Discovery of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 2-(5-(4′-Chloro-[1,1′-biphenyl]-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine (LK00764) for the Treatment of Psychotic Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. General Procedure 1—Synthesis of Compounds 6–57
2.2.1. 2-(5-(4-Methoxyphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (6)
2.2.2. 2-(5-(3-Methoxyphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (7)
2.2.3. 2-(5-(3-[Trifluoromethyl]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (8)
2.2.4. 2-(5-(4-[Trifluoromethoxy]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (9)
2.2.5. 2-(5-(Pyridin-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (10)
2.2.6. 2-(5-(3,4-Dimethoxyphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (11)
2.2.7. 2-(5-(4-Bromo-3-methylphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (12)
2.2.8. 2-(5-(Diphenylmethyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (13)
2.2.9. 2-(5-(4-Nitrophenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (14)
2.2.10. 2-(5-(4-[Trifluoromethyl]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (15)
2.2.11. 2-(5-(Thiophen-2-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (16)
2.2.12. 2-(5-(Phenoxymethyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (17)
2.2.13. 2-(5-(3-[Trifluoromethyl]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (18)
2.2.14. 2-(5-(4-(Benzyloxy)phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (19)
2.2.15. 2-(5-(3-Bromophenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (20)
2.2.16. 2-(5-(3,5-Dichlorophenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (21)
2.2.17. 2-(5-Phenyl-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (22)
2.2.18. 2-(5-(2-Methylphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (24)
2.2.19. 3-(5-(2-Aminoethyl)-4H-1,2,4-triazol-3-yl)-N,N-dimethylaniline Hydrochloride (8)
2.2.20. 2-(5-(4-Ethoxyphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (26)
2.2.21. 2-(5-(4-Ethylphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (27)
2.2.22. 2-(5-(2-Nitrophenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (27)
2.2.23. 2-(5-(4-Chlorophenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (28)
2.2.24. 2-(5-(2-Bromophenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (29)
2.2.25. 4-(5-(2-Aminoethyl)-4H-1,2,4-triazol-3-yl)-N,N-dimethylaniline (30)
2.2.26. 2-(5-(3,5-Dimethylphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (31)
2.2.27. 2-(5-(3,4,5-Triethoxyphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (32)
2.2.28. 2-(5-(3,5-Dimethoxyphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (33)
2.2.29. 2-(5-(4-Fluorophenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (34)
2.2.30. 2-(5-(Quinolin-6-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (35)
2.2.31. 2-(5-(3-Nitrophenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (36)
2.2.32. 2-(5-(3,4-Dimethylphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (37)
2.2.33. 2-(5-(Pyrazin-2-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (38)
2.2.34. 2-(5-(2-[Trifluoromethoxy]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (39)
2.2.35. 2-(5-(4-Butoxyphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (40)
2.2.36. 2-(5-(3-Iodophenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (41)
2.2.37. 2-(5-(4-Iodo-3-methylphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (42)
2.2.38. 2-(5-(4-[(2-Fluorobenzyl)oxy]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (43)
2.2.39. 2-(5-(4-[(3-Fluorobenzyl)oxy]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (44)
2.2.40. 2-(5-(4-[(4-Fluorobenzyl)oxy]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (45)
2.2.41. 2-(5-(4-[(2-Fluorobenzyl)oxy]-3-methylphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (46)
2.2.42. 2-(5-(4-[(3-Fluorobenzyl)oxy]-3-methylphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (47)
