Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review
Abstract
:1. Introduction
2. Antioxidant Properties of Synbiotics
2.1. Probiotic Components
2.2. Prebiotic Components
2.3. Synbiotic Components
3. Antioxidant Action Mechanisms of Synbiotics
3.1. Probiotics’ Action Mechanisms
3.2. Prebiotics’ Action Mechanisms
3.3. Synbiotics’ Action Mechanisms
4. Applications to Human Health
4.1. Antioxidative Stress
4.2. Anti-Aging Effects
4.3. Heavy Metal Anti-Toxicity Effects
4.4. Prevention and Treatment of Chronic Diseases
5. Applications to Animal Health
5.1. Poultry
5.2. Pigs
5.3. Ruminants
5.4. Aquaculture
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ali, S.S.; Ahsan, H.; Zia, M.K.; Siddiqui, T.; Khan, F.H. Understanding Oxidants and Antioxidants: Classical Team with New Players. J. Food Biochem. 2020, 44, e13145. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.-C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Azzini, E.; Zucca, P.; Varoni, E.M.; Kumar, N.V.A.; Dini, L.; Panzarini, E.; Rajkovic, J.; Fokou, P.V.T.; Peluso, I.; et al. Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. Appl. Sci. 2020, 10, 947. [Google Scholar] [CrossRef] [Green Version]
- Bacou, E.; Walk, C.; Rider, S.; Litta, G.; Perez-Calvo, E. Dietary Oxidative Distress: A Review of Nutritional Challenges as Models for Poultry, Swine and Fish. Antioxidants 2021, 10, 525. [Google Scholar] [CrossRef] [PubMed]
- Corino, C.; Rossi, R. Antioxidants in Animal Nutrition. Antioxidants 2021, 10, 1877. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Effect of Antioxidants Supplementation on Aging and Longevity. BioMed Res. Int. 2014, 2014, 404680. [Google Scholar] [CrossRef] [PubMed]
- Puglia, C.D.; Powell, S.R. Inhibition of Cellular Antioxidants: A Possible Mechanism of Toxic Cell Injury. Environ. Health Perspect. 1984, 57, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Prenzler, P.D.; Ryan, D.; Robards, K. Chapter 1 Introduction to Basic Principles of Antioxidant Activity. In Handbook of Antioxidant Methodology: Approaches to Activity Determination; Royal Society of Chemistry: London, UK, 2021; pp. 1–62. [Google Scholar] [CrossRef]
- Gutteridge, J.; Halliwell, B. Antioxidants in Nutrition, Health, and Disease; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Chandra, P.; Sharma, R.K.; Arora, D.S. Antioxidant Compounds from Microbial Sources: A Review. Food Res. Int. 2020, 129, 108849. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, S.A.; Emire, S.A. Production and Processing of Antioxidant Bioactive Peptides: A Driving Force for the Functional Food Market. Heliyon 2020, 6, e04765. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Bisht, S. Antioxidants and Their Characterization. J. Pharm. Res. 2011, 44, 91–680. [Google Scholar]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as Potential Antioxidants: A Systematic Review. J. Agric. Food Chem. 2015, 63, 3615–3626. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, K.R.; Naik, S.R.; Vakil, B.V. Probiotics, Prebiotics and Synbiotics—A Review. J. Food Sci. Technol. 2015, 52, 7577–7587. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Toalá, J.E.; Estrada-Montoya, M.C.; Liceaga, A.M.; Garcia, H.S.; González-Aguilar, G.A.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. An Insight on Antioxidant Properties of the Intracellular Content of Lactobacillus casei CRL-431. LWT 2019, 102, 58–63. [Google Scholar] [CrossRef]
- Datta, S.; Timson, D.J.; Annapure, U.S. Antioxidant Properties and Global Metabolite Screening of the Probiotic Yeast Saccharomyces cerevisiae Var. Boulardii. J. Sci. Food Agric. 2017, 97, 3039–3049. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.-Y.; Son, S.-H.; Hong, S.-P.; Yi, S.-H.; Kang, S.H.; Lee, N.-K.; Paik, H.-D. Production of β-Glucan, Glutathione, and Glutathione Derivatives by Probiotic Saccharomyces cerevisiae Isolated from Cucumber Jangajji. LWT 2019, 100, 114–118. [Google Scholar] [CrossRef]
- Yang, J.; Dong, C.; Ren, F.; Xie, Y.; Liu, H.; Zhang, H.; Jin, J. Lactobacillus paracasei M11-4 Isolated from Fermented Rice Demonstrates Good Antioxidant Properties In Vitro and In Vivo. J. Sci. Food Agric. 2022, 102, 3107–3118. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Wang, J. Oxidative Stress Tolerance and Antioxidant Capacity of Lactic Acid Bacteria as Probiotic: A Systematic Review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant Properties of Probiotic Bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, M.Z.A.; Liu, S.-Q. Fortifying Foods with Synbiotic and Postbiotic Preparations of the Probiotic Yeast, Saccharomyces Boulardii. Curr. Opin. Food Sci. 2022, 43, 216–224. [Google Scholar] [CrossRef]
- Choudhary, S.; Singh, M.; Sharma, D.; Attri, S.; Sharma, K.; Goel, G. Principal Component Analysis of Stimulatory Effect of Synbiotic Combination of Indigenous Probiotic and Inulin on Antioxidant Activity of Soymilk. Probiot. Antimicrob. Proteins 2019, 11, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Angelin, J.; Kavitha, M. Exopolysaccharides from Probiotic Bacteria and Their Health Potential. Int. J. Biol. Macromol. 2020, 162, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Kavitake, D.; Devi, P.B.; Shetty, P.H. Bacterial Exopolysaccharides for Improvement of Technological, Functional and Rheological Properties of Yoghurt. Int. J. Biol. Macromol. 2021, 183, 1585–1595. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of Kiwifruit Juice from Two Cultivars by Probiotic Bacteria: Bioactive Phenolics, Antioxidant Activities and Flavor Volatiles. Food Chem. 2022, 373, 131455. [Google Scholar] [CrossRef]
- Singh, K.; Rao, A. Probiotics: A Potential Immunomodulator in COVID-19 Infection Management. Nutr. Res. 2021, 87, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cruz, B.C.D.S.; Moraes, L.F.D.S.; Marcon, L.D.N.; Dias, K.A.; Murad, L.B.; Sarandy, M.M.; da Conceição, L.L.; Gonçalves, R.V.; Ferreira, C.L.D.L.F.; Peluzio, M.D.C.G. Evaluation of the Efficacy of Probiotic VSL#3 and Synbiotic VSL#3 and Yacon-Based Product in Reducing Oxidative Stress and Intestinal Permeability in Mice Induced to Colorectal Carcinogenesis. J. Food Sci. 2021, 86, 1448–1462. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; He, Y.; Wan, H.; Hui, Y.; Li, H. Effects of Prebiotics on Antioxidant Activity of Goat Milk Fermented by Lactobacillus plantarum L60. Acta Univ. Cibiniensis Ser. E Food Technol. 2017, 21, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Alves-Santos, A.M.; Sugizaki, C.S.A.; Lima, G.C.; Naves, M.M.V. Prebiotic Effect of Dietary Polyphenols: A Systematic Review. J. Funct. Foods 2020, 74, 104169. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Q.; Huang, H.; Hou, K.; Dong, R.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. The Effect of Bound Polyphenols on the Fermentation and Antioxidant Properties of Carrot Dietary Fiber In Vivo and In Vitro. Food Funct. 2020, 11, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Noureen, S.; Riaz, A.; Arshad, M.; Arshad, N. In Vitro Selection and in Vivo Confirmation of the Antioxidant Ability of Lactobacillus brevis MG000874. J. Appl. Microbiol. 2019, 126, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Levit, R.; de Giori, G.S.; de Moreno de LeBlanc, A.; LeBlanc, J.G. Recent Update on Lactic Acid Bacteria Producing Riboflavin and Folates: Application for Food Fortification and Treatment of Intestinal Inflammation. J. Appl. Microbiol. 2021, 130, 1412–1424. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Niu, M.; Yao, D.; Zhao, J.; Wu, Y.; Lu, B.; Zheng, X. Physicochemical Characteristics and In Vitro and In Vivo Antioxidant Activity of a Cell-Bound Exopolysaccharide Produced by Lactobacillus fermentum S1. Int. J. Biol. Macromol. 2019, 139, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Khubber, S.; Marti-Quijal, F.J.; Tomasevic, I.; Remize, F.; Barba, F.J. Lactic Acid Fermentation as a Useful Strategy to Recover Antimicrobial and Antioxidant Compounds for Food and By-Products. Curr. Opin. Food Sci. 2022, 43, 189–198. [Google Scholar] [CrossRef]
