Association of Maternal Diet during Pregnancy and Metabolite Profile in Cord Blood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Metabolomics Analysis
2.3. Dietary Assessment
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Maternal Dietary Patterns
3.3. Associations of Dietary Patterns with Cord Blood Metabolites
4. Discussion
4.1. Fish and Shellfish
4.2. Meat and Potato
4.3. Butter vs. Margarine
4.4. Cereals, Nuts, Seeds, Yoghurt, Cheese
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jägerstad, M. Folic Acid Fortification Prevents Neural Tube Defects and May Also Reduce Cancer Risks: Folate Fortification, NTD and Cancer. Acta Paediatr. 2012, 101, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.H. Anemia and Iron Deficiency: Effects on Pregnancy Outcome. Am. J. Clin. Nutr. 2000, 71, 1280S–1284S. [Google Scholar] [CrossRef]
- Trumpff, C.; Vandevijvere, S.; Moreno-Reyes, R.; Vanderpas, J.; Tafforeau, J.; Van Oyen, H.; De Schepper, J. Neonatal Thyroid-Stimulating Hormone Level Is Influenced by Neonatal, Maternal, and Pregnancy Factors. Nutr. Res. 2015, 35, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Harding, J. The Nutritional Basis of the Fetal Origins of Adult Disease. Int. J. Epidemiol. 2001, 30, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Demmelmair, H.; von Rosen, J.; Koletzko, B. Long-Term Consequences of Early Nutrition. Early Hum. Dev. 2006, 82, 567–574. [Google Scholar] [CrossRef]
- Ravelli, A.; van der Meulen, J.; Michels, R.; Osmond, C.; Barker, D.; Hales, C.; Bleker, O. Glucose Tolerance in Adults after Prenatal Exposure to Famine. Lancet 1998, 351, 173–177. [Google Scholar] [CrossRef]
- Roseboom, T.J. Coronary Heart Disease after Prenatal Exposure to the Dutch Famine, 1944–1945. Heart 2000, 84, 595–598. [Google Scholar] [CrossRef]
- Barker, D.J.P.; Godfrey, K.M.; Gluckman, P.D.; Harding, J.E.; Owens, J.A.; Robinson, J.S. Fetal Nutrition and Cardiovascular Disease in Adult Life. Lancet 1993, 341, 938–941. [Google Scholar] [CrossRef]
- Flexeder, C.; Thiering, E.; Brüske, I.; Koletzko, S.; Bauer, C.-P.; Wichmann, H.-E.; Mansmann, U.; von Berg, A.; Berdel, D.; Krämer, U.; et al. Growth Velocity during Infancy and Onset of Asthma in School-Aged Children: Growth Velocity and Onset of Asthma. Allergy 2012, 67, 257–264. [Google Scholar] [CrossRef]
- Flexeder, C.; Thiering, E.; von Berg, A.; Berdel, D.; Hoffmann, B.; Koletzko, S.; Bauer, C.-P.; Koletzko, B.; Heinrich, J.; Schulz, H. Peak Weight Velocity in Infancy Is Negatively Associated with Lung Function in Adolescence: Growth and Lung Function. Pediatr Pulmonol. 2016, 51, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Fuertes, E.; Thiering, E.; Koletzko, B.; Cramer, C.; Berdel, D.; Lehmann, I.; Bauer, C.-P.; Heinrich, J. Early Life Risk Factors of Being Overweight at 10 Years of Age: Results of the German Birth Cohorts GINIplus and LISAplus. Eur. J. Clin. Nutr. 2013, 67, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Von Kries, R.; Ensenauer, R.; Beyerlein, A.; Amann-Gassner, U.; Hauner, H.; Rosario, A.S. Gestational Weight Gain and Overweight in Children: Results from the Cross-Sectional German KiGGS Study. Int. J. Pediatric Obes. 2011, 6, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Voerman, E.; Santos, S.; Patro Golab, B.; Amiano, P.; Ballester, F.; Barros, H.; Bergström, A.; Charles, M.-A.; Chatzi, L.; Chevrier, C.; et al. Maternal Body Mass Index, Gestational Weight Gain, and the Risk of Overweight and Obesity across Childhood: An Individual Participant Data Meta-Analysis. PLoS Med. 2019, 16, e1002744. [Google Scholar] [CrossRef] [PubMed]
- Lowensohn, R.I.; Stadler, D.D.; Naze, C. Current Concepts of Maternal Nutrition. Obstet. Gynecol. Surv. 2016, 71, 413–426. [Google Scholar] [CrossRef]
- Michels, K.B.; Schulze, M.B. Can Dietary Patterns Help Us Detect Diet–Disease Associations? Nutr. Res. Rev. 2005, 18, 241–248. [Google Scholar] [CrossRef]
- Hillesund, E.R.; Bere, E.; Haugen, M.; Øverby, N.C. Development of a New Nordic Diet Score and Its Association with Gestational Weight Gain and Fetal Growth—A Study Performed in the Norwegian Mother and Child Cohort Study (MoBa). Public Health Nutr. 2014, 17, 1909–1918. [Google Scholar] [CrossRef]
- Thompson, J.M.D.; Wall, C.; Becroft, D.M.O.; Robinson, E.; Wild, C.J.; Mitchell, E.A. Maternal Dietary Patterns in Pregnancy and the Association with Small-for-Gestational-Age Infants. Br. J. Nutr. 2010, 103, 1665–1673. [Google Scholar] [CrossRef]
- Englund-Ogge, L.; Brantsaeter, A.L.; Sengpiel, V.; Haugen, M.; Birgisdottir, B.E.; Myhre, R.; Meltzer, H.M.; Jacobsson, B. Maternal Dietary Patterns and Preterm Delivery: Results from Large Prospective Cohort Study. BMJ 2014, 348, g1446. [Google Scholar] [CrossRef]
- Knudsen, V.K.; Orozova-Bekkevold, I.M.; Mikkelsen, T.B.; Wolff, S.; Olsen, S.F. Major Dietary Patterns in Pregnancy and Fetal Growth. Eur. J. Clin. Nutr. 2008, 62, 463–470. [Google Scholar] [CrossRef]
