Crystal Structure of the Human Copper Chaperone ATOX1 Bound to Zinc Ion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atox1 Expression and Purification
2.2. Crystallization and Structure Determination of the Zn-Atox1 Adduct
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eide, D.J. Zinc Transporters and the Cellular Trafficking of Zinc. Biochim. Biophys. Acta (BBA)–Mol. Cell Res. 2006, 1763, 711–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krężel, A.; Maret, W. The Biological Inorganic Chemistry of Zinc Ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmiter, R.D.; Huang, L. Efflux and Compartmentalization of Zinc by Members of the SLC30 Family of Solute Carriers. Pflug. Arch. Eur. J. Physiol. 2004, 447, 744–751. [Google Scholar] [CrossRef]
- Pan, Z. Zinc Transporters and Dysregulated Channels in Cancers. Front. Biosci. 2017, 22, 623–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezzati, M.; Lopez, A.D.; Rodgers, A.A.; Murray, C.J.L. Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors; World Health Organization: Geneve, Switzerland, 2004; Volume 1. [Google Scholar]
- Kambe, T.; Hashimoto, A.; Fujimoto, S. Current Understanding of ZIP and ZnT Zinc Transporters in Human Health and Diseases. Cell. Mol. Life Sci. 2014, 71, 3281–3295. [Google Scholar] [CrossRef] [PubMed]
- Stocks, P.; Davies, R.I. Zinc and Copper Content of Soils Associated with the Incidence of Cancer of the Stomach and Other Organs. Br. J. Cancer 1964, 18, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Platz, E.A.; Helzlsouer, K.J. Diet: Selenium, Zinc, and Prostate Cancer. Epidemiol. Rev. 2001, 23, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Jansen, J.; Karges, W.; Rink, L. Zinc and Diabetes-Clinical Links and Molecular Mechanisms. J. Nutr. Biochem. 2009, 20, 399–417. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Xiang, Y.; Pan, L.; Li, X.; Luo, S.; Zhou, Z. Zinc Transporter 8 Autoantibody (ZnT8A) Could Help Differentiate Latent Autoimmune Diabetes in Adults (LADA) from Phenotypic Type 2 Diabetes Mellitus: ZnT8A Differentiate LADA from T2DM. Diabetes Meta. Res. Rev. 2013, 29, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Haglund, B.; Ryckenberg, K.; Selinus, O.; Dahlquist, G. Evidence of a Relationship Between Childhood-Onset Type I Diabetes and Low Groundwater Concentration of Zinc. Diabetes Care 1996, 19, 873–875. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc: An Antioxidant and Anti-Inflammatory Agent: Role of Zinc in Degenerative Disorders of Aging. J. Trace Elem. Med. Biol. 2014, 28, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, B. Zinc Homeostasis and Neurodegenerative Disorders. Front. Aging Neurosci. 2013, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devirgiliis, C.; Zalewski, P.D.; Perozzi, G.; Murgia, C. Zinc Fluxes and Zinc Transporter Genes in Chronic Diseases. Mutat. Res. 2007, 622, 84–93. [Google Scholar] [CrossRef]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turski, M.L.; Thiele, D.J. New Roles for Copper Metabolism in Cell Proliferation, Signaling, and Disease. J. Biol. Chem. 2009, 284, 717–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maret, W. The Redox Biology of Redox-Inert Zinc Ions. Free Radic. Biol. Med. 2019, 134, 311–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.-L.; Hung, T.-C.; Hsieh, B.-S.; Chen, Y.-H.; Chen, T.-F.; Cheng, H.-L. Zinc at Pharmacologic Concentrations Affects Cytokine Expression and Induces Apoptosis of Human Peripheral Blood Mononuclear Cells. Nutrition 2006, 22, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace Elements in Human Physiology and Pathology. Copper. Biomed. Pharmacother. 2003, 57, 386–398. [Google Scholar] [CrossRef]
- Vallee, B.L.; Auld, D.S. Zinc Coordination, Function, and Structure of Zinc Enzymes and Other Proteins. Biochemistry 1990, 29, 5647–5659. [Google Scholar] [CrossRef] [PubMed]
- Finney, L.A.; O’Halloran, T.V. Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors. Science 2003, 300, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Huffman, D.L.; O’Halloran, T.V. Function, Structure, and Mechanism of Intracellular Copper Trafficking Proteins. Annu. Rev. Biochem. 2001, 70, 677–701. [Google Scholar] [CrossRef] [PubMed]
