Peripheral Neutrophil-to-Lymphocyte Ratio in Bronchiectasis: A Marker of Disease Severity
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Patients
2.3. Variables and Definitions
2.4. Statistical Analysis
3. Results
3.1. The NLR and Bronchiectasis Severity Indexes
3.2. Correlations between NLR and Other Bronchiectasis Variables
3.3. Prognostic Value of Exacerbations
4. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flume, P.A.; Chalmers, J.D.; Olivier, K.N. Advances in bronchiectasis: Endotyping, genetics, microbiome, and disease heterogeneity. Lancet 2018, 392, 880–890. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Perpina-Tordera, M.; Soler, J.J.; Román, P.; Lloris, A.; Gonzalez-Molina, A. Dissociation of lung function, dyspnea ratings and pulmonary extension in bronchiectasis. Respir. Med. 2007, 101, 2248–2253. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.D.; Chalmers, J.D.; De Soyza, A.; Fardon, T.C.; Koustas, S.O.; Scott, J.; Simpson, A.J.; Brown, J.S.; Hurst, J.R. The heterogeneity of systemic inflammation in bronchiectasis. Respir. Med. 2017, 127, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.A.; Vendrell, M.; Giron, R.M.; Maiz, L.; de la Rosa, D.; de Gracia, J.; Olveira, C. The Multiple Faces of Non-Cystic Fibrosis Bronchiectasis A Cluster Analysis Approach. Annu. Am. Thorac. Soc. 2016, 13, 1468–1475. [Google Scholar] [CrossRef] [PubMed]
- Sibila, O.; Laserna, E.; Shoemark, A.; Perea, L.; Bilton, D.; Crichton, M.L.; De Soyza, A.; Boersma, W.G.; Altenburg, J.; Chalmers, J.D. Heterogeneity of treatment response in bronchiectasis clinical trials. Eur. Respir. J. 2022, 59, 2100777. [Google Scholar] [CrossRef]
- Boyton, R.J.; Altmann, D.M. Bronchiectasis: Current Concepts in Pathogenesis, Immunology, and Microbiology. Annu. Rev. Pathol. 2016, 11, 523–554. [Google Scholar] [CrossRef]
- Fuschillo, S.; De Felice, A.; Balzano, G. Mucosal inflammation in idiopathic bronchiectasis: Cellular and molecular mechanisms. Eur. Respir. J. 2008, 31, 396–406. [Google Scholar] [CrossRef]
- Gaga, M.; Bentley, A.M.; Humbert, M.; Barkans, J.; O’Brien, F.; Wathen, C.G.; Kay, A.B.; Durham, S.R. Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis. Thorax 1998, 53, 685–691. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Posadas, T.; Sotgiu, G.; Blasi, F.; Saderi, L.; Aliberti, S. Repeteability of Circulating Eosinophil Measures and Inhaled Corticosteroids Effect in Bronchiectasis. A Post Hoc Analysis of a Randomized Clinical Trial. Arch. Bronconeumol. 2020, 56, 681–683. [Google Scholar] [CrossRef]
- Shoemark, A.; Shteinberg, M.; De Soyza, A.; Haworth, C.; Richardson, H.; Gao, Y.; Perea, L.; Dicker, A.J.; Goeminne, P.C.; Cant, E.; et al. Characterisation of Eosinophilic Bronchiectasis: A European Multicohort Study. Am. J. Respir. Crit. Care Med. 2022, 205, 894–902. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A. Bronchiectasis and eosinophils. Arch. Bronconeumol. 2021, 57, 671–672. [Google Scholar] [CrossRef] [PubMed]