- Okubo, H.; Miyake, Y.; Sasaki, S.; Tanaka, K.; Murakami, K.; Hirota, Y.; The Osaka Maternal and Child Health Study Group. Dietary Patterns during Pregnancy and the Risk of Postpartum Depression in Japan: The Osaka Maternal and Child Health Study. Br. J. Nutr 2011, 105, 1251–1257. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.L.; Siega-Riz, A.M.; Sotres-Alvarez, D.; Robinson, W.R.; Daniels, J.L.; Perrin, E.M.; Stuebe, A.M. Maternal Dietary Patterns during Pregnancy Are Associated with Child Growth in the First 3 Years of Life. J. Nutr. 2016, 146, 2281–2288. [Google Scholar] [CrossRef] [PubMed]
- Fanos, V.; Atzori, L.; Makarenko, K.; Melis, G.B.; Ferrazzi, E. Metabolomics Application in Maternal-Fetal Medicine. BioMed. Res. Int. 2013, 2013, 720514. [Google Scholar] [CrossRef]
- Schlueter, R.J.; Al-Akwaa, F.M.; Benny, P.A.; Gurary, A.; Xie, G.; Jia, W.; Chun, S.J.; Chern, I.; Garmire, L.X. Prepregnant Obesity of Mothers in a Multiethnic Cohort Is Associated with Cord Blood Metabolomic Changes in Offspring. J. Proteome Res. 2020, 19, 1361–1374. [Google Scholar] [CrossRef] [PubMed]
- Lowe, W.L.; Bain, J.R.; Nodzenski, M.; Reisetter, A.C.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; et al. Maternal BMI and Glycemia Impact the Fetal Metabolome. Dia Care 2017, 40, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Hellmuth, C.; Uhl, O.; Godfrey, K.; Briley, A.; Welsh, P.; Pasupathy, D.; Seed, P.T.; Koletzko, B.; Poston, L.; et al. Cord Metabolic Profiles in Obese Pregnant Women: Insights into Offspring Growth and Body Composition. J. Clin. Endocrinol. Metab. 2018, 103, 346–355. [Google Scholar] [CrossRef]
- Shokry, E.; Marchioro, L.; Uhl, O.; Bermúdez, M.G.; García-Santos, J.A.; Segura, M.T.; Campoy, C.; Koletzko, B. Impact of Maternal BMI and Gestational Diabetes Mellitus on Maternal and Cord Blood Metabolome: Results from the PREOBE Cohort Study. Acta Diabetol. 2019, 56, 421–430. [Google Scholar] [CrossRef]
- Ivorra, C.; García-Vicent, C.; Chaves, F.J.; Monleón, D.; Morales, J.M.; Lurbe, E. Metabolomic Profiling in Blood from Umbilical Cords of Low Birth Weight Newborns. J. Transl. Med. 2012, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Favretto, D.; Cosmi, E.; Ragazzi, E.; Visentin, S.; Tucci, M.; Fais, P.; Cecchetto, G.; Zanardo, V.; Viel, G.; Ferrara, S.D. Cord Blood Metabolomic Profiling in Intrauterine Growth Restriction. Anal. Bioanal. Chem. 2012, 402, 1109–1121. [Google Scholar] [CrossRef]
- Hellmuth, C.; Uhl, O.; Standl, M.; Demmelmair, H.; Heinrich, J.; Koletzko, B.; Thiering, E. Cord Blood Metabolome Is Highly Associated with Birth Weight, but Less Predictive for Later Weight Development. Obes. Facts 2017, 10, 85–100. [Google Scholar] [CrossRef]
- Sanz-Cortés, M.; Carbajo, R.J.; Crispi, F.; Figueras, F.; Pineda-Lucena, A.; Gratacós, E. Metabolomic Profile of Umbilical Cord Blood Plasma from Early and Late Intrauterine Growth Restricted (IUGR) Neonates with and without Signs of Brain Vasodilation. PLoS ONE 2013, 8, e80121. [Google Scholar] [CrossRef]
- Marchioro, L.; Geraghty, A.A.; Uhl, O.; Shokry, E.; O’Brien, E.C.; Koletzko, B.; McAuliffe, F.M. Effect of a Low Glycaemic Index Diet during Pregnancy on Maternal and Cord Blood Metabolomic Profiles: Results from the ROLO Randomized Controlled Trial. Nutr. Metab. 2019, 16, 59. [Google Scholar] [CrossRef]
- Heinrich, J.; Bolte, G.; Holscher, B.; Douwes, J.; Lehmann, I.; Fahlbusch, B.; Bischof, W.; Weiss, M.; Borte, M.; Wichmann, H.-E. Allergens and Endotoxin on Mothers’ Mattresses and Total Immunoglobulin E in Cord Blood of Neonates. Eur. Respir. J. 2002, 20, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Glaser, C.; Demmelmair, H.; Koletzko, B. High-Throughput Analysis of Total Plasma Fatty Acid Composition with Direct In Situ Transesterification. PLoS ONE 2010, 5, e12045. [Google Scholar] [CrossRef] [PubMed]
- Hellmuth, C.; Weber, M.; Koletzko, B.; Peissner, W. Nonesterified Fatty Acid Determination for Functional Lipidomics: Comprehensive Ultrahigh Performance Liquid Chromatography–Tandem Mass Spectrometry Quantitation, Qualification, and Parameter Prediction. Anal. Chem. 2012, 84, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Harder, U.; Koletzko, B.; Peissner, W. Quantification of 22 Plasma Amino Acids Combining Derivatization and Ion-Pair LC–MS/MS. J. Chromatogr. B 2011, 879, 495–504. [Google Scholar] [CrossRef]
- Sausenthaler, S.; Schaaf, B.; Lehmann, I.; Borte, M.; Herbarth, O.; von Berg, A.; Wichmann, H.-E.; Heinrich, J. Maternal Diet during Pregnancy in Relation to Eczema and Allergic Sensitization in the Offspring at 2 y of Age. Am. J. Clin. Nutr. 2007, 85, 530–537. [Google Scholar] [CrossRef]
- Willet, W. Nutritional Epidemiology, 2nd ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-Project.Org/ (accessed on 1 October 2017).
