, C.; Liu, X.-P. Reverse effect of curcumin on CDDP-induced drug-resistance via Keap1/p62-Nrf2 signaling in A549/CDDP cell. Asian Pac. J. Trop. Biomed. 2017, 10, 1190–1196. [Google Scholar] [CrossRef]
- Shao, Y.P.; Zhou, Q.; Li, Y.P.; Zhang, S.C.; Xu, H.W.; Wu, S.; Shen, B.X.; Ding, L.C.; Xue, J.; Chen, Z.S.; et al. Curcumin ameliorates cisplatin-induced cystopathy via activating NRF2 pathway. Neurourol. Urodyn. 2018, 37, 2470–2479. [Google Scholar] [CrossRef] [PubMed]
- Fattori, V.; Pinho-Riberio, F.A.; Borghi, S.M.; Alves-Filho, J.C.; Cunha, T.M.; Cunha, F.Q.; Casagrande, R.; Verri, W.A., Jr. Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-κB activation. J. Inflamm. Res. 2015, 64, 993–1003. [Google Scholar] [CrossRef]
- Reis, L.; Oliveira, M.K.; Rojas, V.C.T.; Batista, T.H.; Estevam, E.S.; Vitor-Vieira, F.; Cardoso Vilela, F.; Giusti-Paiva, A. Curcumin prevents sickness behavior and fever by the modulation of Nrf2 activity in a model of endotoxemia. Res. Sq. 2021. Accepted. [Google Scholar] [CrossRef]
- Yang, S.H.; He, J.B.; Yu, L.H.; Li, L.; Long, M.; Liu, M.D.; Li, P. Protective role of curcumin in cadmium-induced testicular injury in mice by attenuating oxidative stress via Nrf2/ARE pathway. Environ. Sci. Pollut. Res. Int. 2019, 26, 34575–34583. [Google Scholar] [CrossRef]
- Lin, X.; Bai, D.; Wei, Z.; Zhang, Y.; Huang, Y.; Deng, H.; Huang, X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS ONE 2019, 14, e0216711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Oh, J.M.; Choi, H.; Kim, S.W.; Kim, S.W.; Kim, B.G.; Cho, J.H.; Lee, J.; Lee, D.C. Activation of the Nrf2/HO-1 pathway by curcumin inhibits oxidative stress in human nasal fibroblasts exposed to urban particulate matter. BMC Complement. Med. Ther. 2020, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhou, L.; Weng, Q.; Xiao, L.; Li, Q. Curcumin analogues attenuate Aβ25-35-induced oxidative stress in PC12 cells via Keap1/Nrf2/HO-1 signaling pathways. Chem. Biol. Interact. 2019, 305, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Paital, B.; Jena, S.; Swain, S.S.; Kumar, S.; Yadav, M.K.; Chainy, G.; Samanta, L. Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart. Sci. Rep. 2019, 9, 7408. [Google Scholar] [CrossRef]
- Laubach, V.; Kaufmann, R.; Bernd, A.; Kippenberger, S.; Zöller, N. Extrinsic or Intrinsic Apoptosis by Curcumin and Light: Still a Mystery. Int. J. Mol. Sci. 2019, 20, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, M.P. Mitochondrial Dysfunction Indirectly Elevates ROS Production by the Endoplasmic Reticulum. Cell Metab. 2013, 18, 145–146. [Google Scholar] [CrossRef] [Green Version]
- Barinda, A.J.; Arozal, W.; Sandhiutami, N.M.D.; Louisa, M.; Arfian, N.; Sandora, N.; Yusuf, M. Curcumin Prevents Epithelial-to Mesenchymal Transition-Mediated Ovarian Cancer Progression through NRF2/ETBR/ET-1 Axis and Preserves Mitochondria Biogenesis in Kidney after Cisplatin Administration. Adv. Pharm. Bull. 2020. [Google Scholar] [CrossRef]
- Zhang, C.; He, L.-J.; Ye, H.-Z.; Liu, D.-F.; Zhu, Y.-B.; Miao, D.-D.; Zhang, S.-P.; Chen, Y.-Y.; Jia, Y.-W.; Shen, J.; et al. Nrf2 is a key factor in the reversal effect of curcumin on multidrug resistance in the HCT-8/5-Fu human colorectal cancer cell line. Mol. Med. Rep. 2018, 18, 5409–5416. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zhang, Y.; Wang, Y.; Rao, J.; Jiang, X.; Xu, Z. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 ex-pression. J. Steroid Biochem. Mol. Biol. 2014, 143, 11–18. [Google Scholar] [CrossRef]
