Synthesis of Protein-Oligonucleotide Conjugates
Abstract
:1. Introduction
2. Strategies for Conjugation
2.1. Chemical Conjugation Strategies
2.2. Biochemical Conjugation Strategies
2.3. Hybrid Conjugation Strategies
3. Applications of Protein-Oligonucleotide Conjugates
3.1. Case Study 1
3.2. Case Study 2
3.3. Case Study 3
3.4. Case Study 4
3.5. Case Study 5
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Stephanopoulos, N. Hybrid Nanostructures from the Self-Assembly of Proteins and DNA. Chem 2020, 6, 364–405. [Google Scholar] [CrossRef]
- Flory, J.D.; Simmons, C.R.; Lin, S.; Johnson, T.; Andreoni, A.; Zook, J.; Ghirlanda, G.; Liu, Y.; Yan, H.; Fromme, P. Low Temperature Assembly of Functional 3D DNA-PNA-Protein Complexes. J. Am. Chem. Soc. 2014, 136, 8283–8295. [Google Scholar] [CrossRef] [PubMed]
- Gavins, G.C.; Gröger, K.; Bartoschek, M.D.; Wolf, P.; Beck-Sickinger, A.G.; Bultmann, S.; Seitz, O. Live cell PNA labelling enables erasable fluorescence imaging of membrane proteins. Nat. Chem. 2020, 13, 15–23. [Google Scholar] [CrossRef]
- Gavins, G.C.; Gröger, K.; Reimann, M.; Bartoschek, M.D.; Bultmann, S.; Seitz, O. Orthogonal coiled coils enable rapid covalent labelling of two distinct membrane proteins with peptide nucleic acid barcodes. RSC Chem. Biol. 2021, 2, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, E.; Angerani, S.; Anzola, M.; Winssinger, N. Luciferase-induced photoreductive uncaging of small-molecule effectors. Nat. Commun. 2018, 9, 3539. [Google Scholar] [CrossRef] [PubMed]
- Gholami, Z.; Hanley, Q. Controlled Assembly of SNAP–PNA–Fluorophore Systems on DNA Templates to Produce Fluorescence Resonance Energy Transfer. Bioconjug. Chem. 2014, 25, 1820–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazane, S.A.; Axup, J.Y.; Kim, C.H.; Ciobanu, M.; Wold, E.D.; Barluenga, S.; Hutchins, B.A.; Schultz, P.G.; Winssinger, N.; Smider, V.V. Self-Assembled Antibody Multimers through Peptide Nucleic Acid Conjugation. J. Am. Chem. Soc. 2013, 135, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Leonidova, A.; Foerster, C.; Zarschler, K.; Schubert, M.; Pietzsch, H.-J.; Steinbach, J.; Bergmann, R.; Metzler-Nolte, N.; Stephan, H.; Gasser, G. In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system. Chem. Sci. 2015, 6, 5601–5616. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Liu, Y.; Deng, Y.; Jia, B.; Ding, X.; Zheng, P.; Li, Z. OaAEP1-mediated PNA-protein conjugation enables erasable imaging of membrane proteins. Chem. Commun. 2022, 58, 8448–8451. [Google Scholar] [CrossRef]
- Westerlund, K.; Honarvar, H.; Tolmachev, V.; Karlström, A.E. Design, Preparation, and Characterization of PNA-Based Hybridization Probes for Affibody-Molecule-Mediated Pretargeting. Bioconjug. Chem. 2015, 26, 1724–1736. [Google Scholar] [CrossRef]
- Märcher, A.; Kumar, V.; Andersen, V.L.; El-Chami, K.; Nguyen, T.J.D.; Skaanning, M.K.; Rudnik-Jansen, I.; Nielsen, J.S.; Howard, K.A.; Kjems, J.; et al. Functionalized Acyclic (l)-Threoninol Nucleic Acid Four-Way Junction with High Stability In Vitro and In Vivo. Angew. Chem. Int. Ed. 2022, 61, e2021152. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Coventry, B.; Goreshnik, I.; Huang, B.; Sheffler, W.; Park, J.S.; Jude, K.M.; Marković, I.; Kadam, R.U.; Verschueren, K.H.G.; et al. Design of protein-binding proteins from the target structure alone. Nature 2022, 605, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, M.J.; Boyken, S.E.; Salter, A.I.; Bruffey, J.; Rajan, A.; Langan, R.A.; Olshefsky, A.; Muhunthan, V.; Bick, M.J.; Gewe, M.; et al. Designed protein logic to target cells with precise combinations of surface antigens. Science 2020, 369, 1637–1643. [Google Scholar] [CrossRef]