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Guttman, L. Some Necessary Conditions for Common-Factor Analysis. Psychometrika 1954, 19, 149–161. [Google Scholar] [CrossRef]
- Kaiser, H.F. A Second Generation Little Jiffy. Psychometrika 1970, 35, 401–415. [Google Scholar] [CrossRef]
- Raiche, G.; Magis, D. An R Package for Parallel Analysis and Non Graphical Solutions to the Cattell Scree Test. In R Package Version 2.3.3. Edn. 2010. Available online: https://cran.r-project.org/package=nFactors (accessed on 1 October 2017).
- Thomson, G.H. The Factorial Analysis of Human Ability; University Press: London, UK, 1951. [Google Scholar]
- Newby, P.; Muller, D.; Hallfrisch, J.; Andres, R.; Tucker, K.L. Food Patterns Measured by Factor Analysis and Anthropometric Changes in Adults. Am. J. Clin. Nutr. 2004, 80, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.B.; Hoffmann, K.; Kroke, A.; Boeing, H. Dietary Patterns and Their Association with Food and Nutrient Intake in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam Study. Br. J. Nutr 2001, 85, 363–373. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 Fatty Acids in Health and Disease and in Growth and Development. Am. J. Clin. Nutr. 1991, 54, 438–463. [Google Scholar] [CrossRef]
- Katan, M.B.; Deslypere, J.P.; van Birgelen, A.P.; Penders, M.; Zegwaard, M. Kinetics of the Incorporation of Dietary Fatty Acids into Serum Cholesteryl Esters, Erythrocyte Membranes, and Adipose Tissue: An 18-Month Controlled Study. J. Lipid Res. 1997, 38, 2012–2022. [Google Scholar] [CrossRef]
- Van Houwelingen, A.C.; Søsrensen, J.D.; Hornstra, G.; Simonis, M.M.G.; Boris, J.; Olsen, S.F.; Secher, N.J. Essential Fatty Acid Status in Neonates after Fish-Oil Supplementation during Late Pregnancy. Br. J. Nutr. 1995, 74, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, J.A.; Mori, T.A.; Barden, A.; Beilin, L.J.; Holt, P.G.; Calder, P.C.; Taylor, A.L.; Prescott, S.L. Effects of N-3 Polyunsaturated Fatty Acid Supplementation in Pregnancy on Maternal and Fetal Erythrocyte Fatty Acid Composition. Eur. J. Clin. Nutr. 2004, 58, 429–437. [Google Scholar] [CrossRef]
- Montgomery, C.; Speake, B.K.; Cameron, A.; Sattar, N.; Weaver, L.T. Maternal Docosahexaenoic Acid Supplementation and Fetal Accretion. Br. J. Nutr. 2003, 90, 135–145. [Google Scholar] [CrossRef]
- Malcolm, C.A. Maternal Docosahexaenoic Acid Supplementation during Pregnancy and Visual Evoked Potential Development in Term Infants: A Double Blind, Prospective, Randomised Trial. Arch. Dis. Child.—Fetal Neonatal Ed. 2003, 88, 383F–390. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Docosahexaenoic Acid. Ann. Nutr. Metab. 2016, 69, 8–21. [Google Scholar] [CrossRef]
- Koletzko, B.; Cetin, I.; Thomas Brenna, J. Dietary Fat Intakes for Pregnant and Lactating Women. Br. J. Nutr. 2007, 98, 873–877. [Google Scholar] [CrossRef]
- Muhlhausler, B.S.; Gibson, R.A.; Yelland, L.N.; Makrides, M. Heterogeneity in Cord Blood DHA Concentration: Towards an Explanation. Prostaglandins Leukot. Essent. Fat. Acids 2014, 91, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Zhou, T.; Wang, Q.; Liu, P.; Zhang, T.; Zetterström, R.; Strandvik, B. Fatty Acid Composition of Diet, Cord Blood and Breast Milk in Chinese Mothers with Different Dietary Habits. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Hornstra, G. Essential Fatty Acids in Mothers and Their Neonates. Am. J. Clin. Nutr. 2000, 71, 1262S–1269S. [Google Scholar] [CrossRef] [PubMed]
- Platell, C.; Kong, S.; McCauley, R.; Hall, J.C. Branched-chain Amino Acids. J. Gastroenterol. Hepatol. 2000, 15, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.; Keski-Rahkonen, P.; Assi, N.; Ferrari, P.; Freisling, H.; Rinaldi, S.; Slimani, N.; Zamora-Ros, R.; Rundle, M.; Frost, G.; et al. A Metabolomic Study of Biomarkers of Meat and Fish Intake. Am. J. Clin. Nutr. 2017, 105, 600–608. [Google Scholar] [CrossRef]
- Bouchard-Mercier, A.; Rudkowska, I.; Lemieux, S.; Couture, P.; Vohl, M.-C. The Metabolic Signature Associated with the Western Dietary Pattern: A Cross-Sectional Study. Nutr. J. 2013, 12, 158. [Google Scholar] [CrossRef]