2.2.43. 2-(5-(4-[(4-Fluorobenzyl)oxy]-3-methylphenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (48)
2.2.44. 2-(5-(3-Methyl-4-[([4-(trifluoromethyl)benzyl]oxy)phenyl]-4H-1,2,4-triazol-3-yl)) Hydrochloride (49)
2.2.45. 2-(5-(2-[3,4-Difluorophenoxy]phenyl)-4H-1,2,4-triazol-3-yl) Hydrochloride (50)
2.2.46. 2-(5-(4-[3,4-Dimethylphenoxy]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (51)
2.2.47. 2-(5-(3-[2,4-Dimethylphenoxy]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride Hydrochloride (52)
2.2.48. 2-(5-(3-[2-Chlorophenoxy]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (53)
2.2.49. 2-(5-(4-[4-Methylphenoxy]phenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (54)
2.2.50. 3-(5-(2-Aminoethyl)-4H-1,2,4-triazol-3-yl)phenol Hydrochloride (55)
2.2.51. 2-(5-(4-[(2-Fluorobenzyl)oxy]-3-iodophenyl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (56)
2.2.52. 4-(5-(2-Aminoethyl)-4H-1,2,4-triazol-3-yl)-2-methylphenol Hydrochloride (57)
2.3. General Procedure 2—Synthesis of Compounds 58–67
2.3.1. 2-(5-(4′-Methoxy-(1,1′-biphenyl)-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (58)
2.3.2. 2-(5-(4′-Trifluoromethoxy-(1,1′-biphenyl)-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (59)
2.3.3. 2-(5-(3′-Fluoro-(1,1′-biphenyl)-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (60)
2.3.4. 2-(5-(2′,4′-Difluoro-(1,1′-biphenyl)-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (61)
2.3.5. 2-(5-(4′-Chloro-(1,1′-biphenyl)-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (62, LK00764)
2.3.6. 2-(5-(3′-Trifluoromethyl-(1,1′-biphenyl)-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (63)
2.3.7. 2-(5-(3′,4′-Dimethoxy-(1,1′-biphenyl)-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (64)
2.3.8. 2-(5-(3′,5′-Difluoro-(1,1′-biphenyl)-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (65)
2.3.9. 2-(5-(4′-(2′,4′-Difluoro-(1,1′-biphenyl)-3-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (66)
2.3.10. 2-(5-(4′-(Trifluoromethoxy)-(1,1′-biphenyl)-3-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine Hydrochloride (67)
2.4. In Silico Modeling
2.5. BRET Analysis
2.6. In Vivo Efficacy Evaluation
2.6.1. Subjects
2.6.2. Compounds
2.6.3. Evaluation of Rat Locomotor Activity Following Drug i.p. Administration
2.6.4. Stress-Induced Hyperthermia (SIH)Test
2.6.5. Statistical Analysis
3. Results and Discussion
3.1. Chemistry
3.2. TAAR1 Agonistic Activity
3.3. In Silico Modeling
3.4. In Vivo Pharmacological Characterization
3.4.1. Effect on MK-801-Induced Hyperactivity and Spontaneous Activity in Rats
3.4.2. Effects on Spontaneous Locomotor Hyperactivity of Dopamine Transporter Knockout (DAT-KO) Rats
3.4.3. Effects on Stress-Induced Hyperthermia in Rats
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahn, R.S.; Sommer, I.E.; Murray, R.M.; Meyer-Lindenberg, A.; Weinberger, D.R.; Cannon, T.D.; O’Donovan, M.; Correll, C.U.; Kane, J.M.; van Os, J.; et al. Schizophrenia. Nat. Rev. Dis. Prim. 2015, 1, 15067. [Google Scholar] [CrossRef]
- Huhn, M.; Nikolakopoulou, A.; Schneider-Thoma, J.; Krause, M.; Samara, M.; Peter, N.; Arndt, T.; Bäckers, L.; Rothe, P.; Cipriani, A.; et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: A systematic review and network meta-analysis. Lancet 2019, 394, 939–951. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, J.A.; Stroup, T.S.; McEvoy, J.P.; Swartz, M.S.; Rosenheck, R.A.; Perkins, D.O.; Keefe, R.S.; Davis, S.M.; Davis, C.E.; Lebowitz, B.D.; et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med. 2005, 353, 1209–1223. [Google Scholar] [CrossRef] [Green Version]
- Borowsky, B.; Adham, N.; Jones, K.A.; Raddatz, R.; Artymyshyn, R.; Ogozalek, K.L.; Durkin, M.M.; Lakhlani, P.P.; Bonini, J.A.; Pathirana, S.; et al. Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 2001, 98, 8966–8971. [Google Scholar] [CrossRef] [Green Version]