- Kang, C.-H.; Kim, J.-S.; Park, H.M.; Kim, S.; Paek, N.-S. Antioxidant Activity and Short-Chain Fatty Acid Production of Lactic Acid Bacteria Isolated from Korean Individuals and Fermented Foods. 3 Biotech 2021, 11, 217. [Google Scholar] [CrossRef]
- Kim, M.; Jung, D.-H.; Seo, D.-H.; Park, Y.-S.; Seo, M.-J. 4,4′-Diaponeurosporene from Lactobacillus plantarum Subsp. Plantarum KCCP11226: Low Temperature Stress-Induced Production Enhancement and In Vitro Antioxidant Activity. J. Microbiol. Biotechnol. 2021, 31, 63–69. [Google Scholar] [CrossRef]
- Kim, M.; Seo, D.-H.; Park, Y.-S.; Cha, I.-T.; Seo, M.-J. Isolation of Lactobacillus plantarum subsp. plantarum Producing C30 Carotenoid 4,4′-Diaponeurosporene and the Assessment of Its Antioxidant Activity. J. Microbiol. Biotechnol. 2019, 29, 1925–1930. [Google Scholar] [CrossRef]
- Li, W.; Ji, J.; Rui, X.; Yu, J.; Tang, W.; Chen, X.; Jiang, M.; Dong, M. Production of Exopolysaccharides by Lactobacillus helveticus MB2-1 and Its Functional Characteristics In Vitro. LWT-Food Sci. Technol. 2014, 59, 732–739. [Google Scholar] [CrossRef]
- Li, W.; Ji, J.; Chen, X.; Jiang, M.; Rui, X.; Dong, M. Structural Elucidation and Antioxidant Activities of Exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr. Polym. 2014, 102, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cui, Y.; Suo, C.; Wang, Q.; Qu, X. Structure, Physicochemical Characterization, and Antioxidant Activity of the Highly Arabinose-Branched Exopolysaccharide EPS-M2 from Streptococcus thermophilus CS6. Int. J. Biol. Macromol. 2021, 192, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Bomfim, V.B.; Neto, J.H.P.L.; Leite, K.S.; de Andrade Vieira, É.; Iacomini, M.; Silva, C.M.; dos Santos, K.M.O.; Cardarelli, H.R. Partial Characterization and Antioxidant Activity of Exopolysaccharides Produced by Lactobacillus plantarum CNPC003. LWT 2020, 127, 109349. [Google Scholar] [CrossRef]
- Tomaro-Duchesneau, C.; Saha, S.; Malhotra, M.; Coussa-Charley, M.; Al-Salami, H.; Jones, M.; Labbé, A.; Prakash, S. Lactobacillus fermentum NCIMB 5221 Has a Greater Ferulic Acid Production Compared to Other Ferulic Acid Esterase Producing Lactobacilli. Int. J. Probiot. Prebiot. 2012, 7, 23–32. [Google Scholar]
- Albano, C.; Silvetti, T.; Brasca, M. Screening of Lactic Acid Bacteria Producing Folate and Their Potential Use as Adjunct Cultures for Cheese Bio-Enrichment. FEMS Microbiol. Lett. 2020, 367, fnaa059. [Google Scholar] [CrossRef]
- Al-Madboly, L.A.; Khedr, E.G.; Ali, S.M. Optimization of Reduced Glutathione Production by a Lactobacillus plantarum Isolate Using Plackett–Burman and Box–Behnken Designs. Front. Microbiol. 2017, 8, 772. [Google Scholar] [CrossRef]
- Saraphanchotiwitthaya, A.; Sripalakit, P. Production of Hyaluronic Acid from Molasses by Streptococcus thermophilus TISTR 458. Trends Sci. 2022, 19, 2192. [Google Scholar] [CrossRef]
- Dos Santos, L.F.; De Melo, F.B.C.; Paiva, W.M.; Borsato, D.; Da Silva, M.C.C.; Celligoi, M.P.C. Characterization and Optimization of Levan Production by Bacillus subtilis NATTO. Rom. Biotechnol. Lett. 2013, 18, 8413–8422. [Google Scholar]
- Begunova, A.V.; Savinova, O.S.; Glazunova, O.A.; Moiseenko, K.V.; Rozhkova, I.V.; Fedorova, T.V. Development of Antioxidant and Antihypertensive Properties during Growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on Cow’s Milk: Fermentation and Peptidomics Study. Foods 2021, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Cui, Z.; Wang, L.; Xu, H.; Zhang, Y. Production of Bioactive Peptides from Corn Gluten Meal by Solid-State Fermentation with Bacillus subtilis MTCC5480 and Evaluation of Its Antioxidant Capacity In Vivo. LWT 2020, 131, 109767. [Google Scholar] [CrossRef]
- Oraei, M.; Razavi, S.H.; Khodaiyan, F. Optimization of Effective Minerals on Riboflavin Production by Bacillus subtilis subsp. subtilis ATCC 6051 Using Statistical Designs. Avicenna J. Med. Biotechnol. 2018, 10, 49–55. [Google Scholar] [PubMed]
- Neri-Numa, I.A.; Pastore, G.M. Novel Insights into Prebiotic Properties on Human Health: A Review. Food Res. Int. 2020, 131, 108973. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherry, P.; Yadav, S.; Strain, C.R.; Allsopp, P.J.; McSorley, E.M.; Ross, R.P.; Stanton, C. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar. Drugs 2019, 17, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.A.; Neto, J.H.P.L.; Cardarelli, H.R. Exopolysaccharides Produced by Lactobacillus plantarum: Technological Properties, Biological Activity, and Potential Application in the Food Industry. Ann. Microbiol. 2019, 69, 321–328. [Google Scholar] [CrossRef]
- Yeung, Y.K.; Kang, Y.-R.; So, B.R.; Jung, S.K.; Chang, Y.H. Structural, Antioxidant, Prebiotic and Anti-Inflammatory Properties of Pectic Oligosaccharides Hydrolyzed from Okra Pectin by Fenton Reaction. Food Hydrocoll. 2021, 118, 106779. [Google Scholar] [CrossRef]
- Ávila, P.F.; Martins, M.; de Almeida Costa, F.A.; Goldbeck, R. Xylooligosaccharides Production by Commercial Enzyme Mixture from Agricultural Wastes and Their Prebiotic and Antioxidant Potential. Bioact. Carbohydr. Diet. Fibre 2020, 24, 100234. [Google Scholar] [CrossRef]
- Shang, H.-M.; Zhou, H.-Z.; Yang, J.-Y.; Li, R.; Song, H.; Wu, H.-X. In Vitro and in Vivo Antioxidant Activities of Inulin. PLoS ONE 2018, 13, e0192273. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-H.; Song, X.-N.; Lin, Y.; Xiao, Q.; Du, X.-P.; Chen, Y.-H.; Xiao, A.-F. Antioxidant Capacity and Prebiotic Effects of Gracilaria Neoagaro Oligosaccharides Prepared by Agarase Hydrolysis. Int. J. Biol. Macromol. 2019, 137, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Goderska, K. The Antioxidant and Prebiotic Properties of Lactobionic Acid. Appl. Microbiol. Biotechnol. 2019, 103, 3737–3751. [Google Scholar] [CrossRef]
- Song, Z.; Li, M.; Du, J.; Zhang, K. Effects of Non-Starch Polysaccharides from Pure Wheat Malt Beer on Beer Quality, In Vitro Antioxidant, Prebiotics, Hypoglycemic and Hypolipidemic Properties. Food Biosci. 2022, 47, 101780. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, P.; Zhu, Y.; Lou, Q.; He, S. Antioxidant and Prebiotic Activity of Five Peonidin-Based Anthocyanins Extracted from Purple Sweet Potato (Ipomoea Batatas (L.) Lam.). Sci. Rep. 2018, 8, 5018. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Kumari, M.; Kumari, A.; Sharma, A.; Gulati, A.; Gupta, M.; Padwad, Y. Diet Supplemented with Phytochemical Epigallocatechin Gallate and Probiotic Lactobacillus fermentum Confers Second Generation Synbiotic Effects by Modulating Cellular Immune Responses and Antioxidant Capacity in Aging Mice. Eur. J. Nutr. 2019, 58, 2943–2957. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Cukkemane, A.; Kumar, P.; Sathyamoorthy, B. A Metabolomics Footprint Approach to Understanding the Benefits of Synbiotics in Functional Foods and Dietary Therapeutics for Health, Communicable and Non-Communicable Diseases. Food Res. Int. 2020, 128, 108679. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Jiang, S.; Jacobs, J.A.; Cheng, H.W. Effect of a Synbiotic Supplement on Cecal Microbial Ecology, Antioxidant Status, and Immune Response of Broiler Chickens Reared under Heat Stress. Poult. Sci. 2019, 98, 4408–4415. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.J.; Guo, J.; Jia, Q.; Huang, Y.S.; Huang, W.-J.; Zhang, W.; Zhang, F.; Liu, W.J.; Wang, Y. The Effect of Probiotic and Synbiotic Supplementation on Biomarkers of Inflammation and Oxidative Stress in Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2019, 142, 303–313. [Google Scholar] [CrossRef]