- Kirchberg, F.F.; Harder, U.; Weber, M.; Grote, V.; Demmelmair, H.; Peissner, W.; Rzehak, P.; Xhonneux, A.; Carlier, C.; Ferre, N.; et al. Dietary Protein Intake Affects Amino Acid and Acylcarnitine Metabolism in Infants Aged 6 Months. J. Clin. Endocrinol. Metab. 2015, 100, 149–158. [Google Scholar] [CrossRef]
- Sánchez-Pintos, P.; de Castro, M.-J.; Roca, I.; Rite, S.; López, M.; Couce, M.-L. Similarities between Acylcarnitine Profiles in Large for Gestational Age Newborns and Obesity. Sci. Rep. 2017, 7, 16267. [Google Scholar] [CrossRef]
- Rousseau, M.; Guénard, F.; Garneau, V.; Allam-Ndoul, B.; Lemieux, S.; Pérusse, L.; Vohl, M.-C. Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults. Nutrients 2019, 11, 173. [Google Scholar] [CrossRef]
- McNeill, S.H. Inclusion of Red Meat in Healthful Dietary Patterns. Meat Sci. 2014, 98, 452–460. [Google Scholar] [CrossRef]
- Maslova, E.; Hansen, S.; Grunnet, L.G.; Strøm, M.; Bjerregaard, A.A.; Hjort, L.; Kampmann, F.B.; Madsen, C.M.; Baun Thuesen, A.; Bech, B.H.; et al. Maternal Protein Intake in Pregnancy and Offspring Metabolic Health at Age 9–16 y: Results from a Danish Cohort of Gestational Diabetes Mellitus Pregnancies and Controls. Am. J. Clin. Nutr. 2017, 106, 623–636. [Google Scholar] [CrossRef] [Green Version]
- Maslova, E.; Rytter, D.; Bech, B.H.; Henriksen, T.B.; Rasmussen, M.A.; Olsen, S.F.; Halldorsson, T.I. Maternal Protein Intake during Pregnancy and Offspring Overweight 20 y Later. Am. J. Clin. Nutr. 2014, 100, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Dawson-Hughes, B.; Harris, S.S.; Rasmussen, H.M.; Dallal, G.E. Comparative Effects of Oral Aromatic and Branched-Chain Amino Acids on Urine Calcium Excretion in Humans. Osteoporos Int. 2007, 18, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Brands, B.; Grote, V.; Kirchberg, F.F.; Prell, C.; Rzehak, P.; Uhl, O.; Weber, M. Long-Term Health Impact of Early Nutrition: The Power of Programming. Ann. Nutr. Metab. 2017, 70, 161–169. [Google Scholar] [CrossRef]
- Cao, H.; Gerhold, K.; Mayers, J.R.; Wiest, M.M.; Watkins, S.M.; Hotamisligil, G.S. Identification of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism. Cell 2008, 134, 933–944. [Google Scholar] [CrossRef]
- Song, Z.; Xiaoli, A.; Yang, F. Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients 2018, 10, 1383. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Kantartzis, K.; Celebi, N.; Staiger, H.; Machann, J.; Schick, F.; Cegan, A.; Elcnerova, M.; Schleicher, E.; Fritsche, A.; et al. Circulating Palmitoleate Strongly and Independently Predicts Insulin Sensitivity in Humans. Diabetes Care 2010, 33, 405–407. [Google Scholar] [CrossRef]
- Menni, C.; Fauman, E.; Erte, I.; Perry, J.R.B.; Kastenmuller, G.; Shin, S.-Y.; Petersen, A.-K.; Hyde, C.; Psatha, M.; Ward, K.J.; et al. Biomarkers for Type 2 Diabetes and Impaired Fasting Glucose Using a Nontargeted Metabolomics Approach. Diabetes 2013, 62, 4270–4276. [Google Scholar] [CrossRef]
- Newgard, C.B. Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance. Cell Metab. 2012, 15, 606–614. [Google Scholar] [CrossRef]
- Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.B.; Newgard, C.B.; et al. Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef]
- Batchuluun, B.; Al Rijjal, D.; Prentice, K.J.; Eversley, J.A.; Burdett, E.; Mohan, H.; Bhattacharjee, A.; Gunderson, E.P.; Liu, Y.; Wheeler, M.B. Elevated Medium-Chain Acylcarnitines Are Associated with Gestational Diabetes Mellitus and Early Progression to Type 2 Diabetes and Induce Pancreatic β-Cell Dysfunction. Diabetes 2018, 67, 885–897. [Google Scholar] [CrossRef] [Green Version]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A Branched-Chain Amino Acid-Related Metabolic Signature That Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Mai, M.; Tönjes, A.; Kovacs, P.; Stumvoll, M.; Fiedler, G.M.; Leichtle, A.B. Serum Levels of Acylcarnitines Are Altered in Prediabetic Conditions. PLoS ONE 2013, 8, e82459. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; von Ruesten, A.; Drogan, D.; Schulze, M.B.; Prehn, C.; Adamski, J.; Pischon, T.; Boeing, H. Variation of Serum Metabolites Related to Habitual Diet: A Targeted Metabolomic Approach in EPIC-Potsdam. Eur. J. Clin. Nutr. 2013, 67, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Dewettinck, K.; Rombaut, R.; Thienpont, N.; Le, T.T.; Messens, K.; Van Camp, J. Nutritional and Technological Aspects of Milk Fat Globule Membrane Material. Int. Dairy J. 2008, 18, 436–457. [Google Scholar] [CrossRef]