- King, P.T.; Hutchinson, P.; Holmes, P.W.; Freezer, N.J.; Bennett-Wood, V.; Robins-Browne, R.; Holdsworth, S.R. Assessing immune function in adult bronchiectasis. Clin. Exp. Immunol. 2006, 144, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Posadas, T.; Oscullo, G.; Zaldivar, E.; Villa, C.; Dobarganes, Y.; Girón, R.; Olveira, C.; Maíz, L.; García-Clemente, M.; Sibila, O.; et al. C-Reactive Protein Concentration in Steady-State Bronchiectasis: Prognostic Value of Future Severe Exacerbations. Data From the Spanish Registry of Bronchiectasis (RIBRON). Arch. Bronconeumol. 2021, 57, 21–27. [Google Scholar] [CrossRef]
- Martínez-García, M.A.; Perpiñá-Tordera, M.; Román-Sánchez, P.; Soler-Cataluña, J.J.; Carratalá, A.; Yago, M.; Pastor, M.J. The association between bronchiectasis, systemic inflammation, and tumor necrosis factor alpha. Arch. Bronconeumol. 2008, 44, 8–14. [Google Scholar] [CrossRef]
- Olveira, G.; Olveira, C.; Gaspar, I.; Porras, N.; Martín-Núñez, G.; Rubio, E.; Colomo, N.; Rojo-Martínez, G.; Soriguer, F. Fat-free mass depletion and inflammation in patients with bronchiectasis. J. Acad. Nutr. Diet 2012, 112, 1999–2006. [Google Scholar] [CrossRef]
- Olveira, G.; Olveira, C.; Dorado, A.; García-Fuentes, E.; Rubio, E.; Tinahones, F.; Soriguer, F.; Murri, M. Cellular and plasma oxidative stress biomarkers are raised in adults with bronchiectasis. Clin. Nutr. 2013, 32, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Villa, C.; Dobarganes, Y.; Olveira, C.; Girón, R.; García-Clemente, M.; Maíz, L.; Sibila, O.; Golpe, R.; Menéndez, R.; et al. Differences in Nutritional Status and Inflammatory Biomarkers between Female and Male Patients with Bronchiectasis: A Large-Cohort Study. Biomedicines 2021, 9, 905. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Olveira, C.; Girón, R.; García-Clemente, M.; Máiz, L.; Sibila, O.; Golpe, R.; Menéndez, R.; Rodríguez-López, J.; Prados, C.; et al. Blood Neutrophil Counts Define Specific Clusters of Bronchiectasis Patients: A Hint to Differential Clinical Phenotypes. Biomedicines 2022, 10, 1044. [Google Scholar] [CrossRef]
- Wang, X.; Villa, C.; Dobarganes, Y.; Olveira, C.; Girón, R.; García-Clemente, M.; Máiz, L.; Sibila, O.; Golpe, R.; Menéndez, R.; et al. Phenotypic Clustering in Non-Cystic Fibrosis Bronchiectasis Patients: The Role of Eosinophils in Disease Severity. Int. J. Environ. Res. Public Health 2021, 18, 8431. [Google Scholar] [CrossRef]
- Perea, L.; Cantó, E.; Suarez-Cuartin, G.; Aliberti, S.; Chalmers, J.D.; Sibila, O.; Vidal, S. A Cluster Analysis of Bronchiectasis Patients Based on the Airway Immune Profile. Chest 2020, 159, 1758–1767. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Moffitt, K.L.; Suarez-Cuartin, G.; Sibila, O.; Finch, S.; Furrie, E.; Dicker, A.; Wrobel, K.; Elborn, J.S.; Walker, B.; et al. Neutrophil Elastase Activity Is Associated with Exacerbations and Lung Function Decline in Bronchiectasis. Am. J. Respir. Crit. Care Med. 2017, 195, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Shoemark, A.; Cant, E.; Carreto, L.; Smith, A.; Oriano, M.; Keir, H.R.; Perea, L.; Canto, E.; Terranova, L.; Vidal, S.; et al. A point-of-care neutrophil elastase activity assay identifies bronchiectasis severity, airway infection and risk of exacerbation. Eur. Respir. J. 2019, 53, 1900303. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Haworth, C.S.; Metersky, M.L.; Loebinger, M.R.; Blasi, F.; Sibila, O.; O’Donnell, A.E.; Sullivan, E.J.; Mange, K.C.; Fernandez, C.; et al. Phase 2 Trial of the DPP-1 Inhibitor Brensocatib in Bronchiectasis. N. Engl. J. Med. 2020, 383, 2127–2137. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.T.; Kuzmanova, E.; Dicker, A.J.; Keir, H.R.; Finch, S.; Aliberti, S.; Fardon, T.C.; Chalmers, J.D. Serum Desmosine Is Associated with Long-Term All-Cause and Cardiovascular Mortality in Bronchiectasis. Am. J. Respir. Crit. Care Med. 2020, 202, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Gonzalez, Y.; Lopez-Sanchez, M.; Dorca, J.; Santos, S. Defining the role of neutrophil-to-lymphocyte ratio in COPD: A systematic literature review. Int. J. COPD 2018, 13, 3651–3662. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Fois, A.G.; Sotgia, S.; Mangoni, A.A.; Zinellu, E.; Pirina, P.; Negri, S.; Carru, C.; Zinellu, A. Neutrophil to lymphocite ratio and clinical outcomes in COPD: Recent evidence and future perspectives. Eur. Respir. Rev. 2018, 27, 170113. [Google Scholar] [CrossRef]
- Emami Ardestani, M.; Alavi-Naeini, N. Evaluation of the relationship of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with in-hospital mortality in patients with acute exacerbation of COPD. Clin. Respir. J. 2020, 15, 382–388. [Google Scholar] [CrossRef]
- Guo, R.; Li, J.; Ma, X.; Pan, L. The predictive value of neutrophil-to-lymphocyte ratio for chronic obstructive pulmonary disease: A systematic review and meta-analysis. Expert Rev. Respir. Med. 2020, 14, 929–936. [Google Scholar] [CrossRef]
- Alzoubi, O.; Khanfar, A. Association between neutrophil to lymphocyte ratio and mortality among community acquired pneumonia patients: A meta-analysis. Monaldi Arch. Chest Dis. 2021, 92. [Google Scholar] [CrossRef]
- O’Brien, C.E.; Price, E.T. The blood neutrophil to lymphocyte ratio correlates with clinical status in children with cystic fibrosis: A retrospective study. PLoS ONE 2013, 8, e77420. [Google Scholar] [CrossRef] [Green Version]
- Ruta, V.M.; Man, A.M.; Alexescu, T.G.; Motoc, N.S.; Tarmure, S.; Ungur, R.A.; Todea, D.A.; Coste, S.C.; Valean, D.; Pop, M.C. Neutrophil-To-Lymphocyte Ratio and Systemic Immune-Inflammation Index-Biomarkers in Interstitial Lung Disease. Medicina 2020, 56, 381. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Jiang, J.; Ren, C. The clinicopathological and prognostic value of the pretreatment neutrophil-to-lymphocyte ratio in small cell lung cancer: A meta-analysis. PLoS ONE 2020, 15, e0230979. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Ochiai, R.; Haruyama, T.; Sakamoto, T.; Tanzawa, S.; Honda, T.; Ota, S.; Ichikawa, Y.; Ishida, T.; Watanabe, K.; et al. Pretreatment neutrophil-to-lymphocyte ratio predicts treatment efficacy and prognosis of cytotoxic anticancer drugs, molecular targeted drugs, and immune checkpoint inhibitors in patients with advanced non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.; Brailovsky, Y.; Fareed, J.; Hoppensteadt, D.; Iqbal, O.; Darki, A. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Predict All-Cause Mortality in Acute Pulmonary Embolism. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029619900549. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Jin, C.; Hao, S.; Zhang, X.; Yang, M.; Jin, X.; Lu, Y.; Hu, J.; Zhang, S.; Zheng, L.; et al. High neutrophil-to-lymphocyte ratio associated with progression to critical illness in older patients with COVID-19: A multicenter retrospective study. Aging 2020, 30, 13849–13859. [Google Scholar] [CrossRef]