- Méndez-García, L.; Martínez-Castillo, M.; Villegas-Sepulveda, N.; Orozco, L.; Córdova, E.J. Curcumin induces p53-independent inactivation of Nrf2 during oxidative stress–induced apoptosis. Hum. Exp. Toxicol. 2019, 38, 951–961. [Google Scholar] [CrossRef]
- Lai, Z.; Lin, P.; Weng, X.; Su, J.; Chen, Y.; He, Y.; Wu, G.; Wang, J.; Yu, Y.; Zhang, L. MicroRNA-574-5p promotes cell growth of vascular smooth muscle cells in the progression of coronary artery disease. Biomed. Pharmacother. 2018, 97, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Rahban, M.; Habibi-Rezaei, M.; Mazaheri, M.; Saso, L.; Moosavi-Movahedi, A.A. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants 2020, 9, 1228. [Google Scholar] [CrossRef] [PubMed]
Type of Disease | Type of Curcumin | Animals | Dose Range | Cell Line | Dose Range | Targets and Other Pathways | Function | Ref. |
---|---|---|---|---|---|---|---|---|
Liver Injury | OHC, THC, CUR | Male Kunming mice | OHCandTHC: 25, 50, and 100 mg/kg, CUR: 100 mg/kg, I.P, pretreatment for 30 min | - | - | CYP2E1, GCLC, GCLM, NQO1, HO-1 | OHC and THC, via restoring antioxidant status, inhibiting CYP2E1, and activating the Keap1-Nrf2 pathway could protect the liver against APAP toxicity. | [10] |
Liver Injury | CUR | SD rat | 50 mg/kg, orally, daily, 6 weeks | - | - | HO-1, TNF-α, IL-6, | CUR via the Nrf2 pathway could attenuate oxidative stress and liver inflammation in rats with NASH. | [11] |
Acute Liver Injury (ALI) | CUR | Adult C57BL/6 mice | 50, 100, and 200 mg/kg, orally, daily, 7 days | - | - | HO-1, Caspase-3/9, TNF-α, IL-1β, TGF-β1/Smad3 | CUR by activating Nrf2/HO-1 and inhibiting TGF-β1/Smad3 could protect against CCl4-induced ALI. | [14] |
Liver Injury | CUR | Male Kunming mice | 50 mg/kg, Orally, 2 h before HgCl2 injection | L02 hepatocytes | 5 μM | HO-1, Nqo1, Il-1β, TNF-α, Caspase-1 | CUR by Nrf2/HO-1 pathway and modulate cytochrome P450 could improve mercuric chloride-induced liver injury. | [15] |
Acute Liver Injury (ALI) | CUR | Male SD rat | 5 mL/kg, orally, daily, starting 3 days before LPS/D-GalN treatment | - | - | TNF-α, NF-κB, HO-1, NQO-1, AKT, p65 | CUR via inhibiting NF-κB and activating Nrf2 could attenuate lipopolysaccharide/D-galactosamine-induced ALI. | [16] |
Oxaliplatin (OXA)-Induced Liver Injury | CUR | BALB/CJ mice | 100 mg/kg, daily, orally, 8 weeks | - | - | HO-1, NOQ1, CXCL1,CXCL2, MCP-1, PAI-1, | CUR via activating the Nrf2 could attenuate OXA-induced liver injury. | [17] |
Amoebic Liver Abscess (ALA) | CUR | Hamster | 150 mg/kg, orally, daily during 10 days before infection | - | - | HO-1, NF-κB, IL-1β | CUR via Nrf2/HO-1 axis could play a role in providing hepato-protection against ALA. | [12] |
Alcoholic Liver Disease (ALD) | CUR | Male SD rats | 100, 200, and 400 mg/kg, orally, 9 weeks | LO2 | 10–40 µM | FXR, TNF-α, NF-κB, PPAR-α | CUR via modulating Nrf2/FXR axis could attenuate ethanol-induced hepatic steatosis. | [13] |
ALD | CUR | male Wistar rats | 50 mg/kg, daily, orally, Third to the fourth week of the experiment | - | HO-1, NQO1 | CUR by the Nrf2/HO-1 axis could improve ethanol-induced liver oxidative damage. | [18] | |