- Pizzorno, J. Glutathione! Integr. Med. Encinitas Calif. 2014, 13, 8–12. [Google Scholar]
- Weiss, S.L.; Deutschman, C.S. Elevated Malondialdehyde Levels in Sepsis—Something to “stress” About? Crit. Care 2014, 18, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bor, J.-Y.; Chen, H.-Y.; Yen, G.-C. Evaluation of Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Some Common Vegetables. J. Agric. Food Chem. 2006, 54, 1680–1686. [Google Scholar] [CrossRef] [PubMed]
- Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total Antioxidant Capacity as a Tool to Assess Redox Status: Critical View and Experimental Data. Free Radic. Biol. Med. 2000, 29, 1106–1114. [Google Scholar] [CrossRef]
- Hoffmann, A.; Kleniewska, P.; Pawliczak, R. Antioxidative Activity of Probiotics. Arch. Med. Sci. AMS 2019, 17, 792–804. [Google Scholar] [CrossRef]
- Adeshina, I.; Abubakar, M.I.-O.; Ajala, B.E. Dietary Supplementation with Lactobacillus acidophilus Enhanced the Growth, Gut Morphometry, Antioxidant Capacity, and the Immune Response in Juveniles of the Common Carp, Cyprinus Carpio. Fish Physiol. Biochem. 2020, 46, 1375–1385. [Google Scholar] [CrossRef]
- Xu, X.; Qiao, Y.; Peng, Q.; Shi, B.; Dia, V.P. Antioxidant and Immunomodulatory Properties of Partially Purified Exopolysaccharide from Lactobacillus casei Isolated from Chinese Northeast Sauerkraut. Immunol. Investig. 2022, 51, 748–765. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, C.; Shi, R.; Zhao, F.; Yang, Z. Lactobacillus fermentum JX306 Restrain D-Galactose-Induced Oxidative Stress of Mice through Its Antioxidant Activity. Pol. J. Microbiol. 2020, 69, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Du, P.; Smith, E.E.; Wang, S.; Jiao, Y.; Guo, L.; Huo, G.; Liu, F. In Vitro and In Vivo Evaluation of an Exopolysaccharide Produced by Lactobacillus helveticus KLDS1.8701 for the Alleviative Effect on Oxidative Stress. Food Funct. 2019, 10, 1707–1717. [Google Scholar] [CrossRef]
- Ge, Q.; Yang, B.; Liu, R.; Jiang, D.; Yu, H.; Wu, M.; Zhang, W. Antioxidant Activity of Lactobacillus plantarum NJAU-01 in an Animal Model of Aging. BMC Microbiol. 2021, 21, 182. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.R.; Disouza, J.I.; Pawar, S.H. Lactobacillus rhamnosus ARJD as a Functional Food with Potential Antioxidant and Antibacterial Abilities. Acta Sci. Pharm. Sci. 2019, 3, 63–70. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.-S.; Kim, Y.; Jeong, Y.; Kim, J.-E.; Paek, N.-S.; Kang, C.-H. Antioxidant and Probiotic Properties of Lactobacilli and Bifidobacteria of Human Origins. Biotechnol. Bioprocess Eng. 2020, 25, 421–430. [Google Scholar] [CrossRef]
- Kozin, S.V.; Kravtsov, A.A.; Kravchenko, S.V.; Ivashchenko, L.I. Antioxidant and Anxiolytic Effect of Bifidobacterium adolescentis and Lactobacillus acidophilus under Conditions of Normobaric Hypoxia with Hypercapnia. Vopr. Pitan. 2021, 90, 63–72. [Google Scholar] [CrossRef]
- Huang, G.; Pan, H.; Zhu, Z.; Li, Q. The Complete Genome Sequence of Bifidobacterium longum LTBL16, a Potential Probiotic Strain from Healthy Centenarians with Strong Antioxidant Activity. Genomics 2020, 112, 769–773. [Google Scholar] [CrossRef]
- Majeed, M.; Majeed, S.; Nagabhushanam, K.; Lawrence, L.; Arumugam, S.; Mundkur, L. Skin Protective Activity of LactoSporin-the Extracellular Metabolite from Bacillus coagulans MTCC 5856. Cosmetics 2020, 7, 76. [Google Scholar] [CrossRef]
- Bouallegue, A.; Casillo, A.; Chaari, F.; La Gatta, A.; Lanzetta, R.; Corsaro, M.M.; Bachoual, R.; Ellouz-Chaabouni, S. Levan from a New Isolated Bacillus subtilis AF17: Purification, Structural Analysis and Antioxidant Activities. Int. J. Biol. Macromol. 2020, 144, 316–324. [Google Scholar] [CrossRef]
- Safronova, L.S.; Skorochod, I.A.; Ilyash, V.M. Antioxidant and Antiradical Properties of Probiotic Strains Bacillus amyloliquefaciens ssp. plantarum. Probiotics Antimicrob. Proteins 2021, 13, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Kusuhara, S.; Ito, M.; Sato, T.; Yokoi, W.; Yamamoto, Y.; Harada, K.; Ikemura, H.; Miyazaki, K. Intracellular GSH of Streptococcus thermophilus Shows Anti-Oxidative Activity against Low-Density Lipoprotein Oxidation In Vitro and in a Hyperlipidaemic Hamster Model. Benef. Microbes 2018, 9, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhang, J.; Huang, J.; Jiang, S. Effects of Dietary Clostridium butyricum on the Growth, Digestive Enzyme Activity, Antioxidant Capacity, and Resistance to Nitrite Stress of Penaeus monodon. Probiot. Antimicrob. Proteins 2019, 11, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Mu, G.; Li, H.; Tuo, Y.; Gao, Y.; Zhang, Y. Antioxidative Effect of Lactobacillus plantarum Y44 on 2,2′-Azobis(2-Methylpropionamidine) Dihydrochloride (ABAP)-Damaged Caco-2 Cells. J. Dairy Sci. 2019, 102, 6863–6875. [Google Scholar] [CrossRef]
- Mu, G.; Gao, Y.; Tuo, Y.; Li, H.; Zhang, Y.; Qian, F.; Jiang, S. Assessing and Comparing Antioxidant Activities of Lactobacilli Strains by Using Different Chemical and Cellular Antioxidant Methods. J. Dairy Sci. 2018, 101, 10792–10806. [Google Scholar] [CrossRef]
- Riane, K.; Sifour, M.; Ouled-Haddar, H.; Idoui, T.; Bounar, S.; Boussebt, S. Probiotic Properties and Antioxidant Efficiency of Lactobacillus plantarum 15 Isolated from Milk. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 516–520. [Google Scholar] [CrossRef]
- Ramalho, J.B.; Soares, M.B.; Spiazzi, C.C.; Bicca, D.F.; Soares, V.M.; Pereira, J.G.; da Silva, W.P.; Sehn, C.P.; Cibin, F.W.S. In Vitro Probiotic and Antioxidant Potential of Lactococcus lactis Subsp. Cremoris LL95 and Its Effect in Mice Behaviour. Nutrients 2019, 11, 901. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kang, C.-H. Probiotics Alleviate Oxidative Stress in H2O2-Exposed Hepatocytes and t-BHP-Induced C57BL/6 Mice. Microorganisms 2022, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-J.; Lee, J.-E.; Lim, S.-M.; Kim, Y.-J.; Lee, N.-K.; Paik, H.-D. Antioxidant and Immune-Enhancing Effects of Probiotic Lactobacillus plantarum 200655 Isolated from Kimchi. Food Sci. Biotechnol. 2019, 28, 491–499. [Google Scholar] [CrossRef]
- Kumari, A.; Angmo, K.; Monika, S.; Bhalla, T. Functional and Technological Application of Probiotic L. Casei PLA5 in Fermented Soymilk. Int. Food Res. J. 2018, 25, 2164–2172. [Google Scholar]