- Gaspardo, B.; Lavrenčič, A.; Levart, A.; Del Zotto, S.; Stefanon, B. Use of Milk Fatty Acids Composition to Discriminate Area of Origin of Bulk Milk. J. Dairy Sci. 2010, 93, 3417–3426. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; King, I.B. Very Long-Chain Saturated Fatty Acids and Diabetes and Cardiovascular Disease. Curr. Opin. Lipidol. 2022, 33, 76–82. [Google Scholar] [CrossRef]
- Ohno, Y.; Suto, S.; Yamanaka, M.; Mizutani, Y.; Mitsutake, S.; Igarashi, Y.; Sassa, T.; Kihara, A. ELOVL1 Production of C24 Acyl-CoAs Is Linked to C24 Sphingolipid Synthesis. Proc. Natl. Acad. Sci. USA 2010, 107, 18439–18444. [Google Scholar] [CrossRef]
- Rauschert, S.; Gázquez, A.; Uhl, O.; Kirchberg, F.F.; Demmelmair, H.; Ruíz-Palacios, M.; Prieto-Sánchez, M.T.; Blanco-Carnero, J.E.; Nieto, A.; Larqué, E.; et al. Phospholipids in Lipoproteins: Compositional Differences across VLDL, LDL, and HDL in Pregnant Women. Lipids Health Dis 2019, 18, 20. [Google Scholar] [CrossRef]
- Brizzi, P.; Tonolo, G.; Esposito, F.; Puddu, L.; Dessole, S.; Maioli, M.; Milia, S. Lipoprotein Metabolism during Normal Pregnancy. Am. J. Obstet. Gynecol. 1999, 181, 430–434. [Google Scholar] [CrossRef]
- Herrera, E. Lipid Metabolism in Pregnancy and Its Consequences in the Fetus and Newborn. ENDO 2002, 19, 43–56. [Google Scholar] [CrossRef]
- van Echten-Deckert, G.; Herget, T. Sphingolipid Metabolism in Neural Cells. Biochim. Biophys. Acta (BBA)—Biomembr. 2006, 1758, 1978–1994. [Google Scholar] [CrossRef]
- Tanaka, K.; Hosozawa, M.; Kudo, N.; Yoshikawa, N.; Hisata, K.; Shoji, H.; Shinohara, K.; Shimizu, T. The Pilot Study: Sphingomyelin-Fortified Milk Has a Positive Association with the Neurobehavioural Development of Very Low Birth Weight Infants during Infancy, Randomized Control Trial. Brain Dev. 2013, 35, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine Milk in Human Nutrition—A Review. Lipids Health Dis 2007, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Roopashree, P.G.; Shetty, S.S.; Suchetha Kumari, N. Effect of Medium Chain Fatty Acid in Human Health and Disease. J. Funct. Foods 2021, 87, 104724. [Google Scholar] [CrossRef]
- Visentin, S.; Crotti, S.; Donazzolo, E.; D’Aronco, S.; Nitti, D.; Cosmi, E.; Agostini, M. Medium Chain Fatty Acids in Intrauterine Growth Restricted and Small for Gestational Age Pregnancies. Metabolomics 2017, 13, 54. [Google Scholar] [CrossRef]
- Bobiński, R.; Mikulska, M.; Mojska, H.; Ulman-Włodarz, I. The Dietary Composition of Women Who Delivered Healthy Full-Term Infants, Preterm Infants, and Full-Term Infants Who Were Small for Gestational Age. Biol. Res. Nurs. 2015, 17, 495–502. [Google Scholar] [CrossRef]
- Jansson, T. Amino Acid Transporters in the Human Placenta. Pediatr Res. 2001, 49, 141–147. [Google Scholar] [CrossRef]
- Mun, J.G.; Legette, L.L.; Ikonte, C.J.; Mitmesser, S.H. Choline and DHA in Maternal and Infant Nutrition: Synergistic Implications in Brain and Eye Health. Nutrients 2019, 11, 1125. [Google Scholar] [CrossRef]
- Willett, W.C. Future Directions in the Development of Food-Frequency Questionnaires. Am. J. Clin. Nutr. 1994, 59, 171S–174S. [Google Scholar] [CrossRef]
N | n (%) or Mean ± SD | |
---|---|---|
Maternal age (years) | 739 | 32.4 ± 4.1 |
Maternal, pre-pregnancy BMI (kg/m2) | 725 | 22.5 ± 4.1 |
Overweight (≥25) | 725 | 124 (17.1) |
Normal (≥18.5 and <25) | 725 | 558 (77) |
Underweight (<18.5) | 725 | 43 (5.9) |
Maternal education | ||
Low (<10 years) | 733 | 71 (9.7) |
Medium (10 years) | 733 | 232 (31.7) |
High (>10 years) | 733 | 430 (58.7) |
Gestational age (weeks) | 730 | 40 ± 1.2 |
Gestational weight gain (kg/month) | 715 | 0.4 ± 0.1 |
Birth weight (kg) | 739 | 3.5 ± 0.4 |
City | ||
Munich | 739 | 568 (76.9) |
Bad Honnef | 739 | 171 (23.1) |
Sex | ||
Female | 739 | 395 (53.5) |
Male | 739 | 344 (46.5) |
Smoking, during 3rd trimester | ||
Yes | 705 | 74 (10.5) |
No | 705 | 631 (89.5) |
Food Items in FFQ | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | Factor 7 | Factor 8 | Factor 9 | Factor 10 |
---|---|---|---|---|---|---|---|---|---|---|