- Bunzow, J.R.; Sonders, M.S.; Arttamangkul, S.; Harrison, L.M.; Zhang, G.; Quigley, D.I.; Darland, T.; Suchland, K.L.; Pasumamula, S.; Kennedy, J.L.; et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 2001, 60, 1181–1188. [Google Scholar] [CrossRef] [Green Version]
- Gainetdinov, R.R.; Hoener, M.C.; Berry, M.D. Trace Amines and Their Receptors. Pharmacol. Rev. 2018, 70, 549–620. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.D.; Gainetdinov, R.R.; Hoener, M.C.; Shahid, M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol. Ther. 2017, 180, 161–180. [Google Scholar] [CrossRef]
- Dedic, N.; Dworak, H.; Zeni, C.; Rutigliano, G.; Howes, O.D. Therapeutic potential of TAAR1 agonists in schizophrenia: Evidence from preclinical models and clinical studies. Int. J. Mol. Sci. 2021, 22, 13185. [Google Scholar] [CrossRef]
- Heffernan, M.L.R.; Herman, L.W.; Brown, S.; Jones, P.G.; Shao, L.; Hewitt, M.C.; Campbell, J.E.; Dedic, N.; Hopkins, S.C.; Koblan, K.S.; et al. Ulotaront: A TAAR1 Agonist for the Treatment of Schizophrenia. ACS Med. Chem. Lett. 2021, 13, 92–98. [Google Scholar] [CrossRef]
- Revel, F.G.; Moreau, J.L.; Gainetdinov, R.R.; Ferragud, A.; Velázquez-Sánchez, C.; Sotnikova, T.D.; Morairty, S.R.; Harmeier, A.; Groebke Zbinden, K.; Norcross, R.D.; et al. Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol. Psychiatry 2012, 72, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Revel, F.G.; Moreau, J.-L.; Pouzet, B.; Mory, R.; Bradaia, A.; Buchy, D.; Metzler, V.; Chaboz, S.; Groebke Zbinden, K.; Galley, G.; et al. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol. Psychiatry 2013, 18, 543–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wu, R.; Li, J.X. TAAR1 and Psychostimulant Addiction. Cell. Mol. Neurobiol. 2020, 40, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Sukhanov, I.; Dorotenko, A.; Dolgorukova, A.; Hoener, M.C.; Gainetdinov, R.R.; Bespalov, A.Y. Activation of trace amine-associated receptor 1 attenuates schedule-induced polydipsia in rats. Neuropharmacology 2019, 144, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Galley, G.; Stalder, H.; Goergler, A.; Hoener, M.C.; Norcross, R.D. Optimisation of imidazole compounds as selective TAAR1 agonists: Discovery of RO5073012. Bioorg. Med. Chem. Lett. 2012, 22, 5244–5248. [Google Scholar] [CrossRef]
- Galley, G.; Beurier, A.; Décoret, G.; Goergler, A.; Hutter, R.; Mohr, S.; Pähler, A.; Schmid, P.; Türck, D.; Unger, R.; et al. Discovery and Characterization of 2-Aminooxazolines as Highly Potent, Selective, and Orally Active TAAR1 Agonists. ACS Med. Chem. Lett. 2015, 7, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Guariento, S.; Tonelli, M.; Espinoza, S.; Gerasimov, A.S.; Gainetdinov, R.R.; Cichero, E. Rational design, chemical synthesis and biological evaluation of novel biguanides exploring species-specificity responsiveness of TAAR1 agonists. Eur. J. Med. Chem. 2018, 146, 171–184. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- The UniProt Consrtium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russel, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef]
- Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 2010, 24, 591–604. [Google Scholar] [CrossRef]
- Repasky, M.P.; Shelley, M.; Friesner, R.A. Flexible ligand docking with Glide. Curr. Protoc. Bioinform. 2007, 18, 8–12. [Google Scholar] [CrossRef]
- Tonelli, M.; Espinoza, S.; Gainetdinov, R.R.; Cichero, E. Novel biguanide-based derivatives scouted as TAAR1 agonists: Synthesis, biological evaluation, ADME prediction and molecular docking studies. Eur. J. Med. Chem. 2017, 127, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, S.; Salahpour, A.; Masri, B.; Sotnikova, T.D.; Messa, M.; Barak, L.S.; Caron, M.G.; Gainetdinov, R.R. Functional interaction between Trace Amine Associated Receptor 1 (TAAR1) and dopamine D2 receptor. Mol. Pharmacol. 2011, 80, 416–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukhanov, I.M.; Zakharova, E.S.; Danysz, W.; Bespalov, A.Y. Effects of NMDA receptor channel blockers, MK-801 and memantine, on locomotor activity and tolerance to delay of reward in Wistar-Kyoto and spontaneously hypertensive rats. Behav. Pharmacol. 2004, 15, 263–271. [Google Scholar] [CrossRef]