- Amaretti, A.; di Nunzio, M.; Pompei, A.; Raimondi, S.; Rossi, M.; Bordoni, A. Antioxidant Properties of Potentially Probiotic Bacteria: In Vitro and In Vivo Activities. Appl. Microbiol. Biotechnol. 2013, 97, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Chooruk, A.; Piwat, S.; Teanpaisan, R. Antioxidant Activity of Various Oral Lactobacillus Strains. J. Appl. Microbiol. 2017, 123, 271–279. [Google Scholar] [CrossRef]
- Yu, T.; Kong, J.; Zhang, L.; Gu, X.; Wang, M.; Guo, T. New Crosstalk between Probiotics Lactobacillus plantarum and Bacillus subtilis. Sci. Rep. 2019, 9, 13151. [Google Scholar] [CrossRef] [Green Version]
- Al-Madboly, L.A.; Ali, S.M.; Fakharany, E.M.E.; Ragab, A.E.; Khedr, E.G.; Elokely, K.M. Stress-Based Production, and Characterization of Glutathione Peroxidase and Glutathione S-Transferase Enzymes from Lactobacillus plantarum. Front. Bioeng. Biotechnol. 2020, 8, 78. [Google Scholar] [CrossRef]
- Korkmaz, O.; Sadi, G.; Kocabaş, A.; Yildirim, O.; Sumlu, E.; Koca, H.; Nalbantoğlu, B.; Pektas, M.; Akar, F. Lactobacillus helveticus and Lactobacillus plantarum Modulate Renal Antioxidant Status in a Rat Model of Fructose-Induced Metabolic Syndrome. Arch. Biol. Sci. 2019, 71, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Liu, Y.; Ma, F.; Sun, M.; Song, Y.; Xu, D.; Mu, G.; Tuo, Y. Lactobacillus plantarum Y44 Alleviates Oxidative Stress by Regulating Gut Microbiota and Colonic Barrier Function in Balb/C Mice with Subcutaneous d-Galactose Injection. Food Funct. 2021, 12, 373–386. [Google Scholar] [CrossRef]
- Cheong, K.-L.; Qiu, H.-M.; Du, H.; Liu, Y.; Khan, B.M. Oligosaccharides Derived from Red Seaweed: Production, Properties, and Potential Health and Cosmetic Applications. Molecules 2018, 23, 2451. [Google Scholar] [CrossRef] [Green Version]
- Kleniewska, P.; Pawliczak, R. Influence of Synbiotics on Selected Oxidative Stress Parameters. Oxidative Med. Cell. Longev. 2017, 2017, 9315375. [Google Scholar] [CrossRef] [Green Version]
- Kleniewska, P.; Hoffmann, A.; Pniewska, E.; Pawliczak, R. The Influence of Probiotic Lactobacillus casei in Combination with Prebiotic Inulin on the Antioxidant Capacity of Human Plasma. Oxidative Med. Cell. Longev. 2016, 2016, e1340903. [Google Scholar] [CrossRef]
- Heshmati, J.; Farsi, F.; Shokri, F.; Rezaeinejad, M.; Almasi-Hashiani, A.; Vesali, S.; Sepidarkish, M. A Systematic Review and Meta-Analysis of the Probiotics and Synbiotics Effects on Oxidative Stress. J. Funct. Foods 2018, 46, 66–84. [Google Scholar] [CrossRef]
- Roshan, H.; Ghaedi, E.; Rahmani, J.; Barati, M.; Najafi, M.; Karimzedeh, M.; Nikpayam, O. Effects of Probiotics and Synbiotic Supplementation on Antioxidant Status: A Meta-Analysis of Randomized Clinical Trials. Clin. Nutr. ESPEN 2019, 30, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, F.; Tajadadi-Ebrahimi, M.; Kolahdooz, F.; Mazouchi, M.; Hadaegh, H.; Jamal, A.-S.; Mazroii, N.; Asemi, S.; Asemi, Z. The Consumption of Synbiotic Bread Containing Lactobacillus sporogenes and Inulin Affects Nitric Oxide and Malondialdehyde in Patients with Type 2 Diabetes Mellitus: Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Coll. Nutr. 2016, 35, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Ghavami, A.; Khorvash, F.; Khalesi, S.; Heidari, Z.; Askari, G. The Effects of Synbiotic Supplementation on Oxidative Stress and Clinical Symptoms in Women with Migraine: A Double-blind, Placebo-controlled, Randomized Trial. J. Funct. Foods 2021, 86, 104738. [Google Scholar] [CrossRef]
- Saracila, M.; Untea, A.E.; Panaite, T.D. Evaluation of the Effect of Synbiotic in Piglets’ Diet on the Nutritional Quality of Pork. Arch. Zootech. 2021, 24, 67–75. [Google Scholar] [CrossRef]
- Nurliyani, N.; Harmayani, E.; Sunarti, S. Synbiotic Goat Milk Kefir Lowered Peroxisome Proliferator Activated Receptor Gamma (PPARγ) Gene Expression in Rat Adipose and Liver Tissue. Res. Sq. 2021, preprint. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Averina, O.V.; Poluektova, E.U.; Marsova, M.V.; Danilenko, V.N. Biomarkers and Utility of the Antioxidant Potential of Probiotic Lactobacilli and Bifidobacteria as Representatives of the Human Gut Microbiota. Biomedicines 2021, 9, 1340. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Peoples, J.N.; Saraf, A.; Ghazal, N.; Pham, T.T.; Kwong, J.Q. Mitochondrial Dysfunction and Oxidative Stress in Heart Disease. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Macarro, M.S.; Ávila-Gandía, V.; Pérez-Piñero, S.; Cánovas, F.; García-Muñoz, A.M.; Abellán-Ruiz, M.S.; Victoria-Montesinos, D.; Luque-Rubia, A.J.; Climent, E.; Genovés, S.; et al. Antioxidant Effect of a Probiotic Product on a Model of Oxidative Stress Induced by High-Intensity and Duration Physical Exercise. Antioxidants 2021, 10, 323. [Google Scholar] [CrossRef]
- Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Oliveira, T.G.E.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; et al. Oxidative Stress and Dementia in Alzheimer’s Patients: Effects of Synbiotic Supplementation. Oxidative Med. Cell. Longev. 2020, 2020, e2638703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, D.-F.; Chiao, Y.A.; Marcinek, D.J.; Szeto, H.H.; Rabinovitch, P.S. Mitochondrial Oxidative Stress in Aging and Healthspan. Longev. Healthspan 2014, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.-W.; Tsai, Y.-S.; Chen, Y.-L.; Wang, M.-F.; Chen, C.-C.; Lin, W.-H.; Fang, T.J. Lactobacillus plantarum GKM3 Promotes Longevity, Memory Retention, and Reduces Brain Oxidation Stress in SAMP8 Mice. Nutrients 2021, 13, 2860. [Google Scholar] [CrossRef]
- Kumar, A.; Joishy, T.; Das, S.; Kalita, M.C.; Mukherjee, A.K.; Khan, M.R. A Potential Probiotic Lactobacillus plantarum JBC5 Improves Longevity and Healthy Aging by Modulating Antioxidative, Innate Immunity and Serotonin-Signaling Pathways in Caenorhabditis Elegans. Antioxidants 2022, 11, 268. [Google Scholar] [CrossRef]
- Prazdnova, E.V.; Chistyakov, V.A.; Churilov, M.N.; Mazanko, M.S.; Bren, A.B.; Volski, A.; Chikindas, M.L. DNA-Protection and Antioxidant Properties of Fermentates from Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933. Lett. Appl. Microbiol. 2015, 61, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Megeed, R.M. Probiotics: A Promising Generation of Heavy Metal Detoxification. Biol. Trace Elem. Res. 2021, 199, 2406–2413. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.; Hor, P.; Singh, S.N.; Mondal, K.C. Multipotent Antioxidant and Antitoxicant Potentiality of an Indigenous Probiotic Bifidobacterium Sp. MKK4. J. Food Sci. Technol. 2021, 58, 4795–4804. [Google Scholar] [CrossRef]
- Jafarpour, D.; Ghaisari, H.R.; Majlesi, M.; Shekarforoush, S.S. Potential of Two Probiotics Bacillus coagulans and Lactobacillus plantarum with Inulin on Mercury Absorption and Oxidative Stress in Rats. Res. Sq. 2022, preprint. [Google Scholar]
- Pourrajab, B.; Fatahi, S.; Sohouli, M.H.; Găman, M.-A.; Shidfar, F. The Effects of Probiotic/Synbiotic Supplementation Compared to Placebo on Biomarkers of Oxidative Stress in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2021, 62, 490–507. [Google Scholar] [CrossRef] [PubMed]
- Tsao, S.-P.; Nurrahma, B.A.; Kumar, R.; Wu, C.-H.; Yeh, T.-H.; Chiu, C.-C.; Lee, Y.-P.; Liao, Y.-C.; Huang, C.-H.; Yeh, Y.-T.; et al. Probiotic Enhancement of Antioxidant Capacity and Alterations of Gut Microbiota Composition in 6-Hydroxydopamin-Induced Parkinson’s Disease Rats. Antioxidants 2021, 10, 1823. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-T.; Yang, S.J.; Paik, H.-D. Probiotic Properties of Novel Probiotic Levilactobacillus brevis KU15147 Isolated from Radish Kimchi and Its Antioxidant and Immune-Enhancing Activities. Food Sci. Biotechnol. 2021, 30, 257–265. [Google Scholar] [CrossRef]