Hepatic Fibrosis | CUR | Male ICR mice | 100, 200, and 400 mg/kg, orally, once a day, 4 weeks | LX-2 | 10–40 µM | PPARa, C/EBPa | CUR via activating Nrf2 could induce lipocyte phenotype in HSCs. | [19] |
Liver Injury | CUR | - | - | HSC-T6 | 0.15 µM | α-SMA, MDA, GSH, | CUR via upregulatingNrf2 could protect HSC-T6 cells against oxidative stress. | [20] |
Nonalcoholic Fatty Liver Disease (NAFLD) | CUR | Male C57BL/6 mice | 50 and 100 mg/kg, daily, orally, 4 weeks | Primary hepatocytes | 10 μM | FXR, LXR, CYP3A, CYP7A, HNF4α | CUR via the Nrf2-FXR-LXR pathway could regulate endogenous and exogenous metabolism in NAFLD mice. | [21] |
Nonalcoholic Steatohepatitis (NASH) | CUR | Males SD specific pathogens free rats | 50 mg/kg/day, orally, 2 weeks | - | - | - | CUR via upregulating of the Nrf2 could play a role in treating NASH. | [22] |
Mercury-Induced Hepatic Injuries | CUR | Wistar rat | 100 mg/kg, daily, I P., 3 day | - | - | HO-1, ARE, γ -GCSh | CUR via the Nrf2-ARE pathway could play a role in protecting against mercury-induced hepatic injuries. | [23] |
Arsenic-Induced Liver and Kidney Dysfunctions | CUR | Female Kunming mice | 200 mg/kg, orally, twice a week, 6 weeks | - | - | MAPKs, NF-κB, HO-1, NQO1, JNK, ERK1/2, p38 | CUR via inhibiting MAPKs/NF-κB and activating Nrf2 could function as an antioxidant and anti-inflammatory agent on arsenic-induced hepatic and kidney injury. | [24] |
Paraquat-Induced Liver Injury | CUR, Nanocurcumin | Male Wistar rats | 100 mg/kg, orally, daily, 7 days | - | - | HO1, NQO1 | CUR via the Nrf2 could be supportive for the prevention and therapy of paraquat-induced liver damage. | [25] |
Necrotising Enterocolitis (NEC) | CUR | Rat | 20 and 50 mg/kg, orally | - | - | SIRT1, TLR4, NLRP3, Caspase-1 | CUR via inhibiting TLR4 and activating SIRT1/Nrf2axis could improve NEC. | [26] |
Type of Disease | Type of Curcumin | Animals | Dose Range | Cell Line | Dose Range | Targets and Other Pathways | Function | Ref. |
---|---|---|---|---|---|---|---|---|
I/R-Induced Cardiac Damage | CUR analog 14p | Male C57BL/6 mice | Cur: 100 mg/kg/day, 14p: 10 mg/kg/day, given orally to the mice for consecutive 7 days before myocardial ischemia | H9c2 | 10 μM | Bax, Bcl-2, Caspase-3 | CUR analog 14p via activating Nrf2 and decreasing oxidative stress could protect against myocardial I/R injury. | [27] |
Hepatic I/R Injury | CUR | Male Albino rats | 400 mg/kg, orally, daily, 14 days | - | - | HO-1, TNF-α, IL-1β, Il-6, iNOS | CUR via Nrf2/HO-1 activation could attenuate hepatic I/R injury. | [28] |
Cerebral I/R Injury | CUR | Male Wistar rat | 300 mg/kg, I.P., 30 min after occlusion | - | - | NF-κB | CUR via elevating Nrf2 and down-regulating NF-κB could reduce neurological dysfunction and brain edema after cerebral I/R. | [29] |
Type of Disease | Type of Curcumin | Dose Range | Cell Line | Dose Range | Targets and Other Pathways | Function | Ref. |
---|---|---|---|---|---|---|---|
Diabetes-Related Cardiovascular Diseases | C66 | 5 mg/kg, orally, once a day in alternating days for 3 months | - | - | JNK2, TGF-β1, MCP-1, TNF-α, HO-1, SOD-1, Caspase-3 | C66 via inhibiting JNK2 and upregulating Nrf2 could protect against diabetes-induced aortic damage. | [30] |
Diabetes-Related Cardiovascular Diseases | CUR analog A13 | 20 mg/kg, daily, orally, 8 weeks | - | - | TGF-β1, NRF2, CAT, NQO1, COL1A2 | CUR analog A13 via activating the Nrf2/ARE axis could ameliorate myocardial fibrosis in diabetic rats. | [31] |