- Sukhanov, I.; Dorofeikova, M.; Dolgorukova, A.; Dorotenko, A.; Gainetdinov, R.R. Trace amine-associated receptor 1 modulates the locomotor and sensitization effects of nicotine. Front. Pharmacol. 2018, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Olivier, B.; Zethof, T.; Pattij, T.; van Boogaert, M.; van Oorschot, R.; Leahy, C.; Oosting, R.; Bouwknecht, A.; Veening, J.; van der Gugten, J.; et al. Stress-induced hyperthermia and anxiety: Pharmacological validation. Eur. J. Pharmacol. 2003, 463, 117–132. [Google Scholar] [CrossRef]
- Barker, P.L.; Gendler, P.L.; Rapoport, H. Acylation of Dibasic Compounds Containing Amino Amidine and Aminoguanidine Functions. J. Org. Chem. 1981, 46, 2455–2465. [Google Scholar] [CrossRef]
- Riggs, J.R.; Nagy, M.; Elsner, J.; Erdman, P.; Cashion, D.; Robinson, D.; Harris, R.; Huang, D.; Tehrani, L.; Deyanat-Yazdi, G.; et al. The Discovery of a Dual TTK Protein Kinase/CDC2-Like Kinase (CLK2) Inhibitor for the Treatment of Triple Negative Breast Cancer Initiated from a Phenotypic Screen. J. Med. Chem. 2017, 60, 8989–9002. [Google Scholar] [CrossRef]
- Barak, L.S.; Salahpour, A.; Zhang, X.; Masri, B.; Sotnikova, T.D.; Ramsey, A.J.; Violin, J.D.; Lefkowitz, R.J.; Caron, M.G.; Gainetdinov, R.R. Pharmacological Characterization of Membrane-Expressed Human Trace Amine-Associated Receptor 1 (TAAR1) by a Bioluminescence Resonance Energy Transfer cAMP Biosensor. Mol. Pharmacol. 2008, 74, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Francesconi, V.; Cichero, E.; Kanov, E.V.; Laurini, E.; Pricl, S.; Gainetdinov, R.R.; Tonelli, M. Novel 1-Amidino-4-Phenylpiperazines as Potent Agonists at Human TAAR1 Receptor: Rational Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Pharmaceuticals 2020, 13, 391. [Google Scholar] [CrossRef]
- Dedic, N.; Jones, P.G.; Hopkins, S.C.; Lew, R.; Shao, L.; Campbell, J.E.; Spear, K.L.; Large, T.H.; Campbell, U.C.; Hanania, T.; et al. SEP-363856, a Novel Psychotropic Agent with a Unique, Non-D2 Receptor Mechanism of Action. J. Pharmacol. Exp. Ther. 2019, 371, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pándy-Szekeres, G.; Esguerra, M.; Hauser, A.S.; Caroli, J.; Munk, C.; Pilger, S.; Keserű, G.M.; Kooistra, A.J.; Gloriam, D.E. The G protein database, GproteinDb. Nucleic Acids Res. 2022, 50, D518–D525. [Google Scholar] [CrossRef]
- Cichero, E.; Espinoza, S.; Gainetdinov, R.R.; Brasili, L.; Fossa, P. Insights into the Structure and Pharmacology of the Human Trace Amine-Associated Receptor 1 (hTAAR1): Homology Modelling and Docking Studies. Chem. Biol. Drug Des. 2013, 81, 509–516. [Google Scholar] [CrossRef]
- Rasmussen, S.G.F.; DeVree, B.T.; Zou, Y.; Kruse, A.C.; Chung, K.Y.; Kobilka, T.S.; Thian, F.S.; Chae, P.C.; Pardon, E.; Calinski, D.; et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 2011, 477, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cichero, E.; Espinoza, S.; Franchini, S.; Guariento, S.; Brasili, L.; Gainetdinov, R.R.; Fossa, P. Further insights into the pharmacology of the human trace amine-associated receptors: Discovery of novel ligands for TAAR1 by a virtual screening approach. Chem. Biol. Drug Des. 2014, 84, 712–720. [Google Scholar] [CrossRef]
- Fusano, L.; Palmer, D.S.; Somers, D.O.; Wall, I.D. Exploring Ligand Stability in Protein Crystal Structures Using Binding Pose Metadynamics. J. Chem. Inf. Model. 2020, 60, 1528–1539. [Google Scholar] [CrossRef] [PubMed]
- Barducci, A.; Bonomi, M.; Parrinello, M. Metadunamics. WIREs Comput. Mol. Sci. 2011, 1, 826–843. [Google Scholar] [CrossRef]