- Sengul, E.; Gelen, S.U.; Yıldırım, S.; Çelebi, F.; Çınar, A. Probiotic Bacteria Attenuates Cisplatin-Induced Nephrotoxicity through Modulation of Oxidative Stress, Inflammation and Apoptosis in Rats. Asian Pac. J. Trop. Biomed. 2019, 9, 116. [Google Scholar] [CrossRef]
- Sheng, K.; He, S.; Sun, M.; Zhang, G.; Kong, X.; Wang, J.; Wang, Y. Synbiotic Supplementation Containing Bifidobacterium Infantis and Xylooligosaccharides Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis. Food Funct. 2020, 11, 3964–3974. [Google Scholar] [CrossRef] [PubMed]
- Yau, Y.F.; El-Nezami, H.; Galano, J.-M.; Kundi, Z.M.; Durand, T.; Lee, J.C.-Y. Lactobacillus rhamnosus GG and Oat Beta-Glucan Regulated Fatty Acid Profiles along the Gut-Liver-Brain Axis of Mice Fed with High Fat Diet and Demonstrated Antioxidant and Anti-Inflammatory Potentials. Mol. Nutr. Food Res. 2020, 64, 2000566. [Google Scholar] [CrossRef] [PubMed]
- Mirmiranpour, H.; Huseini, H.F.; Derakhshanian, H.; Khodaii, Z.; Tavakoli-Far, B. Effects of Probiotic, Cinnamon, and Synbiotic Supplementation on Glycemic Control and Antioxidant Status in People with Type 2 Diabetes; a Randomized, Double-Blind, Placebo-Controlled Study. J. Diabetes Metab. Disord. 2020, 19, 53–60. [Google Scholar] [CrossRef]
- Soleimani, A.; Motamedzadeh, A.; Mojarrad, M.Z.; Bahmani, F.; Amirani, E.; Ostadmohammadi, V.; Tajabadi-Ebrahimi, M.; Asemi, Z. The Effects of Synbiotic Supplementation on Metabolic Status in Diabetic Patients Undergoing Hemodialysis: A Randomized, Double-Blinded, Placebo-Controlled Trial. Probiot. Antimicrob. Proteins 2019, 11, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Kwon, A.; Park, Y.-S. Immunostimulatory Activity of Synbiotics Using Lactococcus lactis SG-030 and Glucooligosaccharides from Weissella cibaria YRK005. Microorganisms 2021, 9, 2437. [Google Scholar] [CrossRef]
- Yadav, R.; Khan, S.H.; Mada, S.B.; Meena, S.; Kapila, R.; Kapila, S. Consumption of Probiotic Lactobacillus fermentum MTCC: 5898-Fermented Milk Attenuates Dyslipidemia, Oxidative Stress, and Inflammation in Male Rats Fed on Cholesterol-Enriched Diet. Probiot. Antimicrob. Proteins 2019, 11, 509–518. [Google Scholar] [CrossRef] [PubMed]
- El-Hack, M.E.A.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.A.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A.-M.E.; Alagawany, M. Probiotics in Poultry Feed: A Comprehensive Review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. The Role of Probiotics, Prebiotics and Synbiotics in Animal Nutrition. Gut Pathog. 2018, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Smialek, M.; Burchardt, S.; Koncicki, A. The Influence of Probiotic Supplementation in Broiler Chickens on Population and Carcass Contamination with Campylobacter Spp.—Field Study. Res. Vet. Sci. 2018, 118, 312–316. [Google Scholar] [CrossRef]
- Salehizadeh, M.; Modarressi, M.H.; Mousavi, S.N.; Ebrahimi, M.T. Effects of Probiotic Lactic Acid Bacteria on Growth Performance, Carcass Characteristics, Hematological Indices, Humoral Immunity, and IGF-I Gene Expression in Broiler Chicken. Trop. Anim. Health Prod. 2019, 51, 2279–2286. [Google Scholar] [CrossRef]
- Khan, M. Effect of Newly Characterized Probiotic Lactobacilli on Weight Gain, Immunomodulation and Gut Microbiota of Campylobacter Jejuni Challenged Broiler Chicken. Pak. Vet. J. 2019, 39, 473–478. [Google Scholar] [CrossRef]
- Stęczny, K.; Kokoszyński, D. Effect of Probiotic Preparations (EM) on Productive Characteristics, Carcass Composition, and Microbial Contamination in a Commercial Broiler Chicken Farm. Anim. Biotechnol. 2021, 32, 758–765. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, Y.; Li, X.; Yang, W.; Wen, C.; Kang, Y.; Wang, A.; Zhou, Y. Effects of Synbiotic Supplementation on Growth Performance, Carcass Characteristics, Meat Quality and Muscular Antioxidant Capacity and Mineral Contents in Broilers: Effects of Synbiotic Supplementation. J. Sci. Food Agric. 2017, 97, 3699–3705. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, H.A.; Shivazad, M.; Rezaei, S.S.M.; Torshizi, M.A.K. Effect of Synbiotic Supplementation and Dietary Fat Sources on Broiler Performance, Serum Lipids, Muscle Fatty Acid Profile and Meat Quality. Br. Poult. Sci. 2016, 57, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.N.; Yang, H.L.; Xu, Y.X.; Gao, Y.P. Effects of Dietary Supplementation of Synbiotics on Growth Performance, Intestinal Morphology, SIgA Content and Antioxidant Capacities of Broilers. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Bobko, M.; Haščík, P.; Bobková, A.; Tóth, T.; Pavelková, A.; Trembecká, L.; Tkáčová, J. The Influence of Bee Products in Combination with Probiotic in Chicken Diet on Oxidative Stability of Chicken Meat. J. Microbiol. Biotechnol. Food Sci. 2021, 5, 633–635. [Google Scholar]
- Adil, S.; Magray, S.N. Impact and Manipulation of Gut Microflora in Poultry: A Review. J. Anim. Vet. Adv. 2012, 11, 873–877. [Google Scholar] [CrossRef] [Green Version]
- Malik, J.K.; Prakash, A.; Srivastava, A.K.; Gupta, R.C. Synbiotics in Animal Health and Production. In Nutraceuticals in Veterinary Medicine; Gupta, R.C., Srivastava, A., Lall, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 287–301. ISBN 978-3-030-04623-1. [Google Scholar]
- Sobotik, E.B.; Ramirez, S.; Roth, N.; Tacconi, A.; Pender, C.; Murugesan, R.; Archer, G.S. Evaluating the Effects of a Dietary Synbiotic or Synbiotic plus Enhanced Organic Acid on Broiler Performance and Cecal and Carcass Salmonella Load. Poult. Sci. 2021, 100, 101508. [Google Scholar] [CrossRef] [PubMed]
- Shende, K.; Dhuria, R.K.; Bikaner, R.; Meel, M.; Nagar, M.K.; Jediya, H.K. Effect of Turmeric (Curcuma Longa) Powder and Synbiotic as Alternative to Antibiotic Growth Promoter on Haemato-Biochemical Parameters, Comparative Economics and Mortality of Broiler Chicks. Int. J. Bio-Resour. Stress Manag. 2021, 12, 125–130. [Google Scholar] [CrossRef]
- Śliżewska, K.; Markowiak-Kopeć, P.; Żbikowski, A.; Szeleszczuk, P. The Effect of Synbiotic Preparations on the Intestinal Microbiota and Her Metabolism in Broiler Chickens. Sci. Rep. 2020, 10, 4281. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Kong, X.; Azad, M.A.K.; Zhu, Q.; Xiong, L.; Zheng, Y.; Hu, Z.; Yin, Y.; He, Q. Maternal Probiotic or Synbiotic Supplementation Modulates Jejunal and Colonic Antioxidant Capacity, Mitochondrial Function, and Microbial Abundance in Bama Mini-Piglets. Oxidative Med. Cell. Longev. 2021, 2021, 6618874. [Google Scholar] [CrossRef] [PubMed]
- Anadón, A.; Ares, I.; Martínez-Larrañaga, M.R.; Martínez, M.A. Prebiotics and Probiotics in Feed and Animal Health. In Nutraceuticals in Veterinary Medicine; Gupta, R.C., Srivastava, A., Lall, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 261–285. ISBN 978-3-030-04623-1. [Google Scholar]
- Long, S.; He, T.; Kim, S.W.; Shang, Q.; Kiros, T.; Mahfuz, S.U.; Wang, C.; Piao, X. Live Yeast or Live Yeast Combined with Zinc Oxide Enhanced Growth Performance, Antioxidative Capacity, Immunoglobulins and Gut Health in Nursery Pigs. Animals 2021, 11, 1626. [Google Scholar] [CrossRef]