- Nacaroglu, H.T.; Bahceci Erdem, S.; Karaman, S.; Yazici, S.; Can, D. Can mean platelet volumen and neutrophil-to-lymphocyte ratio be biomarkers of acute exacerbation of bronchiectasis in children? Clin. Immunol. Cent. Eur. J. Immunol. 2017, 42, 358–362. [Google Scholar] [CrossRef]
- Georgakopoulou, V.E.; Trakas, N.; Damaskos, C.; Garmpis, N.; Karakou, E.; Chatzikyriakou, R.; Lambrou, P.; Tsiafaki, X. Neutrophils to Lymphocyte Ratio as a Biomarker in Bronchiectasis Exacerbation: A Retrospective Study. Cureus 2020, 12, e9728. [Google Scholar] [CrossRef]
- Martinez-García, M.A.; Villa, C.; Dobarganes, Y.; Girón, R.; Maíz, L.; García-Clemente, M.; Sibila, O.; Golpe, R.; Rodríguez, J.; Barreiro, E.; et al. RIBRON: The Spanish Online Bronchiectasis Registry. Characterization of the First 1912 Patients. Arch. Bronconeumol. 2021, 57, 28–35. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; de Gracia, J.; Vendrell, M.; Girón, R.M.; Maiz, L.; de la Rosa, D.; Olveira, C. Multidimensional approach to non-cystic fibrosis bronchiectasis: The FACED score. Eur. Resp. J. 2014, 43, 1357–1367. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Athanazio, R.A.; Girón, R.; Máiz-Carro, L.; de la Rosa, D.; Olveira, C.; de Garcia, J.; Vendrelli, M.; Prados-Sanchez, C.; Gramblicka, G.; et al. Predicting high risk of exacerbations in bronchiectasis: The E-FACED score. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, J.D.; Goeminne, P.; Aliberti, S.; McDonnell, M.J.; Lonni, S.; Davidson, J.; Poppelwell, L.; Salih, W.; Pesci, A.; Dupont, L.J.; et al. The bronchiectasis severity index. An international derivation and validation study. Am. J. Respir. Crit. Care Med. 2014, 189, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, M.Á.; Máiz, L.; Olveira, C.; Girón, R.M.; de la Rosa, D.; Blanco, M.; Canton, R.; Vendrell, M.; Polverino, E.; de Garcia, J.; et al. Spanish guidelines on treatment of bronchiectasis in adults. Arch. Bronconeumol. 2018, 54, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Aliberti, S.; Filonenko, A.; Shteinberg, M.; Goeminne, P.C.; Hill, A.T.; Fardon, T.C.; Obradovic, D.; Gerlinger, C.; Sotgiu, G.; et al. Characterization of the Frequent Exacerbator Phenotype in Bronchiectasis. Am. J. Respir. Crit. Care Med. 2018, 197, 1410–1420. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.Á.; Athanazio, R.; Gramblicka, G.; Corso, M.; Cavalcanti Lundgren, F.; Fernandes de Figueiredo, M.; Arancibia, F.; Rached, S.; Girón, R.; Máiz Carro, L.; et al. Prognostic Value of Frequent Exacerbations in Bronchiectasis: The Relationship with Disease Severity. Arch. Bronconeumol. 2019, 55, 81–87. [Google Scholar] [CrossRef] [PubMed]
- De la Rosa Carrillo, D.; López-Campos, J.L.; Alcázar Navarrete, B.; Calle Rubio, M.; Cantón Moreno, R.; García-Rivero, J.L.; Máiz Carro, L.; Olveira Fuster, C.; Martínez-García, M.Á.; Comité Asesor del Documento; et al. Consensus Document on the Diagnosis and Treatment of Chronic Bronchial Infection in Chronic Obstructive Pulmonary Disease. Arch. Bronconeumol. 2020, 56, 651–664. [Google Scholar] [CrossRef]