Milk, buttermilk | 0.183 | |||||||||
Yoghurt | 0.203 | 0.388 * | ||||||||
Cheese | 0.129 | 0.406 * | 0.146 | |||||||
Cream, sour cream, crème fraiche, coffee cream | 0.226 | 0.124 | 0.172 | 0.214 | 0.138 | |||||
Butter | 0.834 * | |||||||||
Margarine | −0.155 | −0.679 * | 0.241 | |||||||
Vegetable oil (not olive) | 0.349 * | 0.179 | 0.109 | |||||||
Oily fruits and seeds | 0.194 | 0.400 * | −0.140 | 0.212 | ||||||
Vegetable cooking fat | 0.146 | |||||||||
Nuts | 0.116 | 0.334 * | 0.131 | 0.238 | ||||||
Chocolate | 0.206 | 0.287 | −0.148 | 0.218 | ||||||
Liver | 0.179 | |||||||||
Liver sausage, pate | −0.101 | 0.368 * | ||||||||
Pork | 0.488 * | 0.109 | ||||||||
Fish | 0.152 | 0.133 | 0.203 | 0.225 | 0.398 * | |||||
Seafood, shellfish | 0.124 | −0.109 | 0.490 * | |||||||
Canned fish, smoked fish | 0.122 | 0.192 | 0.332 * | |||||||
Boiled potatoes | 0.391 * | 0.109 | 0.393 * | |||||||
Fried potatoes, chips | 0.116 | 0.147 | −0.129 | 0.226 | 0.245 | |||||
Vegetable juice | 0.234 | 0.135 | −0.115 | 0.198 | ||||||
Raw carrots | 0.358 * | 0.172 | 0.154 | 0.254 | −0.101 | −0.131 | ||||
Carrots | 0.659 * | 0.136 | ||||||||
Spinach, Swiss chard | 0.471 * | 0.183 | ||||||||
Cooked vegetables | 0.482 * | 0.198 | ||||||||
Celery | 0.304 * | 0.132 | 0.112 | 0.212 | 0.113 | |||||
Vegetables | 0.370 * | 0.117 | 0.169 | |||||||
Raw tomatoes | 0.156 | 0.479 * | 0.186 | 0.219 | 0.119 | −0.222 | ||||
Raw sweet pepper | 0.140 | 0.887 * | 0.107 | 0.137 | ||||||
Cooked sweet pepper | 0.285 | 0.500 * | 0.109 | 0.141 | ||||||
Lettuce | 0.112 | 0.158 | 0.719 * | 0.141 | 0.145 | −0.109 | ||||
Mayonnaise, salad dressing | 0.637 * | |||||||||
Juices | 0.363 * | |||||||||
Citrus fruits | 0.547 * | 0.132 | 0.339 * | |||||||
Apple | 0.158 | 0.441 * | 0.243 | |||||||
Kiwi, pineapple, mango | 0.182 | 0.547 * | 0.115 | 0.168 | ||||||
Banana | 0.108 | 0.463 * | 0.200 | −0.103 | ||||||
Strawberry | 0.168 | 0.159 | 0.234 | 0.106 | −0.493 * | |||||
Fruit syrup, juice concentrate | 0.233 | |||||||||
Cake | 0.357 * | 0.150 | ||||||||
Fruit cake | 0.116 | 0.478 * | ||||||||
Gingerbread (Lebkuchen) | 0.131 | 0.101 | 0.486 * | |||||||
Sweet dairy foods | 0.143 | 0.460 * | −0.144 | |||||||
Eggs | 0.152 | 0.272 | 0.114 | |||||||
Soy milk, soy products | 0.108 | −0.110 | 0.105 | |||||||
Cereals | 0.145 | 0.131 | 0.468 * | −0.202 | ||||||
Variance Explained (%) | 3.9 | 3.3 | 3.2 | 3.1 | 3.0 | 2.9 | 2.6 | 2.2 | 2.0 | 1.9 |
Cumulative Variance (%) | 3.9 | 7.2 | 10.4 | 13.5 | 16.5 | 19.4 | 22.0 | 24.2 | 26.2 | 28.2 |
Crude Model | Main Model | Main Model + | Main Model ++ | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dietary Pattern | Metabolite | n | beta | se | p | n | beta | se | p | n | beta | se | p | n | beta | se | p |
Vegetables | PCa C38:5 | 734 | 0.056 | 0.017 | 0.001 | 689 | 0.060 | 0.017 | 0.001 | 674 | 0.053 | 0.017 | 0.003 | 674 | 0.052 | 0.018 | 0.003 |
PCe C36:3 | 735 | 0.068 | 0.020 | 0.001 | 690 | 0.071 | 0.021 | 0.001 | 675 | 0.067 | 0.021 | 0.002 | 675 | 0.065 | 0.021 | 0.002 | |
PCe C36:4 | 737 | 0.060 | 0.018 | 0.001 | 692 | 0.063 | 0.019 | 0.001 | 677 | 0.057 | 0.019 | 0.003 | 677 | 0.056 | 0.019 | 0.004 | |
Val | 734 | 0.033 | 0.011 | 0.004 | 689 | 0.038 | 0.012 | 0.001 | 674 | 0.039 | 0.012 | 0.001 | 674 | 0.039 | 0.012 | 0.001 | |
His | 737 | 0.055 | 0.015 | <0.001 | 692 | 0.051 | 0.016 | 0.001 | 677 | 0.044 | 0.016 | 0.006 | 677 | 0.041 | 0.016 | 0.009 | |
C22:5 n6 | 734 | 0.066 | 0.021 | 0.002 | 690 | 0.066 | 0.022 | 0.002 | 675 | 0.061 | 0.022 | 0.006 | 675 | 0.056 | 0.022 | 0.010 | |
Lys | 610 | 0.040 | 0.015 | 0.007 | 573 | 0.042 | 0.015 | 0.005 | 560 | 0.037 | 0.015 | 0.013 | 560 | 0.038 | 0.015 | 0.013 | |
PCe C34:1 | 737 | 0.059 | 0.019 | 0.002 | 692 | 0.056 | 0.020 | 0.006 | 677 | 0.050 | 0.021 | 0.015 | 677 | 0.049 | 0.021 | 0.018 | |
SMa C30:1 | 586 | 0.106 | 0.034 | 0.002 | 550 | 0.093 | 0.035 | 0.008 | 539 | 0.086 | 0.036 | 0.017 | 539 | 0.088 | 0.036 | 0.014 | |
Fruits | PCa C42:1 | 385 | −0.121 | 0.033 | <0.001 | 365 | −0.109 | 0.034 | 0.002 | 357 | −0.104 | 0.035 | 0.003 | 357 | −0.105 | 0.035 | 0.003 |
SMa C42:5 | 434 | −0.112 | 0.039 | 0.004 | 410 | −0.122 | 0.041 | 0.003 | 404 | −0.116 | 0.041 | 0.005 | 404 | −0.117 | 0.041 | 0.005 | |