- Lizardo, R.; Nofrarias, M.; Guinvarch, J.; Justin, A.; Auclair, E.; Brufau, J. Influence de l’incorporation de Levures Ou de Leur Parois Dans l’aliment Sur La Digestion et Les Performances Zootechniques Des Porcelets En Post-Sevrage. J. Recher. Porc. 2008, 40, 183–190. [Google Scholar]
- Tian, Z.; Cui, Y.; Lu, H.; Wang, G.; Ma, X. Effect of Long-Term Dietary Probiotic Lactobacillus reuteri 1 or Antibiotics on Meat Quality, Muscular Amino Acids and Fatty Acids in Pigs. Meat Sci. 2021, 171, 108234. [Google Scholar] [CrossRef] [PubMed]
- Sampath, V.; Ha, B.D.; Kibria, S.; Kim, I.H. Effect of Low-nutrient-density Diet with Probiotic Mixture (Bacillus subtilis Ms1, B. licheniformis SF5-1, and Saccharomyces cerevisiae) Supplementation on Performance of Weaner Pigs. J. Anim. Physiol. Anim. Nutr. 2022, 106, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Adjei-Fremah, S.; Ekwemalor, K.; Worku, M.; Ibrahim, S. Probiotics and Ruminant Health. In Probiotics—Current Knowledge and Future Prospects; Enany, S., Ed.; InTech: Houston, TX, USA, 2018; ISBN 978-1-78923-386-5. [Google Scholar]
- Poppy, G.D.; Rabiee, A.R.; Lean, I.J.; Sanchez, W.K.; Dorton, K.L.; Morley, P.S. A Meta-Analysis of the Effects of Feeding Yeast Culture Produced by Anaerobic Fermentation of Saccharomyces cerevisiae on Milk Production of Lactating Dairy Cows. J. Dairy Sci. 2012, 95, 6027–6041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, D.R.; Allen, D.T.; Perry, E.B.; Bruner, J.C.; Gates, K.W.; Rehberger, T.G.; Mertz, K.; Jones, D.; Spicer, L.J. Effects of Feeding Propionibacteria to Dairy Cows on Milk Yield, Milk Components, and Reproduction. J. Dairy Sci. 2006, 89, 111–125. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Zapata-Ramírez, O.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.; Angulo-Montoya, C.; Ríos-Rincón, F.G.; Barreras, A.; Zinn, R.A.; Leyva-Morales, J.B.; et al. The Effects of Single or Combined Supplementation of Probiotics and Prebiotics on Growth Performance, Dietary Energetics, Carcass Traits, and Visceral Mass in Lambs Finished under Subtropical Climate Conditions. Biology 2021, 10, 1137. [Google Scholar] [CrossRef]
- Cai, L.; Yu, J.; Hartanto, R.; Qi, D. Dietary Supplementation with Saccharomyces cerevisiae, Clostridium butyricum and Their Combination Ameliorate Rumen Fermentation and Growth Performance of Heat-Stressed Goats. Animals 2021, 11, 2116. [Google Scholar] [CrossRef]
- Dawood, M.A.; Abo-Al-Ela, H.G.; Hasan, M.T. Modulation of Transcriptomic Profile in Aquatic Animals: Probiotics, Prebiotics and Synbiotics Scenarios. Fish Shellfish Immunol. 2020, 97, 268–282. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Mirghaed, A.T.; Ghelichpour, M. Effects of Dietary Tryptophan Levels and Fish Stocking Density on Immunological and Antioxidant Responses and Bactericidal Activity against Aeromonas Hydrophila in Rainbow Trout (Oncorhynchus mykiss). Aquac. Res. 2020, 51, 1455–1463. [Google Scholar] [CrossRef]
- Mohammadi, G.; Hafezieh, M.; Karimi, A.A.; Azra, M.N.; Van Doan, H.; Tapingkae, W.; Abdelrahman, H.A.; Dawood, M.A.O. The Synergistic Effects of Plant Polysaccharide and Pediococcus acidilactici as a Synbiotic Additive on Growth, Antioxidant Status, Immune Response, and Resistance of Nile Tilapia (Oreochromis niloticus) against Aeromonas Hydrophila. Fish Shellfish Immunol. 2022, 120, 304–313. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Dawood, M.A.O.; Moghadam, M.S.; Shahrestanaki, A.H.; Van Doan, H.; Saad, A.H.; Aboubakr, M.; Abdelhiee, E.Y.; Fadl, S.E. The Effect of Pediococcus acidilactici MA 18/5M on Immune Responses and MRNA Levels of Growth, Antioxidant and Immune-Related Genes in Zebrafish (Danio rerio). Aquac. Rep. 2020, 17, 100374. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S. Recent Advances in the Role of Probiotics and Prebiotics in Carp Aquaculture: A Review. Aquaculture 2016, 454, 243–251. [Google Scholar] [CrossRef]
- Ma, C.-W.; Cho, Y.-S.; Oh, K.-H. Removal of Pathogenic Bacteria and Nitrogens by Lactobacillus spp. JK-8 and JK-11. Aquaculture 2009, 287, 266–270. [Google Scholar] [CrossRef]
- Michael, E.T.; Amos, S.O.; Hussaini, L.T. A Review on Probiotics Application in Aquaculture. Fish. Aquac. J. 2014, 5, 1000111. [Google Scholar] [CrossRef]
- El-Kady, A.A.; Magouz, F.I.; Mahmoud, S.A.; Abdel-Rahim, M.M. The Effects of Some Commercial Probiotics as Water Additive on Water Quality, Fish Performance, Blood Biochemical Parameters, Expression of Growth and Immune-Related Genes, and Histology of Nile Tilapia (Oreochromis niloticus). Aquaculture 2022, 546, 737249. [Google Scholar] [CrossRef]
- AbdelRaheem, S.; AbdAllah, S.; Hassanein, K. The Effects of Prebiotic, Probiotic and Synbiotic Supplementation on Intestinal Microbial Ecology and Histomorphology of Broiler Chickens. Int. J. Agro Vet. Med. Sci. 2012, 6, 277. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, H.A.; Shivazad, M.; Esmaeilnia, K.; Kohram, H.; Karimi, M.A. The Effects of a Synbiotic Containing Enterococcus faecium and Inulin on Growth Performance and Resistance to Coccidiosis in Broiler Chickens. J. Poult. Sci. 2010, 47, 149–155. [Google Scholar] [CrossRef]
- Anwar, H.; Rahman, Z.U.; Javed, I.; Muhammad, F. Effect of Protein, Probiotic, and Symbiotic Supplementation on Serum Biological Health Markers of Molted Layers. Poult. Sci. 2012, 91, 2606–2613. [Google Scholar] [CrossRef] [PubMed]
- Sunu, P.; Sunarti, D.; Mahfudz, L.D.; Yunianto, V.D. Effect of Synbiotic from Allium sativum and Lactobacillus acidophilus on Hematological Indices, Antioxidative Status and Intestinal Ecology of Broiler Chicken. J. Saudi Soc. Agric. Sci. 2021, 20, 103–110. [Google Scholar] [CrossRef]
- Li, X.; Qiang, L.; Xu, C. Effects of Supplementation of Fructooligosaccharide and/or Bacillus subtilis to Diets on Performance and on Intestinal Microflora in Broilers. Arch. Anim. Breed. 2008, 51, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Andrejčáková, Z.; Sopková, D.; Vlčková, R.; Kulichová, L.; Gancarčíková, S.; Almášiová, V.; Holovská, K.; Petrilla, V.; Krešáková, L. Synbiotics Suppress the Release of Lactate Dehydrogenase, Promote Non-Specific Immunity and Integrity of Jejunum Mucosa in Piglets: Synbiotics Improve Adaptation of Piglets. Anim. Sci. J. 2016, 87, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Sattler, V.A.; Bayer, K.; Schatzmayr, G.; Haslberger, A.G.; Klose, V. Impact of a Probiotic, Inulin, or Their Combination on the Piglets’ Microbiota at Different Intestinal Locations. Benef. Microbes 2015, 6, 473–483. [Google Scholar] [CrossRef]
- Nemcová, R.; Bomba, A.; Gancarčíková, S.; Reiffová, K.; Guba, P.; Koščová, J.; Jonecová, Z.; Sciranková, L.; Bugarský, A. Effects of the Administration of Lactobacilli, Maltodextrins and Fructooligosaccharides upon the Adhesion of E. coli O8:K88 to the Intestinal Mucosa and Organic Acid Levels in the Gut Contents of Piglets. Vet. Res. Commun. 2007, 31, 791–800. [Google Scholar] [CrossRef]
- Fleige, S.; Preißinger, W.; Meyer, H.H.D.; Pfaffl, M.W. Effect of Lactulose on Growth Performance and Intestinal Morphology of Pre-Ruminant Calves Using a Milk Replacer Containing Enterococcus faecium. Animal 2007, 1, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, S.J.; Dawson, S.; Carson, A.F. The Effects of Mannan Oligosaccharide and Streptococcus faecium Addition to Milk Replacer on Calf Health and Performance. Livest. Sci. 2010, 131, 292–296. [Google Scholar] [CrossRef]