- Sibila, O.; Perea, L.; Cantó, E.; Shoemark, A.; Cassidy, D.; Smith, A.H.; Suarez-Cuartin, G.; Rodrigo-Troyano, A.; Keir, H.R.; Oriano, M.; et al. Antimicrobial peptides, disease severity and exacerbations in bronchiectasis. Thorax 2019, 74, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Giam, Y.H.; Shoemark, A.; Chalmers, J.D. Neutrophil dysfunction in bronchiectasis: An emerging role for immunometabolism. Eur. Respir. J. 2021, 58, 2003157. [Google Scholar] [CrossRef]
- Bedi, P.; Davidson, D.J.; McHugh, B.J.; Rossi, A.G.; Hill, A.T. Blood Neutrophils Are Reprogrammed in Bronchiectasis. Am. J. Respir. Crit. Care Med. 2018, 198, 880–890. [Google Scholar] [CrossRef]
- Dente, F.L.; Bilotta, M.; Bartoli, M.L.; Bacci, E.; Cianchetti, S.; Latorre, M.; Malagrinò, L.; Nieri, D.; Roggi, M.A.; Vagaggini, B.; et al. Neutrophilic Bronchial Inflammation Correlates with Clinical and Functional Findings in Patients with Noncystic Fibrosis Bronchiectasis. Mediat. Inflamm. 2015, 2015, 642503. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Hill, A.T. Mechanisms of immune dysfunction and bacterial persistence in non-cystic fibrosis bronchiectasis. Mol. Immunol. 2013, 55, 27–34. [Google Scholar] [CrossRef]
- Faria, S.S.; Fernandes, P.C.; Barbosa Silva, M.J.; Lima, V.C.; Fontes, W.; FreitasJunior, R.; Eterovic, A.K.; Forget, P. The neutrophil-to-lymphocyte ratio: A narrative review. Ecancermedicalscience 2016, 10, 702. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Graubard, B.I.; Rabkin, S.; Engels, E.A. Neutrophil-to-lymphocyte ratio and mortality in the United States general population. Sci. Rep. 2021, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Coull, B.; Lin, X.; Vokonas, P.; Sparrow, D.; Hou, L.; DeMeo, D.L.; Litonjua, A.A.; Schwartz, J.; Baccarelli, A. Association of Neutrophil to Lymphocyte Ratio with Pulmonary Function in a 30-Year Longitudinal Study of US Veterans. JAMA Netw. Open 2020, 3, e2010350. [Google Scholar] [CrossRef] [PubMed]
- Coban, H.; Gungen, A.C. Is there a correlation between new scoring systems and systemic inflammation in stable bronchiectasis? Can. Resp. J. 2017, 2017, 9874068. [Google Scholar] [CrossRef]
- Araújo, D.; Shteinberg, M.; Aliberti, S.; Goeminne, P.C.; Hill, A.T.; Fardon, T.C.; Obradovic, D.; Stone, G.; Trautmann, M.; Davis, A.; et al. The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis. Eur. Respir. J. 2018, 51, 1701953. [Google Scholar] [CrossRef]
- Monsó, E. Look at the wood and not at the tree: The Microbiome in Chronic Obstructive Lung Disease and Cystic Fibrosis. Arch. Bronconeumol. 2020, 56, 5–6. [Google Scholar] [CrossRef]
- Abo-Leyah, H.; Chalmers, J.D. Managing and preventing exacerbation of bronchiectasis. Curr. Opin. Infect. Dis. 2020, 33, 189–196. [Google Scholar] [CrossRef]
- Chen, C.L.; Huang, Y.; Yuan, J.J.; Li, H.M.; Han, X.R.; Martinez-Garcia, M.A.; de la Rosa- Carrillo, D.; Chen, R.C.; Guan, W.J.; Zhong, N.S. The Roles of Bacteria and Viruses in Bronchiectasis Exacerbation: A Prospective Study. Arch. Bronconeumol. 2020, 56, 621–629. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Miravitlles, M. Bronchiectasis in COPD patients: More than a comorbidity? Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1401–1411. [Google Scholar] [CrossRef]