H1 | 719 | −0.169 | 0.065 | 0.010 | 674 | −0.186 | 0.068 | 0.006 | 659 | −0.209 | 0.069 | 0.002 | 659 | −0.206 | 0.069 | 0.003 | |
C20:4 n6 | 732 | −0.036 | 0.012 | 0.003 | 688 | −0.034 | 0.013 | 0.007 | 673 | −0.035 | 0.013 | 0.006 | 673 | −0.035 | 0.013 | 0.006 | |
AC C10:1 | 650 | −0.084 | 0.027 | 0.002 | 616 | −0.075 | 0.028 | 0.008 | 602 | −0.073 | 0.029 | 0.011 | 602 | −0.075 | 0.029 | 0.009 | |
C18:2 n6 | 733 | −0.040 | 0.014 | 0.006 | 689 | −0.037 | 0.015 | 0.014 | 674 | −0.042 | 0.015 | 0.007 | 674 | −0.044 | 0.015 | 0.004 | |
LPCa C20:4 | 735 | −0.071 | 0.021 | 0.001 | 690 | −0.052 | 0.022 | 0.017 | 675 | −0.052 | 0.022 | 0.018 | 675 | −0.046 | 0.022 | 0.032 | |
Met | 736 | 0.047 | 0.017 | 0.004 | 691 | 0.040 | 0.017 | 0.019 | 676 | 0.037 | 0.017 | 0.032 | 676 | 0.036 | 0.017 | 0.035 | |
PCa C38:4 | 737 | −0.052 | 0.018 | 0.004 | 692 | −0.042 | 0.018 | 0.024 | 677 | −0.040 | 0.019 | 0.032 | 677 | −0.042 | 0.019 | 0.026 | |
Summer | PCa C40:5 | 738 | −0.065 | 0.023 | 0.004 | 693 | −0.067 | 0.023 | 0.004 | 678 | −0.064 | 0.024 | 0.007 | 678 | −0.062 | 0.023 | 0.008 |
Vegetables | PCe C38:3 | 730 | −0.076 | 0.024 | 0.001 | 685 | −0.067 | 0.024 | 0.006 | 670 | −0.063 | 0.024 | 0.011 | 670 | −0.064 | 0.024 | 0.009 |
PCe C38:2 | 726 | −0.093 | 0.032 | 0.004 | 681 | −0.081 | 0.032 | 0.012 | 666 | −0.076 | 0.032 | 0.020 | 666 | −0.076 | 0.032 | 0.019 | |
Salad | Gln | 715 | −0.097 | 0.027 | <0.001 | 674 | −0.081 | 0.028 | 0.004 | 660 | −0.077 | 0.028 | 0.006 | 660 | −0.077 | 0.028 | 0.006 |
and | LPCa C18:2 | 736 | 0.068 | 0.022 | 0.002 | 691 | 0.061 | 0.022 | 0.006 | 676 | 0.064 | 0.023 | 0.005 | 676 | 0.068 | 0.022 | 0.002 |
Dressings | C18:2 n6 | 733 | 0.047 | 0.014 | 0.001 | 689 | 0.040 | 0.015 | 0.007 | 674 | 0.038 | 0.015 | 0.014 | 674 | 0.037 | 0.015 | 0.016 |
AC C16:0 | 738 | −0.085 | 0.028 | 0.003 | 693 | −0.077 | 0.029 | 0.008 | 678 | −0.067 | 0.030 | 0.024 | 678 | −0.067 | 0.030 | 0.024 | |
PCa C36:2 | 735 | 0.064 | 0.019 | 0.001 | 690 | 0.052 | 0.020 | 0.010 | 675 | 0.053 | 0.021 | 0.010 | 675 | 0.053 | 0.021 | 0.011 | |
LPCa C18:3 | 604 | 0.092 | 0.035 | 0.009 | 576 | 0.087 | 0.036 | 0.016 | 564 | 0.095 | 0.036 | 0.010 | 564 | 0.105 | 0.036 | 0.004 | |
Orn | 736 | −0.064 | 0.022 | 0.004 | 691 | −0.040 | 0.021 | 0.056 | 676 | −0.043 | 0.021 | 0.045 | 676 | −0.043 | 0.021 | 0.044 | |
Gly | 738 | −0.048 | 0.017 | 0.005 | 693 | −0.032 | 0.017 | 0.059 | 678 | −0.031 | 0.017 | 0.070 | 678 | −0.031 | 0.017 | 0.070 | |
Met | 736 | −0.051 | 0.017 | 0.002 | 691 | −0.030 | 0.017 | 0.071 | 676 | −0.030 | 0.017 | 0.078 | 676 | −0.030 | 0.017 | 0.075 | |
Cereals, | SMa C30:1 | 586 | 0.128 | 0.036 | <0.001 * | 550 | 0.136 | 0.038 | <0.001 | 539 | 0.141 | 0.039 | <0.001 | 539 | 0.143 | 0.039 | <0.001 * |
Seeds, Nuts, | SMa C43:2 | 689 | 0.087 | 0.025 | <0.001 * | 650 | 0.080 | 0.027 | 0.003 | 637 | 0.074 | 0.027 | 0.007 | 637 | 0.074 | 0.027 | 0.007 |
Yogurt, | AC C2:0 | 735 | −0.073 | 0.022 | 0.001 | 690 | −0.065 | 0.024 | 0.006 | 675 | −0.061 | 0.024 | 0.012 | 675 | −0.061 | 0.024 | 0.012 |
Cheese | SMa C35:1 | 737 | 0.056 | 0.019 | 0.004 | 692 | 0.057 | 0.021 | 0.008 | 677 | 0.051 | 0.021 | 0.017 | 677 | 0.051 | 0.021 | 0.017 |
SMa C33:1 | 737 | 0.055 | 0.019 | 0.004 | 692 | 0.051 | 0.020 | 0.013 | 677 | 0.046 | 0.021 | 0.026 | 677 | 0.046 | 0.021 | 0.026 | |
LPCe C16:0 | 692 | 0.080 | 0.026 | 0.002 | 654 | 0.060 | 0.028 | 0.032 | 641 | 0.054 | 0.028 | 0.056 | 641 | 0.052 | 0.028 | 0.061 | |
Butter | AC C8:1 | 736 | −0.143 | 0.038 | <0.001 * | 692 | −0.142 | 0.041 | 0.001 | 677 | −0.120 | 0.042 | 0.004 | 677 | −0.118 | 0.042 | 0.005 |
vs. | SMa C39:1 | 734 | 0.078 | 0.023 | 0.001 * | 689 | 0.081 | 0.024 | 0.001 | 674 | 0.075 | 0.025 | 0.003 | 674 | 0.076 | 0.025 | 0.002 |
Margarine | NEFA C22:3 | 565 | −0.054 | 0.026 | 0.035 | 534 | −0.081 | 0.027 | 0.002 | 523 | −0.070 | 0.027 | 0.010 | 523 | −0.071 | 0.027 | 0.010 |
SMa C43:2 | 689 | 0.079 | 0.025 | 0.002 * | 650 | 0.080 | 0.027 | 0.003 | 637 | 0.074 | 0.027 | 0.007 | 637 | 0.074 | 0.027 | 0.007 | |
LPCe C18:0 | 733 | 0.098 | 0.026 | <0.001 * | 688 | 0.080 | 0.028 | 0.004 | 673 | 0.066 | 0.028 | 0.019 | 673 | 0.066 | 0.028 | 0.019 | |
C15:1 | 725 | 0.077 | 0.027 | 0.004 | 681 | 0.080 | 0.028 | 0.004 | 666 | 0.066 | 0.028 | 0.020 | 666 | 0.067 | 0.028 | 0.019 | |