Diabetic Retinopathy (DR) | CUR | - | RPE | 5–20 μM | HO-1, ERK1/2, Caspase-3 | CUR via activating of the Nrf2/HO-1 axis could protect against HG-induced damage in RPE cells. | [32] |
Diabetic Cardiomyopathy | CUR | 100 mg/kg, daily, I.P., 6 weeks | - | - | HO-1, JAK, STAT, IL-6, NF-κB | CUR and metformin combination via Nrf2/HO-1 and JAK/STAT pathways could play a role in the treatment of diabetic cardiomyopathy. | [33] |
Diabetic Nephropathy (DN) | CUR | - | NRK-52E | 5–20 μM | HO-1, E-cadherin | CUR via activating of Nrf2 and HO-1 could protect renal tubular epithelial cells from high glucose (HG)-induced EMT. | [34] |
Insulin-Resistant Conditions | CUR | 50 mg/kg, daily, orally, 10 days | HepG2 | 10 μM | NQO-1 | CUR via inhibiting inflammatory signaling-mediated Keap1 could upregulate the Nrf2 system in insulin-resistant conditions. | [35] |
Type of Disease | Animals | Dose Range | Cell Line | Dose Range | Targets and Other Pathways | Function | Ref. |
---|---|---|---|---|---|---|---|
Traumatic Brain Injury (TBI) | Male ICR mice | 50 and 100 mg/kg, I.P., 30 min after TBI | - | - | ARE, HO1, Bcl-2, Caspase-3, NQO1, Histone-3 | CUR via the Nrf2-ARE axis could attenuate brain injury in the model of TBI. | [36] |
TBI | Male C57BL/6 (wild-type, WT) | 50 mg/kg Intraperitoneal injection, 15 min after TBI | - | - | Hmox-1, NQO1, GCLM, GCLC, Ccaspase-3, Bcl-2 | CUR via the Nrf2 signaling could play neuroprotective roles against TBI. | [37] |
Cerebral Injury | Kunming mice | 200 mg/kg, orally, started 10 days before irradiation and continued for 31 days during radiation | - | - | NQO1, HO-1, γ GCS | CUR via enhancing the Nrf2 could ameliorate radiation-induced cerebral injury. | [38] |
Neurotoxicity | - | - | Astrocyte | 2–20 μM | ARE, HO-1, NQO1, Keap1 | CUR via activating the Nrf2/ARE pathway independently of PKCδ could protect against MeHg-induced neurotoxicity. | [40] |
Parkinson’s Disease (PD) | Male Lewis rat | 100 mg/kg, twice a day for 50 days, orally | 293T, SK-N-SH | - | HO-1, NQO1, AKT | CUR by activating the AKT/Nrf2 pathway could ameliorate dopaminergic neuronal oxidative damage. | [39] |
Ethanol Associated Neurodegenerative Diseases | Male mice (C57BL/6N) | 50 mg/kg, daily, orally, 6 weeks | HT22, BV2 | 2 µM | HO-1, TLR4, RAGE, GFAP, NF-κB, TNF-α, PARP-1, IL-1β, Bax, Bcl-2 | CUR via Nrf2/TLR4/RAGE axis could protect the brain against ethanol-induced oxidative stress. | [41] |
Diffuse Axonal Injury (DAI) | Male SD rat | 20 mg/kg, I.P., 1 h after DAI induction | - | - | PERK, ATF4, CHOP, β-APP, eIF2α, CHOP, GSK-3β | CUR via the PERK/Nrf2 axis could mitigate neuronal cell apoptosis and axonal injury. | [42] |
Quinolinic Acid-Induced Neurotoxicity | Male Wistar rats | 400 mg/kg, daily, orally, 6 days | - | - | BDNF, ERK1/2, γ-GCL, G6PDH, GSH, SOD1, SOD2, CAT | CUR via BDNF/ERK1/2/Nrf2 could play a role in the treatment of quinolinic acid-induced neurotoxicity in Rats. | [43] |
Chronic Unpredictable Mild Stress-(CUMS-) Induced Depression | Male SD rats | 100 mg/kg, orally, daily, 4 weeks | - | - | ARE, NQO-1, HO-1, Nox2, 4-HNE, MDA, CREB, BDNF, PSD-95 | CUR via activating the Nrf2 pathway could reduce CUMS-induced depressive-like behaviors. | [44] |