- Ryu, W.K.; Moon, Y.; Park, M.H.; Lim, J.H.; Kim, Y.S.; Lee, K.H.; Kwak, S.M.; Kim, C.; Nam, H.S. A Preliminary Study on the Prognostic Impact of Neutrophil to Lymphocyte Ratio of the Bronchoalveolar Lavage Fluid in Patients with Lung Cancer. Diagnostics 2021, 11, 2201. [Google Scholar] [CrossRef]
Variable | Q1 (0.11–1.43) | Q2 (1.44–2) | Q3 (2.01–3.02) | Q4 (3.03–25.8) | p ANOVA |
---|---|---|---|---|---|
Number | 342 | 349 | 336 | 342 | -- |
NLR | 1.1 ± 0.24 | 1.7 ± 0.17 | 2.5 ± 0.29 | 6.5 ± 4.4 | <0.0001 |
Age, yrs | 68 ±15 | 67.1 ±15 | 69.5 ± 14.4 | 71.4 ±15.8 | 0.001 |
Gender (% women) | 74% | 66% | 65% | 60% | 0.002 |
BMI, Kg/m2 | 25.4 ± 4.6 | 26.2 ± 5 | 26 ± 4.9 | 25.9 ± 5.2 | 0.223 |
Smoking habit (packs.year) | 28.7 ±26 | 30.9 ± 25.1 | 33.2 ± 28.1 | 34.7 ± 26.4 | 0.232 |
Charlson Index | 1.6 ± 1.1 | 1.7 ± 1.49 | 1.9 ± 1.6 | 2.1 ± 1.7 | 0.0001 |
Etiology % COPD Post-infectious Idiopathic | 10% 37% 19% | 11% 35% 21% | 11% 38% 15% | 16% 39% 14% | 0.107 0.646 0.061 |
Type Cylindrical Varicose Cystic | 90 18 18 | 92 20 19 | 86 29 23 | 80 27 27 | 0.015 0.041 0.033 |
Dyspnoea (mMRC) | 1.6 ± 0.8 | 1.7 ± 0.9 | 1.8 ± 0.9 | 2.1 ± 1 | 0.0001 |
Purulent sputum, % | 48% | 47% | 48% | 53% | 0.506 |
Daily sputum production, % | 22% | 22% | 24% | 27% | 0.359 |
FEV1, % | 81.1 ± 23 | 79 ± 23.2 | 64.6 ± 23.9 | 65.7 ± 26.3 | 0.0001 |
Pulmonary lobes | 2.7 ±1.5 | 2.7 ±1.4 | 2.9 ±1.4 | 2.9 ±1.4 | 0.334 |
O2 saturation, % | 96.2 ± 2.1 | 95.7 ± 2.7 | 95.8 ± 3.1 | 95.1 ± 3.3 | 0.0001 |
Eosinophils, % | 3.6 ±3.3 | 3.2 ±3.6 | 3.1 ± 2.8 | 1.7 ± 1.8 | 0.0001 |
A1AT levels (pg/mL) | 137 ± 40 | 132 ± 39 | 132 ± 34 | 139 ± 42 | 0.296 |
SGRQ Symptoms Activity Impact Total | 31.1 ± 25 28.9 ± 19.8 15.7 ± 15.9 23.1 ± 17.4 | 37 ± 23 37.3 ± 25.8 17.1 ± 18.8 27.5 ± 19.4 | 37.7 ± 12.4 41.7 ± 18.8 20.9 ± 15.5 30 ± 13.7 | 50.6 ± 24 45.4 ± 25.1 25.3 ± 15.2 35.6 ± 17.2 | 0.041 0.177 0.250 0.130 |
PPM isolations, % S. aureus H. influenzae P. aeruginosa | 97% 21% 27% 41% | 97% 16% 20% 54% | 96% 8% 24% 59% | 98% 7% 17% 70% | 0.001 0.021 0.0001 |
PPM by CBI, % CBI by P. aeruginosa CBI (other PPM) | 11% 20% | 19% 28% | 27% 35% | 32% 37% | 0.0001 0.0001 |
Exacerbations | 0.9 ± 1.2 | 1.1 ± 1.6 | 1.2 ± 1.3 | 1.3 ± 1.7 | 0.041 |
Hospitalizations | 0.4 ± 1.3 | 0.5 ± 1 | 0.6 ± 1.4 | 1.1 ± 1.7 | 0.0001 |
Previous pneumonia episode, % | 42% | 35% | 44% | 49% | 0.003 |
FACED score Mild Moderate Severe | 1.6 ± 1.4 72.8% 26.6% 0.6% | 1.7 ± 1.5 71.6% 27.2% 1.1% | 2.2 ± 1.7 63.1% 31.8% 5.1% | 2.8 ± 1.9 46.8% 41.5% 11.7% | <0.0001 0.0001 0.0001 0.0001 |
E-FACED score Mild Moderate Severe | 2.1 ± 1.8 81.9% 16.4% 1.8% | 2.2 ± 1.9 77.4% 19.8% 2.9% | 2.7 ± 2.1 71.4% 23.5% 5.1% | 3.8 ± 2.5 47.1% 37.4% 15.5% | <0.0001 0.0001 0.0001 0.0001 |
BSI Mild Moderate Severe | 6.2 ± 4.1 43.5% 34.2% 22.2% | 6.7 ± 4.4 39.3% 30.2% 30.5% | 7.6 ± 4.7 30.9% 37.1% 32.1% | 9.8 ± 5.6 19.8% 26.6% 53.6% | 0.0001 0.0001 0.0001 0.0001 |
Bronchodilators, % | 65% | 69% | 74% | 76% | 0.004 |
Inhaled steroids, % | 42% | 47% | 51% | 58% | 0.001 |