- Marcondes, M.I.; Pereira, T.R.; Chagas, J.C.C.; Filgueiras, E.A.; Castro, M.M.D.; Costa, G.P.; Sguizzato, A.L.L.; Sainz, R.D. Performance and Health of Holstein Calves Fed Different Levels of Milk Fortified with Symbiotic Complex Containing Pre- and Probiotics. Trop. Anim. Health Prod. 2016, 48, 1555–1560. [Google Scholar] [CrossRef] [PubMed]
- Jonova, S.; Ilgaza, A.; Zolovs, M. The Impact of Inulin and a Novel Synbiotic (Yeast Saccharomyces cerevisiae Strain 1026 and Inulin) on the Development and Functional State of the Gastrointestinal Canal of Calves. Vet. Med. Int. 2021, 2021, 8848441. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Estrada, U.; Satoh, S.; Haga, Y.; Fushimi, H.; Sweetman, J. Effects of Single and Combined Supplementation of Enterococcus faecalis, Mannan Oligosaccharide and Polyhydroxybutyrate Acid on Growth Performance and Immune Response of Rainbow Trout (Oncorhynchus mykiss). Aquac. Sci. 2009, 57, 609–617. [Google Scholar]
- Lee, S.; Katya, K.; Hamidoghli, A.; Hong, J.; Kim, D.-J.; Bai, S.C. Synergistic Effects of Dietary Supplementation of Bacillus subtilis WB60 and Mannanoligosaccharide (MOS) on Growth Performance, Immunity and Disease Resistance in Japanese Eel, Anguilla Japonica. Fish Shellfish Immunol. 2018, 83, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas, S.; Rivero-Ramírez, F.; Izquierdo, M.S.; Caballero, M.J.; Makol, A.; Suarez-Bregua, P.; Fernández-Montero, A.; Rotllant, J.; Montero, D. Feeding European Sea Bass (Dicentrarchus labrax) Juveniles with a Functional Synbiotic Additive (Mannan Oligosaccharides and Pediococcus acidilactici): An Effective Tool to Reduce Low Fishmeal and Fish Oil Gut Health Effects? Fish Shellfish Immunol. 2018, 81, 10–20. [Google Scholar] [CrossRef]
Antioxidant Categories | Symbol/Structure | ||
---|---|---|---|
Enzymatic antioxidants | |||
Superoxide dismutase Catalase Glutathione peroxidase Glutathione reductase | SOD CAT GPx GRx | ||
Non-enzymatic antioxidants | |||
Endogenous (metabolic antioxidants) | |||
Lipoic acid | |||
Glutathione (GSH) | |||
L-arginine | |||
Co-enzyme Q10 | |||
Melatonin | |||
Uric acid | |||
Bilirubin | |||
Exogenous (nutrient antioxidants) | |||
Vitamin E | |||
Vitamin C | |||
Carotenoids | |||
Trace of metals | Se, Mn, Zn | ||
Flavonoids | Flavone | Isoflavone | Neoflavonoid |
Omega-3 and -6 fatty acids | Eicosapentaenoic acid (EPA, C20:5, omega-3) |
Antioxidant Molecule | Probiotic Strains | Conditions and Yields | References |
---|---|---|---|
Butyrate | Lactobacillus acidophilus MG5228 | MRS broth 37 °C–overnight 80.70 ± 3.63 µg/g | [41] |
Carotenoids C30 carotenoid 4,4′-diaponeurosporene | Lactiplantibacillus plantarum subsp plantarum KCCP11226 | MRS broth 20 °C–24 h 0.74 ± 0.2 A470 | [42,43] |
EPS | Lactobacillus helveticus MB2-1 | Medium (3g MgSO4 + 80 g/L lactose + 20 g/L soya peptone) 37 °C 753 mg/L | [44,45] |
Streptococcus thermophilus CS6 | Skimmed milk medium | [46] | |
L. plantarum CNPC003 | MRS broth + FOS 37 °C–24 h 568.4 mg/L | [47] | |
Ferrulic acid | LimosiLactobacillus fermentum NCIMB 5221 | MRS + ethyl ferrulate 1.33 M 37 °C–24 h 0.168 ± 0.001 mg/L | [48] |
Folates | Enterococcus lactis BT161 | MRS broth 37 °C–overnight 384.22 ± 5.00 ng/mL | [49] |
GSH | Saccharomyces cerevisiae KU200278 and KU200281 | Yeast mold media 25 °C–48 h 5.55 ± 0.52 µg/mg | [21] |
L. plantarum | MRS broth as a basal medium + NaCl (5%) + H2O2 (0.05%) + sodium dodecyl sulphate (0.05%) + amino acids (0.0281%) + urea (0.192%) 40 °C–24h–pH 8 152.61 µM/g | [50] | |
Hyaluronic acid | Strep. thermophilus TISTR 458 | Yeast extract 30, K2HPO4 2.5, NaCl 2.0 and MgSO4•7H2O 1.5 g/L, using sugarcane molasses as carbon source 37 ± 2 °C–pH 6.8 213.44 ± 76.79 mg/L | [51] |
Levan (EPS) | Bacillus subtilis | Yeast extract 2.0g/L, KH2PO4 1.0g/L (NH4)2SO4 3.0; MgSO4.7H2O 0.06, MnSO4 0.02 and distilled water sucrose 400 g/L 37 °C–16 h 111.6 g/L | [52] |
Peptides | L. helveticus NK1, L. rhamnosus F, Limosilactobacillus reuteri LR1 | Reconstituted skim milk 37 °C–72 h Not determined (nd) | [53] |
B. subtilis MTCC5480 | Solid state fermentation; moisture 46% inoculation size, 5.8 × 109 spore/g peptone 5 mg/g and glucose 10.7 mg/g 36 °C–54 days–pH 6.0 369.4 mg/gdp | [54] | |
Polyphenolic compounds | S. cerevisiae var. boulardii NCYC 3264 | Medium containing 1% (w/v) yeast extract, 2% (w/v) peptone, and 2% (w/v) glucose 30 °C–overnight nd | [20] |
Riboflavins (Vitamin B2) | B. subtilis subsp. subtilis ATCC 6051 | Medium (38.10g/L fructose + 0.85 g/L MgSO4 + 2.27 g/L K2 HPO4 + 0.02 g/L FeSO4 + 4.37 g/L yeast) 30 °C–72 h 11.73 ± 0.68 g/L | [55] |
Class | Prebiotics | Source | Reference |
---|---|---|---|
Carbohydrates | |||
Oligosaccharide | POS | Okra | [60] |
XOS | Agricultural wastes (sugar cane straw, coffee husk) | [61] | |
Inulin | Jerusalem artichoke root | [62] | |
Neoagaro oligosaccharides (NAOS) | Red algae | [63] | |
Disaccharides | Lactobionic acid | Whey | [64] |
Polysaccharides | EPS | Microorganism (L. plantarum) | [59] |
Non-starch polysaccharides (arabinoxylan, mannan, arabinogalactan, glucomannan) | Wheat malt beer | [65] | |
Non-carbohydrates | |||
Polyphenols | Anthocyanins | Purple sweet potato | [66] |
Probiotic Genius Bacteria | Prebiotics |
---|---|
Lactobacillus Lactococcus Leuconostoc Enterococcus Streptococcus Bifidobacterium Saccharomyces Bacillus | Inulin β-glucans Fructooligosaccharides (FOS), galactooligosaccharides (GOS), transgalactooligosaccharides (TOS) Lactulose Polydextose Chicory root inulin-derived (FOS) Wheat bran-derived arabinoxylooligosaccharides (AXOS) Xylooligosaccharides (XOS) Polyphenols |
Probiotic Strains | In Vitro | In Vivo | Reference |
---|---|---|---|
Lactobacillusspp. | |||
L. acidophilus | Stimulation of SOD and catalase activities in carp | [77] | |
Lacticaseibacillus casei NA-2 | EPS from probiotics showed antioxidant activities by scavenging hydroxyl radicals (42% at 1.2 mg/mL), superoxide radicals (76% at 100 µg/mL), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (80% at 10 mg/mL) of EPS | [78] | |
L. fermentum JX306 | Improve the activity of GPx, and TAC in the serum, kidney, and liver of D-galactose-induced aging mice model Upregulate the transcriptional level of the antioxidant-related enzyme genes (peroxiredoxin1 (Prdx1), GRx, GPx1, and thioredoxin reductase (TR3) encoding genes) | [79] | |
L. helveticus KLDS1.8701 | Strong scavenging properties on DPPH radical, superoxide radical, hydroxyl radical, and chelating activity on ferrous ions | Attenuation of oxidative status (decrease of organic index, liver injury and liver oxidative stress), mitigate hepatic oxidative stress by manipulating the gut microbiota composition in D-galactose-induced mice | [80] |
Lacticaseibacillus paracasei M11-4 | High radical scavenging activities, lipid peroxidation inhibition, and reducing power, antioxidant enzyme activities in the cell-free extract and bacterial suspension | Alleviate D-galactose-induced oxidative damage in the liver and serum of D-galactose-induced rats; prevent D-galactose-induced changes to intestinal microbiota in rats | [22] |
L. plantarum NJAU-01 | High TAC; increase of antioxidant enzymatic activities of SOD, GPx, and CAT in serum, heart, and liver of mice | [81] | |
L. rhamnosus ARJD | Significant nitric oxide (NO) scavenging, hydroxyl radical scavenging activity, DPPH scavenging activities, and reducing power activity | Gastrointestinal stress tolerance abilities with long resident abilities in the host (rat) gastrointestinal tract | [82] |