- Quijano-Rubio, A.; Yeh, H.-W.; Park, J.; Lee, H.; Langan, R.A.; Boyken, S.E.; Lajoie, M.J.; Cao, L.; Chow, C.M.; Miranda, M.C.; et al. De novo design of modular and tunable protein biosensors. Nature 2021, 591, 482–487. [Google Scholar] [CrossRef]
- Yeldell, S.B.; Seitz, O. Nucleic acid constructs for the interrogation of multivalent protein interactions. Chem. Soc. Rev. 2020, 49, 6848–6865. [Google Scholar] [CrossRef]
- Dovgan, I.; Koniev, O.; Kolodych, S.; Wagner, A. Antibody–Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug. Chem. 2019, 30, 2483–2501. [Google Scholar] [CrossRef]
- Klabenkova, K.; Fokina, A.; Stetsenko, D. Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules 2021, 26, 5420. [Google Scholar] [CrossRef]
- Yang, Y.R.; Liu, Y.; Yan, H. DNA Nanostructures as Programmable Biomolecular Scaffolds. Bioconjug. Chem. 2015, 26, 1381–1395. [Google Scholar] [CrossRef]
- Jungmann, R.; Avendaño, M.S.; Dai, M.; Woehrstein, J.B.; Agasti, S.S.; Feiger, Z.; Rodal, A.; Yin, P. Quantitative super-resolution imaging with qPAINT. Nat. Methods 2016, 13, 439–442. [Google Scholar] [CrossRef]
- McGregor, L.M.; Gorin, D.J.; Dumelin, C.E.; Liu, D.R. Interaction-Dependent PCR: Identification of Ligand−Target Pairs from Libraries of Ligands and Libraries of Targets in a Single Solution-Phase Experiment. J. Am. Chem. Soc. 2010, 132, 15522–15524. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhang, H.; Wang, Z.; Peng, H.; Tao, J.; Li, X.-F.; Le, X.C. Quantitative synthesis of protein–DNA conjugates with 1:1 stoichiometry. Chem. Commun. 2018, 54, 7491–7494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Watkins, C.P.; Hili, R. Sequence-Defined Scaffolding of Peptides on Nucleic Acid Polymers. J. Am. Chem. Soc. 2015, 137, 11191–11196. [Google Scholar] [CrossRef] [PubMed]
- Hayes, O.G.; Partridge, B.E.; Mirkin, C.A. Encoding hierarchical assembly pathways of proteins with DNA. Proc. Natl. Acad. Sci. USA 2021, 118, e2106808118. [Google Scholar] [CrossRef]
- Huang, X.; Williams, J.Z.; Chang, R.; Li, Z.; Burnett, C.E.; Hernandez-Lopez, R.; Setiady, I.; Gai, E.; Patterson, D.M.; Yu, W.; et al. DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nat. Nanotechnol. 2021, 16, 214–223. [Google Scholar] [CrossRef]
- Pan, L.; Cao, C.; Run, C.; Zhou, L.; Chou, J.J. DNA-Mediated Assembly of Multispecific Antibodies for T Cell Engaging and Tumor Killing. Adv. Sci. 2020, 7, 1900973. [Google Scholar] [CrossRef]
- Cui, C.; Zhang, H.; Wang, R.; Cansiz, S.; Pan, X.; Wan, S.; Hou, W.; Li, L.; Chen, M.; Liu, Y.; et al. Recognition-then-Reaction Enables Site-Selective Bioconjugation to Proteins on Live-Cell Surfaces. Angew. Chem. Int. Ed. 2017, 56, 11954–11957. [Google Scholar] [CrossRef]
- Oltra, N.S.; Bos, J.; Roelfes, G. Control over Enzymatic Activity by DNA-Directed Split Enzyme Reassembly. ChemBioChem 2010, 11, 2255–2258. [Google Scholar] [CrossRef] [Green Version]
- Engelen, W.; van de Wiel, K.M.; Meijer, L.H.H.; Saha, B.; Merkx, M. Nucleic acid detection using BRET-beacons based on bioluminescent protein–DNA hybrids. Chem. Commun. 2017, 53, 2862–2865. [Google Scholar] [CrossRef] [Green Version]
- Meijer, L.H.H.; Joesaar, A.; Steur, E.E.; Engelen, W.W.; Van Santen, R.A.; Merkx, M.M.; De Greef, T.F.A. Hierarchical control of enzymatic actuators using DNA-based switchable memories. Nat. Commun. 2017, 8, 1117. [Google Scholar] [CrossRef]