White Matter Injury (WMI) | male Wistar rats | - | dorsal columns | 50 μM | HO-1, NF-kB, ARE, HIF1-α, TNF-α, IL-1 | Curcumin via Crosstalk between NF-kB and Nrf2 Pathways could exert a neuroprotective effect. | [45] |
Type of Disease | Animals | Dose Range | Cell Line | Dose Range | Targets and Other Pathways | Function | Ref. |
---|---|---|---|---|---|---|---|
Kidney Injury | Male SD rats | 100 mg/kg, orally, 5 consecutive days | 293T | 20 µM | HO-1, AKT Caspase-3, NF-ƙB, KIM-1 | CUR and Thymoquinone combination via ameliorating Nrf2/HO-1 and attenuating NF-ƙB, KIM-1 could protect cisplatin-induced kidney injury. | [46] |
Chronic Kidney Disease (CKD) | Human | 320 mg/kg, daily, orally, 8 weeks | - | - | GPx, GR, SOD, GSH, GSSG MDA | CUR could reduce oxidative stress in nondiabetic or diabetic proteinuric CKD. | [48] |
CKD | Male Wistar rat | 120 mg/kg, orally, daily, 4 weeks | - | - | MCP-1, Nox-4, Dopamine D1R | CUR via the Keap1-Nrf2 axis could play a role in the treatment of CKD. | [47] |
Passive HeymannNephritis (PHN) | Male Wistar and SD rats | 300 mg/kg, orally, daily, 4 weeks | - | - | HO-1, PI3K, AKT, mTOR, p62, Bax, Caspase-3, Bcl-2, Beclin-1, LC3 | CUR by regulating the Nrf2/HO-1 and PI3K/AKT/mTOR pathways could improve renal autophagy in experimental membranous nephropathy. | [49] |
Type of Disease | Animals | Dose Range | Cell Line | Dose Range | Targets and Other Pathways | Function | Ref. |
---|---|---|---|---|---|---|---|
Idiopathic Pulmonary Fibrosis (IPF) | - | - | LMSCs | 2.5–20 µM | HO-1, Bcl-2, Bax, Caspase-3, AKT | CUR via the AKT/Nrf2/HO-1 axis could protect murine LMSCs from H2O2. | [50] |
High Altitude Pulmonary Edema (HAPE) | Male SD rat | 50 mg/kg, orally, 1 h before exposure | A549 | 10 μM | HIF1-α, HO-1, VEGF, GST | CUR via upregulating Nrf2 and HIF1-α could play a role as a potential strategy for the prevention of HAPE. | [51] |
Asthma | Female specific pathogen-free (SPF) BALB/c mice | 200 mg/kg, I.P.,1 h prior to OVA | RAW264.7 | 5–50 μM | HO-1, NF-κB, TNF-α, IL-1β, IL-6 | CUR via activating the Nrf2/HO-1 axis could ameliorate airway inflammation in asthma. | [52] |
Chronic Heart Failure (HF) | Male C57BL/6 mice | 50 mg/kg, daily, supplied with osmotic minipumps, for 8 weeks | - | - | HO-1, SOD2, myogenin, MyoD, MURF1, Atrogen-1, | CUR via upregulating the Nrf2 could ameliorate exercise intolerance in HF mice. | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghafouri-Fard, S.; Shoorei, H.; Bahroudi, Z.; Hussen, B.M.; Talebi, S.F.; Taheri, M.; Ayatollahi, S.A. Nrf2-Related Therapeutic Effects of Curcumin in Different Disorders. Biomolecules 2022, 12, 82. https://doi.org/10.3390/biom12010082
Ghafouri-Fard S, Shoorei H, Bahroudi Z, Hussen BM, Talebi SF, Taheri M, Ayatollahi SA. Nrf2-Related Therapeutic Effects of Curcumin in Different Disorders. Biomolecules. 2022; 12(1):82. https://doi.org/10.3390/biom12010082
Chicago/Turabian StyleGhafouri-Fard, Soudeh, Hamed Shoorei, Zahra Bahroudi, Bashdar Mahmud Hussen, Seyedeh Fahimeh Talebi, Mohammad Taheri, and Seyed Abdulmajid Ayatollahi. 2022. "Nrf2-Related Therapeutic Effects of Curcumin in Different Disorders" Biomolecules 12, no. 1: 82. https://doi.org/10.3390/biom12010082
APA StyleGhafouri-Fard, S., Shoorei, H., Bahroudi, Z., Hussen, B. M., Talebi, S. F., Taheri, M., & Ayatollahi, S. A. (2022). Nrf2-Related Therapeutic Effects of Curcumin in Different Disorders. Biomolecules, 12(1), 82. https://doi.org/10.3390/biom12010082