L. reuteri MG505 | High DPPH free radical scavenging and 2,2′-azinobis 3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging | [83] | |
Bifidobacteriumspp. | |||
B. adolescentis MC-42 | Lower oxidative process in hypoxified rat brain tissues | [84] | |
B. animalis subsp. lactis MG741 | High DPPH free radical scavenging and ABTS radical scavenging | [83] | |
B. breve MG729 | High DPPH free radical scavenging and ABTS radical scavenging | [83] | |
B. longum LTBL16 | DPPH scavenging ability and oxygen resistance | [85] | |
Bacillusspp. | |||
B. coagulans MTCC5856 | DPPH radical scavenging activity; intracellular ROS scavenging activity | [86] | |
B. subtilis AF17 | DPPH radical-scavenging capacity; reducing power; strong total antioxidant activity | [87] | |
B.amyloliquefaciens ssp. plantarum IMV B-7143 | Stabilisation of the DPPH radical to its neutral form | Protection of stress-damaged rat hepatocytes | [88] |
Saccharomycesspp. | |||
S. cerevisiae KU200278 and KU200281 | Protection against DNA damage | [21] | |
S. cerevisiae var boulardii | DPPH radical scavenging activity | [20] | |
Streptococcusspp. | |||
Strep. thermophilus YIT 2001 (ST-1) | Strong anti-oxidative activity against low-density lipoprotein (LDL) oxidation, high level of intracellular GSH, and anti-oxidative activity against LDL oxidation in hyperlipidaemic hamsters | [89] | |
Clostridiumspp. | |||
C. butyricum | High intestine antioxidant enzyme (SOD, CAT, and GPx) activity and gene (hsp70 and ferritin) expression levels in shrimp fed with probiotics | [90] |
Methods | Reference |
---|---|
Oxygen radical absorbance capacity (ORAC assay) | [91,92] |
Total antioxidant activity (TAA) | [93] |
Reducing antioxidant power FRAP (ferric ion reducing antioxidant potential) | [94] |
Lipid peroxidation inhibition assay TBARS assay or MDA assay β-carotene bleaching assay | [95] |
Radical scavenging assay DPPH radical scavenging activity ABTS radical scavenging activity | [94,96] |
Non-radical reactive oxygen species scavenging assay Hydrogen peroxide scavenging activity | [97] |
Metal chelating capacity FRAP assay | [93] |
Synbiotics | Effects | References | |
---|---|---|---|
Diabetes | L. acidophilus + cinnamon powder | Increase of antioxidant enzymes | [133] |
L. acidophilus, L. casei, and B. bifidum (6 × 109 total CFU/g each) + 0.8 g/day of inulin | Increase of total antioxidant capacity and total GSH levels in diabetic patients under hemodialysis | [134] | |
Intestinal permeability | Multi-strain VSL3 # + FOS |
| [33] |
Ulcerative colitis | B. infantis + XOS |
| [131] |
Immune systems | L. lactis SG-030 + GOS |
| [135] |
Hypercholesterolemia | L. fermentum MTCC + 5898-fermented buffalo milk | Reduced oxidative stress and inflammation in male rats fed with cholesterol-enriched diet | [136] |
Subject | Synbiotics | Main Outcome | Reference |
---|---|---|---|
Poultry | S. cerevisiae + Mannanoligosaccharides (MOS) | Increased weight gain, reduced E. coli numbers in the small intestine and cecal digesta. | [171] |
Biomin®IMBOa | Improved body weight gain and feed conversion ratio, and protected against coccidiosis. | [172] | |
B. subtilis, B. licheniformis, C. butyricum + yeast cell wall, + XOS | Increased average daily gain and breast yield, decreased feed/gain ratio and abdominal fat, and reduced MDA concentration in the thigh muscle, resulting in high-quality, oxidatively stable meat. | [143] | |
L. acidophilus, B. thermophilus, B. longum, Streptococcus faecium + prebiotics | Increased serum overall total antioxidant capacity, and decreased serum total oxidant status and homocysteine concentrations. | [173] | |
B. subtilis + XOS + MOS | Increased daily weight gain; feed efficiency; villus height; intestinal mucosa secretory IgA content; and antioxidant capabilities. | [145] | |
L. acidophilus + garlic extract | Improved performance, intestinal health, antioxidants and nutrient digestion. | [174] | |
B. subtilis + FOS | Improved average daily growth, FCR, reduced incidence of diarrhea and mortality. | [175] | |
Pigs | L. plantarum—BiocenolTM LP96 (CCM 7512), L. fermentum—BiocenolTM LF99 (CCM 7514) + flaxseed | Decreased lactate dehydrogenase leakage in the tissue extracts, and improved the immune status and the integrity of jejunum mucosa during infection. | [176] |
Enterococcus faecium, L. salivarius, L. reuteri, Bifidobacterium thermophilum + inulin | Decreased relative abundance of Escherichia in the ileum, cecum, and colon, and increased bifidobacterial numbers in the ileum. | [177] | |
L. plantarum + maltodextrin and/or FOS | Reduced counts of E. coli O8:K88 in the jejunum and colon of piglets, and increased acetate concentrations in the ileum and colon. | [178] | |
BiominR IMBO Pro/prebiotic, BIOMIN, GmbH Austria | Delayed the lipid oxidation process of the shoulder and ham samples during the refrigeration period. | [111] | |
Ruminants | Ent. faecium + lactulose | Decreased the ileal villus height, the depth of the crypts in the cecum, and the surface area of lymph follicles from Peyer’s patches. | [179] |
Strep. faecium + MOS | Improved fecal consistency and reduced the fecal score of calves without reducing in the number of scour episodes. | [180] | |
Bioformula® | Improved average daily weight gain digestibility of dry matter and neutral detergent fiber and improved animal health. | [181] | |
S. cerevisiae + Inulin | Increased pH in rumen, abomasum, and intestines, positively impacted the development of almost all morphological structures of rumen saccus dorsalis, rumen saccus ventralis, and intestine. | [182] | |
Aquacuture | Ent. faecalis + mannan oligosaccharides and polyhydroxybutyrate | Improved the growth performance and immune response of rainbow trout. | [183] |
B. subtilis WB60 + MOS | Improved growth performance, nonspecific immune responses, and disease resistance in Japanese eel. | [184] | |
Pediococcus acidilactici + mannan oligosaccharides | Reduced MOS-induced gut humoral proinflammatory response by increasing the expression of some cellular-immune system-related genes, and reduced fish mortality after V. anguillarum infection. | [185] | |
Ped. Acidilactici + pistachio hulls derived polysaccharide | Enhanced skin mucus and blood immune responses, upregulated immune-related genes expression, increased intestinal SCFAs content, as well as promoted antioxidative capacity. | [165] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mounir, M.; Ibijbijen, A.; Farih, K.; Rabetafika, H.N.; Razafindralambo, H.L. Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules 2022, 12, 1443. https://doi.org/10.3390/biom12101443
Mounir M, Ibijbijen A, Farih K, Rabetafika HN, Razafindralambo HL. Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules. 2022; 12(10):1443. https://doi.org/10.3390/biom12101443
Chicago/Turabian StyleMounir, Majid, Amal Ibijbijen, Kawtar Farih, Holy N. Rabetafika, and Hary L. Razafindralambo. 2022. "Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review" Biomolecules 12, no. 10: 1443. https://doi.org/10.3390/biom12101443
APA StyleMounir, M., Ibijbijen, A., Farih, K., Rabetafika, H. N., & Razafindralambo, H. L. (2022). Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules, 12(10), 1443. https://doi.org/10.3390/biom12101443