- Kazane, S.A.; Sok, D.; Cho, E.H.; Uson, M.L.; Kuhn, P.; Schultz, P.G.; Smider, V.V. Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR. Proc. Natl. Acad. Sci. USA 2012, 109, 3731–3736. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, T.; Märcher, A.; Drobňáková, Z.; Hučko, M.; Štengl, M.; Balšánek, V.; Wiberg, C.; Nielsen, P.F.; Nielsen, T.E.; Gothelf, K.V.; et al. Disulphide-mediated site-directed modification of proteins. Org. Biomol. Chem. 2020, 18, 4717–4722. [Google Scholar] [CrossRef]
- Gianneschi, N.C.; Ghadiri, M.R. Design of Molecular Logic Devices Based on a Programmable DNA-Regulated Semisynthetic Enzyme. Angew. Chem. Int. Ed. 2007, 46, 3955–3958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Fu, J.; Dhakal, S.; Johnson-Buck, A.; Liu, M.; Zhang, T.; Woodbury, N.W.; Liu, Y.; Walter, N.G.; Yan, H. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat. Commun. 2016, 7, 10619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovrinovic, M.; Seidel, R.; Wacker, R.; Schroeder, H.; Seitz, O.; Engelhard, M.; Goody, R.S.; Niemeyer, C.M. Synthesis of protein–nucleic acid conjugates by expressed protein ligation. Chem. Commun. 2003, 822–823. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Schultz, P.G. Adding New Chemistries to the Genetic Code. Annu. Rev. Biochem. 2010, 79, 413–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duckworth, B.P.; Chen, Y.; Wollack, J.W.; Sham, Y.; Mueller, J.D.; Taton, T.A.; Distefano, M.D. A Universal Method for the Preparation of Covalent Protein–DNA Conjugates for Use in Creating Protein Nanostructures. Angew. Chem. Int. Ed. 2007, 46, 8819–8822. [Google Scholar] [CrossRef] [PubMed]
- Pellejero, L.B.; Nijenhuis, M.A.D.; Ricci, F.; Gothelf, K.V. Protein-Templated Reactions Using DNA-Antibody Conjugates. Small 2022, 2200971. [Google Scholar] [CrossRef]
- Lou, C.; Boesen, J.T.; Christensen, N.J.; Sørensen, K.K.; Thulstrup, P.W.; Pedersen, M.N.; Giralt, E.; Jensen, K.J.; Wengel, J. Self-Assembly of DNA–Peptide Supermolecules: Coiled-Coil Peptide Structures Templated byd-DNA andl-DNA Triplexes Exhibit Chirality-Independent but Orientation-Dependent Stabilizing Cooperativity. Chem. Eur. J. 2020, 26, 5676–5684. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.I.; McFarland, J.M.; Rabuka, D.; Gartner, Z.J. A Modular Approach for Assembling Aldehyde-Tagged Proteins on DNA Scaffolds. J. Am. Chem. Soc. 2014, 136, 10850–10853. [Google Scholar] [CrossRef]
- Hess, G.T.; Guimaraes, C.P.; Spooner, E.; Ploegh, H.L.; Belcher, A.M. Orthogonal Labeling of M13 Minor Capsid Proteins with DNA to Self-Assemble End-to-End Multiphage Structures. ACS Synth. Biol. 2013, 2, 490–496. [Google Scholar] [CrossRef]
- Myrhammar, A.; Vorobyeva, A.; Westerlund, K.; Yoneoka, S.; Orlova, A.; Tsukahara, T.; Tolmachev, V.; Karlström, A.E.; Altai, M. Evaluation of an antibody-PNA conjugate as a clearing agent for antibody-based PNA-mediated radionuclide pretargeting. Sci. Rep. 2020, 10, 20777. [Google Scholar] [CrossRef] [PubMed]
- Stiller, C.; Aghelpasand, H.; Frick, T.; Westerlund, K.; Ahmadian, A.; Karlström, A.E. Fast and Efficient Fc-Specific Photoaffinity Labeling to Produce Antibody–DNA Conjugates. Bioconjug. Chem. 2019, 30, 2790–2798. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Kotikam, V.; Rozners, E.; Callahan, B.P. Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid. ChemBioChem 2022, 23, e202100594. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z.; Moumin, D.S.; Ciulla, D.A.; Owen, T.S.; Mancusi, R.A.; Giner, J.-L.; Wang, C.; Callahan, B.P. Protein–Nucleic Acid Conjugation with Sterol Linkers Using Hedgehog Autoprocessing. Bioconjug. Chem. 2019, 30, 2799–2804. [Google Scholar] [CrossRef]