LPCa C18:3 | 604 | −0.117 | 0.036 | 0.001 * | 576 | −0.106 | 0.038 | 0.005 | 564 | −0.118 | 0.039 | 0.002 | 564 | −0.122 | 0.038 | 0.001 | |
LPCe C16:0 | 692 | 0.092 | 0.026 | 0.001 * | 654 | 0.072 | 0.028 | 0.010 | 641 | 0.072 | 0.028 | 0.011 | 641 | 0.071 | 0.028 | 0.012 | |
NEFA C17:0 | 734 | 0.076 | 0.021 | <0.001 * | 690 | 0.057 | 0.022 | 0.011 | 675 | 0.057 | 0.023 | 0.012 | 675 | 0.058 | 0.023 | 0.010 | |
NEFA C15:0 | 734 | 0.110 | 0.032 | 0.001 * | 690 | 0.080 | 0.033 | 0.016 | 675 | 0.077 | 0.034 | 0.023 | 675 | 0.078 | 0.034 | 0.022 | |
NEFA C19:1 | 736 | 0.079 | 0.026 | 0.002 | 691 | 0.060 | 0.027 | 0.028 | 676 | 0.061 | 0.028 | 0.027 | 676 | 0.062 | 0.028 | 0.025 | |
Meat | AC C3:0 | 737 | 0.110 | 0.026 | <0.001 * | 692 | 0.127 | 0.027 | <0.001 * | 677 | 0.122 | 0.027 | <0.001 * | 677 | 0.122 | 0.027 | <0.001 * |
and | C16:1 n7 | 732 | −0.052 | 0.016 | 0.001 | 689 | −0.057 | 0.017 | 0.001 | 674 | −0.054 | 0.018 | 0.002 | 674 | −0.054 | 0.018 | 0.002 |
Potato | Trp | 733 | 0.042 | 0.014 | 0.002 | 688 | 0.045 | 0.015 | 0.002 | 673 | 0.043 | 0.015 | 0.004 | 673 | 0.043 | 0.015 | 0.004 |
Gln | 715 | −0.089 | 0.029 | 0.003 | 674 | −0.060 | 0.030 | 0.045 | 660 | −0.057 | 0.030 | 0.060 | 660 | −0.057 | 0.030 | 0.060 | |
C18:1 n9 | 732 | −0.033 | 0.011 | 0.003 | 688 | −0.033 | 0.012 | 0.007 | 673 | −0.034 | 0.012 | 0.006 | 673 | −0.034 | 0.012 | 0.006 | |
SMa C32:2 | 737 | −0.073 | 0.025 | 0.004 | 692 | −0.054 | 0.026 | 0.039 | 677 | −0.045 | 0.027 | 0.087 | 677 | −0.044 | 0.026 | 0.093 | |
Sweets | NEFA C24:2 | 540 | −0.066 | 0.022 | 0.003 | 505 | −0.069 | 0.024 | 0.004 | 494 | −0.065 | 0.024 | 0.007 | 494 | −0.068 | 0.024 | 0.004 |
Fish | C22:5 n6 | 734 | −0.084 | 0.022 | <0.001 * | 690 | −0.099 | 0.024 | <0.001 * | 675 | −0.095 | 0.024 | <0.001 * | 675 | −0.086 | 0.024 | <0.001 |
and | C20:5 n3 | 729 | 0.118 | 0.028 | <0.001 * | 685 | 0.105 | 0.031 | 0.001 | 670 | 0.109 | 0.032 | 0.001 | 670 | 0.103 | 0.031 | 0.001 |
Shellfish | C22:6 n3 | 734 | 0.051 | 0.017 | 0.003 | 690 | 0.048 | 0.018 | 0.008 | 675 | 0.050 | 0.018 | 0.007 | 675 | 0.047 | 0.018 | 0.011 |
AC C18:1 | 693 | 0.091 | 0.032 | 0.004 | 655 | 0.083 | 0.033 | 0.013 | 642 | 0.077 | 0.033 | 0.021 | 642 | 0.075 | 0.033 | 0.025 | |
NEFA C12:0 | 736 | −0.119 | 0.042 | 0.005 | 691 | −0.098 | 0.046 | 0.034 | 676 | −0.091 | 0.046 | 0.049 | 676 | −0.096 | 0.046 | 0.039 | |
Seasonal | NEFA C22:2 | 635 | 0.074 | 0.024 | 0.003 | 598 | 0.086 | 0.025 | 0.001 | 586 | 0.091 | 0.025 | <0.001 | 586 | 0.091 | 0.025 | <0.001 |
Ser | 736 | 0.057 | 0.020 | 0.004 | 691 | 0.068 | 0.020 | 0.001 | 676 | 0.069 | 0.020 | 0.001 | 676 | 0.069 | 0.020 | 0.001 | |
NEFA C26:3 | 637 | 0.053 | 0.021 | 0.011 | 598 | 0.064 | 0.021 | 0.003 | 585 | 0.061 | 0.021 | 0.004 | 585 | 0.061 | 0.021 | 0.004 | |
NEFA C20:2 | 643 | 0.071 | 0.029 | 0.015 | 606 | 0.086 | 0.030 | 0.004 | 593 | 0.091 | 0.030 | 0.003 | 593 | 0.091 | 0.030 | 0.003 | |
C20:1 n9 | 694 | 0.079 | 0.027 | 0.003 | 651 | 0.073 | 0.028 | 0.008 | 636 | 0.070 | 0.028 | 0.013 | 636 | 0.070 | 0.028 | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, C.P.; Ramlochansingh, C.; Uhl, O.; Demmelmair, H.; Heinrich, J.; Koletzko, B.; Standl, M.; Thiering, E. Association of Maternal Diet during Pregnancy and Metabolite Profile in Cord Blood. Biomolecules 2022, 12, 1333. https://doi.org/10.3390/biom12101333
Harris CP, Ramlochansingh C, Uhl O, Demmelmair H, Heinrich J, Koletzko B, Standl M, Thiering E. Association of Maternal Diet during Pregnancy and Metabolite Profile in Cord Blood. Biomolecules. 2022; 12(10):1333. https://doi.org/10.3390/biom12101333
Chicago/Turabian StyleHarris, Carla P., Carlana Ramlochansingh, Olaf Uhl, Hans Demmelmair, Joachim Heinrich, Berthold Koletzko, Marie Standl, and Elisabeth Thiering. 2022. "Association of Maternal Diet during Pregnancy and Metabolite Profile in Cord Blood" Biomolecules 12, no. 10: 1333. https://doi.org/10.3390/biom12101333
APA StyleHarris, C. P., Ramlochansingh, C., Uhl, O., Demmelmair, H., Heinrich, J., Koletzko, B., Standl, M., & Thiering, E. (2022). Association of Maternal Diet during Pregnancy and Metabolite Profile in Cord Blood. Biomolecules, 12(10), 1333. https://doi.org/10.3390/biom12101333