- Revel, F.G.; Moreau, J.-L.; Gainetdinov, R.R.; Bradaia, A.; Sotnikova, T.D.; Mory, R.; Durkin, S.; Groebke Zbinden, K.; Norcross, R.; Meyer, C.A.; et al. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc. Natl. Acad. Sci. USA 2011, 108, 8485–8490. [Google Scholar] [CrossRef] [Green Version]
- Leo, D.; Sukhanov, I.; Zoratto, F.; Illiano, P.; Caffino, S.F.; Messa, G.; Emanuele, M.; Esposito, A.; Dorofeikova, M.; Budygin, E.A.; et al. Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. J. Neurosci. 2018, 38, 1959–1972. [Google Scholar] [CrossRef] [Green Version]
- Efimova, E.V.; Gainetdinov, R.R.; Budygin, E.A.; Sotnikova, T.D. Dopamine transporter mutant animals: A translational perspective. J. Neurogenet. 2016, 30, 5–15. [Google Scholar] [CrossRef] [PubMed]
Compound | R | Emax b | EC50 (nM) |
---|---|---|---|
6 | 56 | >1000 | |
7 | 132 | 910 | |
8 | 108 | 210 | |
9 | 116 | 310 | |
10 | 47 | >1000 | |
11 | inactive | ||
12 | 87 | 812 | |
13 | inactive | ||
14 | inactive | ||
15 | inactive | ||
16 | 138 | >1000 | |
17 | inactive | ||
18 | inactive | ||
19 | 113 | 26 | |
20 | 124 | 218 | |
21 | 112 | 23 | |
22 | 118 | 283 | |
23 | 116 | 468 | |
24 | inactive | ||
25 | 139 | 550 | |
26 | 71 | >1000 | |
27 | 69 | >1000 | |
28 | 107 | 522 | |
29 | 111 | 696 | |
30 | 122 | 730 | |
31 | 117 | 813 | |
32 | inactive | ||
33 | 55 | >1000 | |
34 | 169 | >1000 | |
35 | 41 | >1000 | |
36 | 110 | 440 | |
37 | 70 | >1000 | |
38 | inactive | ||
39 | inactive | ||
40 | 107 | 34 | |
41 | 80 | 890 | |
42 | 76 | >1000 | |
43 | 114 | 45 | |
44 | 112 | 30 | |
45 | 114 | 22 | |
46 | 82 | 398 | |
47 | 106 | 142 | |
48 | 98 | 163 | |
49 | inactive | ||
50 | inactive | ||
51 | 77 | 900 | |
52 | 79 | >1000 | |
53 | 71 | 847 | |
54 | 94 | 150 | |
55 | 88 | >1000 | |
56 | 87 | 316 | |
57 | 90 | >1000 |
Compound | R | Emax b | EC50 (nM) |
---|---|---|---|
58 | 97 | 6 | |
59 | 95 | 13 | |
60 | 95 | 26 | |
61 | 93 | 18 | |
62 (LK00764) | 101 | 4 | |
63 | 76 | 250 | |
64 | 104 | 185 | |
65 | 105 | 13 | |
66 | 91 | 300 | |
67 | 94 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasavin, M.; Lukin, A.; Sukhanov, I.; Gerasimov, A.S.; Kuvarzin, S.; Efimova, E.V.; Dorofeikova, M.; Nichugovskaya, A.; Matveev, A.; Onokhin, K.; et al. Discovery of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 2-(5-(4′-Chloro-[1,1′-biphenyl]-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine (LK00764) for the Treatment of Psychotic Disorders. Biomolecules 2022, 12, 1650. https://doi.org/10.3390/biom12111650
Krasavin M, Lukin A, Sukhanov I, Gerasimov AS, Kuvarzin S, Efimova EV, Dorofeikova M, Nichugovskaya A, Matveev A, Onokhin K, et al. Discovery of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 2-(5-(4′-Chloro-[1,1′-biphenyl]-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine (LK00764) for the Treatment of Psychotic Disorders. Biomolecules. 2022; 12(11):1650. https://doi.org/10.3390/biom12111650
Chicago/Turabian StyleKrasavin, Mikhail, Alexey Lukin, Ilya Sukhanov, Andrey S. Gerasimov, Savelii Kuvarzin, Evgeniya V. Efimova, Mariia Dorofeikova, Anna Nichugovskaya, Andrey Matveev, Kirill Onokhin, and et al. 2022. "Discovery of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 2-(5-(4′-Chloro-[1,1′-biphenyl]-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine (LK00764) for the Treatment of Psychotic Disorders" Biomolecules 12, no. 11: 1650. https://doi.org/10.3390/biom12111650
APA StyleKrasavin, M., Lukin, A., Sukhanov, I., Gerasimov, A. S., Kuvarzin, S., Efimova, E. V., Dorofeikova, M., Nichugovskaya, A., Matveev, A., Onokhin, K., Zakharov, K., Gureev, M., & Gainetdinov, R. R. (2022). Discovery of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 2-(5-(4′-Chloro-[1,1′-biphenyl]-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine (LK00764) for the Treatment of Psychotic Disorders. Biomolecules, 12(11), 1650. https://doi.org/10.3390/biom12111650