- Saccà, B.; Meyer, D.-C.R.; Erkelenz, D.-B.M.; Kiko, M.S.K.; Arndt, A.; Schroeder, H.; Rabe, K.S.; Niemeyer, C.M. Orthogonal Protein Decoration of DNA Origami. Angew. Chem. Int. Ed. 2010, 49, 9378–9383. [Google Scholar] [CrossRef]
- Chang, D.; Kim, K.T.; Lindberg, E.; Winssinger, N. Smartphone DNA or RNA Sensing Using Semisynthetic Luciferase-Based Logic Device. ACS Sens. 2020, 5, 807–813. [Google Scholar] [CrossRef] [PubMed]
- McGregor, L.M.; Jain, T.; Liu, D.R. Identification of Ligand–Target Pairs from Combined Libraries of Small Molecules and Unpurified Protein Targets in Cell Lysates. J. Am. Chem. Soc. 2014, 136, 3264–3270. [Google Scholar] [CrossRef] [PubMed]
- Rosier, B.J.H.M.; Cremers, G.A.O.; Engelen, W.; Merkx, M.; Brunsveld, L.; de Greef, T.F.A. Incorporation of native antibodies and Fc-fusion proteins on DNA nanostructures via a modular conjugation strategy. Chem. Commun. 2017, 53, 7393–7396. [Google Scholar] [CrossRef] [Green Version]
- Rosen, C.B.; Kodal, A.L.B.; Nielsen, J.S.; Schaffert, D.H.; Scavenius, C.; Okholm, A.H.; Voigt, N.V.; Enghild, J.J.; Kjems, J.; Tørring, T.; et al. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins. Nat. Chem. 2014, 6, 804–809. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Liu, Y.; Chen, L.; Wu, S.; Liu, Y.; Li, X. Photoaffinity Labeling of Small-Molecule-Binding Proteins by DNA-Templated Chemistry. Angew. Chem. Int. Ed. 2013, 52, 9544–9549. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-Y.; Cao, Y.; Zheng, L.-Y.; Chen, L.-D.; Chen, X.-F.; Hong, Z.-Y.; Zhu, Z.-Y.; Li, X.; Chai, Y.-F. Target Identification of Kinase Inhibitor Alisertib (MLN8237) by Using DNA-Programmed Affinity Labeling. Chem. Eur. J. 2017, 23, 10906–10914. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Deng, Y.; Zhang, J.; Meng, L.; Li, X. Direct ligand screening against membrane proteins on live cells enabled by DNA-programmed affinity labelling. Chem. Commun. 2021, 57, 3769–3772. [Google Scholar] [CrossRef] [PubMed]
- Märcher, A.; Palmfeldt, J.; Nisavic, M.; Gothelf, K.V. A Reagent for Amine-Directed Conjugation to IgG1 Antibodies. Angew. Chem. Int. Ed. 2020, 60, 6539–6544. [Google Scholar] [CrossRef]
- Hui, J.Z.; Tamsen, S.; Song, Y.; Tsourkas, A. LASIC: Light Activated Site-Specific Conjugation of Native IgGs. Bioconjug. Chem. 2015, 26, 1456–1460. [Google Scholar] [CrossRef] [Green Version]
- Yano, Y.; Yano, A.; Oishi, S.; Sugimoto, Y.; Tsujimoto, G.; Fujii, N.; Matsuzaki, K. Coiled-Coil Tag−Probe System for Quick Labeling of Membrane Receptors in Living Cells. ACS Chem. Biol. 2008, 3, 341–345. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watson, E.E.; Winssinger, N. Synthesis of Protein-Oligonucleotide Conjugates. Biomolecules 2022, 12, 1523. https://doi.org/10.3390/biom12101523
Watson EE, Winssinger N. Synthesis of Protein-Oligonucleotide Conjugates. Biomolecules. 2022; 12(10):1523. https://doi.org/10.3390/biom12101523
Chicago/Turabian StyleWatson, Emma E., and Nicolas Winssinger. 2022. "Synthesis of Protein-Oligonucleotide Conjugates" Biomolecules 12, no. 10: 1523. https://doi.org/10.3390/biom12101523
APA StyleWatson, E. E., & Winssinger, N. (2022). Synthesis of Protein-Oligonucleotide Conjugates. Biomolecules, 12(10), 1523. https://doi.org/10.3390/biom12101523