Macrolides, % | 7% | 8% | 7% | 10% | 0.655 |
Variable | Correlation Coefficient; p Value |
---|---|
General and clinical variables Age, yrs Gender BMI, Kg/m2 Dyspnoea, (mMRC) Charlson index Number of exacerbations Number of hospitalizations | 0.09; p = 0.001 −0.10; p = 0.001 0.03; p = 0.34 0.23; p < 0.001 0.13; p = 0.001 0.21; p < 0.001 0.22; p < 0.001 |
Functional variables 02 sat, % FEV1/FVC, % FVC, % FEV1, % | −0.13; p = 0.001 −0.21; p = 0.001 −0.15; p = 0.001 −0.25; p < 0.001 |
Peripheral biomarkers Neutrophils, % Lymphocytes, % Eosinophils, % Fibrinogen CRP Platelets | 0.56; p < 0.001 −0.58; p < 0.001 −0.22; p = 0.001 0.28; p < 0.001 0.12; p = 0.001 0.07; p = 0.016 |
Microbiological variables PA isolation HI isolation SA isolation | 0.27; p < 0.001 0.08; p = 0.08 0.17; p = 0.001 |
Radiological parameters Number of lobes Cystic bronchiectasis | 0.07; p = 0.009 0.10; p = 0.004 |
Treatment Macrolides Inhaled corticosteroids Bronchodilators | 0.02; p = 0.451 0.11, p = 0.001 0.03; p = 0.081 |
β Coeff | p | 95%CI | |
---|---|---|---|
Model 1: BSI | |||
Number of exacerbations Number of hospitalizations | 0.05 0.04 | 0.012 0.0001 | 0.01–0.08 0.02–0.06 |
Model 2: E-FACED | |||
Number of exacerbations Number of hospitalizations | 0.04 0.12 | 0.017 0.0001 | 0.01–0.09 0.08–0.16 |
Model 3: FACED | |||
Number of exacerbations Number of hospitalizations | 0.02 0.09 | 0.041 0.001 | 0.01–0.05 0.03–0.11 |
NLR Quartiles | p | OR | 95%CI | |
---|---|---|---|---|
Model 1: BSI | Q1 Q2 Q3 Q4 | Control 0.25 0.13 0.003 | 0.8 1.3 1.7 | 0.6–1.1 0.7–1.4 1.2–2.3 |
Model 2: E-FACED | Q1 Q2 Q3 Q4 | Control 0.23 0.17 0.001 | 0.7 1.2 1.8 | 0.7–1.2 0.8–1.5 1.3–2.2 |
Model 3: FACED | Q1 Q2 Q3 Q4 | Control 0.14 0.11 0.021 | 0.7 1.1 1.6 | 0.8–1.1 0.6–1.4 1.1–1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-García, M.Á.; Olveira, C.; Girón, R.; García-Clemente, M.; Máiz-Carro, L.; Sibila, O.; Golpe, R.; Méndez, R.; Rodríguez Hermosa, J.L.; Barreiro, E.; et al. Peripheral Neutrophil-to-Lymphocyte Ratio in Bronchiectasis: A Marker of Disease Severity. Biomolecules 2022, 12, 1399. https://doi.org/10.3390/biom12101399
Martinez-García MÁ, Olveira C, Girón R, García-Clemente M, Máiz-Carro L, Sibila O, Golpe R, Méndez R, Rodríguez Hermosa JL, Barreiro E, et al. Peripheral Neutrophil-to-Lymphocyte Ratio in Bronchiectasis: A Marker of Disease Severity. Biomolecules. 2022; 12(10):1399. https://doi.org/10.3390/biom12101399
Chicago/Turabian StyleMartinez-García, Miguel Ángel, Casilda Olveira, Rosa Girón, Marta García-Clemente, Luis Máiz-Carro, Oriol Sibila, Rafael Golpe, Raúl Méndez, Juan Luis Rodríguez Hermosa, Esther Barreiro, and et al. 2022. "Peripheral Neutrophil-to-Lymphocyte Ratio in Bronchiectasis: A Marker of Disease Severity" Biomolecules 12, no. 10: 1399. https://doi.org/10.3390/biom12101399
APA StyleMartinez-García, M. Á., Olveira, C., Girón, R., García-Clemente, M., Máiz-Carro, L., Sibila, O., Golpe, R., Méndez, R., Rodríguez Hermosa, J. L., Barreiro, E., Prados, C., Rodríguez López, J., & de la Rosa, D. (2022). Peripheral Neutrophil-to-Lymphocyte Ratio in Bronchiectasis: A Marker of Disease Severity. Biomolecules, 12(10), 1399. https://doi.org/10.3390/biom12101399