- Nies, D.H. How Cells Control Zinc Homeostasis. Science 2007, 317, 1695–1696. [Google Scholar] [CrossRef] [PubMed]
- Maret, W.; Li, Y. Coordination Dynamics of Zinc in Proteins. Chem. Rev. 2009, 109, 4682–4707. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Murdoch, C.C.; Edmonds, K.A.; Jordan, M.R.; Monteith, A.J.; Perera, Y.R.; Rodríguez Nassif, A.M.; Petoletti, A.M.; Beavers, W.N.; Munneke, M.J.; et al. Zn-Regulated GTPase Metalloprotein Activator 1 Modulates Vertebrate Zinc Homeostasis. Cell 2022, 185, 2148–2163.e27. [Google Scholar] [CrossRef]
- Brewer, G.J. Zinc Acetate for the Treatment of Wilson’s Disease. Expert Opin. Pharmacother. 2001, 2, 1473–1477. [Google Scholar] [CrossRef]
- Hall, A.C.; Young, B.W.; Bremner, I. Intestinal Metallothionein and the Mutual Antagonism between Copper and Zinc in the Rat. J. Inorg. Biochem. 1979, 11, 57–66. [Google Scholar] [CrossRef]
- Hoffman, H.N.; Phyliky, R.L.; Fleming, C.R. Zinc-Induced Copper Deficiency. Gastroenterology 1988, 94, 508–512. [Google Scholar] [CrossRef]
- Wellenreuther, G.; Cianci, M.; Tucoulou, R.; Meyer-Klaucke, W.; Haase, H. The Ligand Environment of Zinc Stored in Vesicles. Biochem. Biophys. Res. Commun. 2009, 380, 198–203. [Google Scholar] [CrossRef]
- Hong-Hermesdorf, A.; Miethke, M.; Gallaher, S.D.; Kropat, J.; Dodani, S.C.; Chan, J.; Barupala, D.; Domaille, D.W.; Shirasaki, D.I.; Loo, J.A.; et al. Subcellular Metal Imaging Identifies Dynamic Sites of Cu Accumulation in Chlamydomonas. Nat. Chem. Biol. 2014, 10, 1034–1042. [Google Scholar] [CrossRef] [Green Version]
- Arnesano, F.; Banci, L.; Bertini, I.; Ciofi-Baffoni, S.; Molteni, E.; Huffman, D.L.; O’Halloran, T.V. Metallochaperones and Metal-Transporting ATPases: A Comparative Analysis of Sequences and Structures. Genome Res. 2002, 12, 255–271. [Google Scholar] [CrossRef]
- Hatori, Y.; Lutsenko, S. An Expanding Range of Functions for the Copper Chaperone/Antioxidant Protein Atox1. Antioxid Redox. Signal 2013, 19, 945–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenzweig, A.C.; Wernimont, A.K.; Huffman, D.L.; Lamb, A.L.; O’Halloran, T.V. Structural Basis for Copper Transfer by the Metallochaperone for the Menkes/Wilson Disease Proteins. Nat. Struct. Mol. Biol. 2000, 7, 766–771. [Google Scholar] [CrossRef]
- Belviso, B.D.; Galliani, A.; Lasorsa, A.; Mirabelli, V.; Caliandro, R.; Arnesano, F.; Natile, G. Oxaliplatin Binding to Human Copper Chaperone Atox1 and Protein Dimerization. Inorg. Chem. 2016, 55, 6563–6573. [Google Scholar] [CrossRef] [PubMed]
- Badarau, A.; Baslé, A.; Firbank, S.J.; Dennison, C. Crosstalk between Cu(I) and Zn(II) Homeostasis via Atx1 and Cognate Domains. Chem. Commun. 2013, 49, 8000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badarau, A.; Baslé, A.; Firbank, S.J.; Dennison, C. Investigating the Role of Zinc and Copper Binding Motifs of Trafficking Sites in the Cyanobacterium Synechocystis PCC 6803. Biochemistry 2013, 52, 6816–6823. [Google Scholar] [CrossRef] [PubMed]
- Vonrhein, C.; Flensburg, C.; Keller, P.; Sharff, A.; Smart, O.; Paciorek, W.; Womack, T.; Bricogne, G. Data Processing and Analysis with the AutoPROC Toolbox. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr 2010, 66, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Evans, P. Scaling and Assessment of Data Quality. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 72–82. [Google Scholar] [CrossRef]
- Evans, P.R.; Murshudov, G.N. How Good Are My Data and What Is the Resolution? Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1204–1214. [Google Scholar] [CrossRef]
- Caliandro, R.; Carrozzini, B.; Cascarano, G.L.; Giacovazzo, C.; Mazzone, A.; Siliqi, D. Molecular Replacement: The Probabilistic Approach of the Program REMO09 and Its Applications. Acta Cryst. 2009, 65, 512–527. [Google Scholar] [CrossRef]
- Caliandro, R.; Carrozzini, B.; Cascarano, G.L.; De Caro, L.; Giacovazzo, C.; Mazzone, A.M.; Siliqi, D. Molecular Replacement: The Approach of the Program REMO. J. Appl. Crystallogr. 2006, 39, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Burla, M.C.; Caliandro, R.; Carrozzini, B.; Cascarano, G.L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G. Crystal Structure Determination and Refinement via SIR2014. J. Appl. Crystallogr. 2015, 48, 306–309. [Google Scholar] [CrossRef]
- Emsley, P.; Cowtan, K. Coot: Model-Building Tools for Molecular Graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurusaran, M.; Shankar, M.; Nagarajan, R.; Helliwell, J.R.; Sekar, K. Do We See What We Should See? Describing Non-Covalent Interactions in Protein Structures Including Precision. IUCrJ 2014, 1, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afonine, P.V.; Grosse-Kunstleve, R.W.; Echols, N.; Headd, J.J.; Moriarty, N.W.; Mustyakimov, M.; Terwilliger, T.C.; Urzhumtsev, A.; Zwart, P.H.; Adams, P.D. Towards Automated Crystallographic Structure Refinement with Phenix.Refine. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 352–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, I.W.; Leaver-Fay, A.; Chen, V.B.; Block, J.N.; Kapral, G.J.; Wang, X.; Murray, L.W.; Arendall, W.B.; Snoeyink, J.; Richardson, J.S.; et al. MolProbity: All-Atom Contacts and Structure Validation for Proteins and Nucleic Acids. Nucleic Acids Res. Spec. Publ. 2007, 35, 375–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; Brose, J.; Schimo, S.; Ackland, S.M.; La Fontaine, S.; Wedd, A.G. Unification of the Copper(I) Binding Affinities of the Metallo-Chaperones Atx1, Atox1, and Related Proteins. J. Biol. Chem. 2011, 286, 11047–11055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badarau, A.; Dennison, C. Thermodynamics of Copper and Zinc Distribution in the Cyanobacterium Synechocystis PCC 6803. Proc. Natl. Acad. Sci. USA 2011, 108, 13007–13012. [Google Scholar] [CrossRef] [Green Version]
- Shabalin, I.; Dauter, Z.; Jaskolski, M.; Minor, W.; Wlodawer, A. Crystallography and Chemistry Should Always Go Together: A Cautionary Tale of Protein Complexes with Cisplatin and Carboplatin. Acta Crystallogr. D Biol. Crystallogr. 2015, 71, 1965–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boal, A.K.; Rosenzweig, A.C. Crystal Structures of Cisplatin Bound to a Human Copper Chaperone. J. Am. Chem. Soc. 2009, 131, 14196–14197. [Google Scholar] [CrossRef] [PubMed]
- Nyborg, J.K.; Peersen, O.B. That Zincing Feeling: The Effects of EDTA on the Behaviour of Zinc-Binding Transcriptional Regulators. Biochemistry 2004, 381, e3. [Google Scholar] [CrossRef] [PubMed]
Parameter | Values |
---|---|
Wavelength (Å) | 1.28 |
Resolution range (Å) | 42.53–1.91 (1.95–1.91) |
Space group | P65 |
Unit cell parameters (Å) | |
a | 78.226 |
b | 78.226 |
c | 54.637 |
Total number of reflections | 81,486 (5587) |
Total number of unique reflections | 23,876 (968) |
<I/σ(I)> | 10.4 (2.1) |
Half-set correlation CC (1/2) | 0.997 (0.711) |
Rmerge | 0.093 (0.911) |
Completeness (%) | 99.1 (97.2) |
Multiplicity | 5.6 (5.6) |
Anomalous completeness (%) | 92.4 (89.7) |
Anomalous multiplicity | 2.7 (2.7) |
DelAnom CC (1/2) | 0.266 (0.044) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangini, V.; Belviso, B.D.; Nardella, M.I.; Natile, G.; Arnesano, F.; Caliandro, R. Crystal Structure of the Human Copper Chaperone ATOX1 Bound to Zinc Ion. Biomolecules 2022, 12, 1494. https://doi.org/10.3390/biom12101494
Mangini V, Belviso BD, Nardella MI, Natile G, Arnesano F, Caliandro R. Crystal Structure of the Human Copper Chaperone ATOX1 Bound to Zinc Ion. Biomolecules. 2022; 12(10):1494. https://doi.org/10.3390/biom12101494
Chicago/Turabian StyleMangini, Vincenzo, Benny Danilo Belviso, Maria Incoronata Nardella, Giovanni Natile, Fabio Arnesano, and Rocco Caliandro. 2022. "Crystal Structure of the Human Copper Chaperone ATOX1 Bound to Zinc Ion" Biomolecules 12, no. 10: 1494. https://doi.org/10.3390/biom12101494
APA StyleMangini, V., Belviso, B. D., Nardella, M. I., Natile, G., Arnesano, F., & Caliandro, R. (2022). Crystal Structure of the Human Copper Chaperone ATOX1 Bound to Zinc Ion. Biomolecules, 12(10), 1494. https://doi.org/10.3390/biom12101494