The Role of Epigenetic Modifications in Abdominal Aortic Aneurysm Pathogenesis
Abstract
:1. Introduction
2. Epigenetic Modifications
3. Epigenetic Modifications in Inflammatory Cells in AAAs
4. Epigenetic Modifications in Endothelial Cells in AAAs
4.1. Regulation of Endothelial Differentiation in AAAs by Chromatin Remodeling Enzymes
4.2. Non-Coding RNAs That Regulate Endothelial Cell Function
5. Epigenetic Modifications in Smooth Muscle Cells and Fibroblasts in AAAs
5.1. Regulating Smooth Muscle Cell Differentiation
5.2. miRNAs Regulating SMC Matrix Components
5.3. miRNAs Regulating SMC Apoptosis and Proliferation
5.4. Long, Non-Coding RNAs Regulating SMC Function and Phenotypic Modulation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chaikof, E.L.; Brewster, D.C.; Dalman, R.L.; Makaroun, M.S.; Illig, K.A.; Sicard, G.A.; Timaran, C.H.; Upchurch, G.R.; Veith, F.J. SVS practice guidelines for the care of patients with an abdominal aortic aneurysm: Executive summary. J. Vasc. Surg. 2009, 50, 880–896. [Google Scholar] [CrossRef] [Green Version]
- Lederle, F.A. Ultrasonographic screening for abdominal aortic aneurysms. Ann. Intern. Med. 2003, 139, 516–522. Available online: http://www.ncbi.nlm.nih.gov/pubmed/13679330 (accessed on 24 December 2018). [CrossRef] [Green Version]
- Moll, F.L.; Powell, J.T.; Fraedrich, G.; Verzini, F.; Haulon, S.; Waltham, M.; van Herwaarden, J.A.; Holt, P.J.E.; van Keulen, J.W.; Rantner, B.; et al. European Society for Vascular Surgery. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur. J. Vasc. Endovasc. Surg. 2011, 41 (Suppl. 1), S1–S58. [Google Scholar] [CrossRef] [Green Version]
- Sampson, U.K.A.; Norman, P.E.; Fowkes, F.G.R.; Aboyans, V.; Song, Y.; Harrell, F.E.; Forouzanfar, M.H.; Naghavi, M.; Denenberg, J.O.; McDermott, M.M.; et al. Global and regional burden of aortic dissection and aneurysms: Mortality trends in 21 world regions, 1990 to 2010. Glob. Heart 2014, 9, 171–180.e10. [Google Scholar] [CrossRef] [PubMed]
- Golledge, J. Abdominal aortic aneurysm: Update on pathogenesis and medical treatments. Nat. Rev. Cardiol. 2019, 16, 225–242. [Google Scholar] [CrossRef]
- Davis, F.M.; Daugherty, A.; Lu, H.S. Updates of recent aortic aneurysm research. Arterioscler. Thromb. Vasc. Biol. 2019, 39, e83–e90. [Google Scholar] [CrossRef]
- Singh, T.P.; Field, M.A.; Bown, M.J.; Jones, G.T.; Golledge, J. Systematic review of genome-wide association studies of abdominal aortic aneurysm. Atherosclerosis 2021, 327, 39–48. [Google Scholar] [CrossRef]
- Darling, R.C.; Brewster, D.C.; Darling, R.C.; LaMuraglia, G.M.; Moncure, A.C.; Cambria, R.P.; Abbott, W.M. Are familial abdominal aortic aneurysms different? J. Vasc. Surg. 1989, 10, 0039–0043. [Google Scholar] [CrossRef] [Green Version]
- Wahlgren, C.M.; Larsson, E.; Magnusson, P.K.E.; Hultgren, R.; Swedenborg, J. Genetic and environmental contributions to abdominal aortic aneurysm development in a twin population. J. Vasc. Surg. 2010, 51, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joergensen, T.M.M.; Christensen, K.; Lindholt, J.S.; Larsen, L.A.; Green, A.; Houlind, K. Editor’s Choice-High Heritability of Liability to Abdominal Aortic Aneurysms: A Population Based Twin Study. Eur. J. Vasc. Endovasc. Surg. 2016, 52, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Klarin, D.; Verma, S.S.; Judy, R.; Dikilitas, O.; Wolford, B.N.; Paranjpe, I.; Levin, M.G.; Pan, C.; Tcheandjieu, C.; Spin, J.M.; et al. Genetic Architecture of Abdominal Aortic Aneurysm in the Million Veteran Program. Circulation 2020, 142, 1633–1646. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.T.; Tromp, G.; Kuivaniemi, H.; Gretarsdottir, S.; Baas, A.F.; Giusti, B.; Strauss, E.; Van’THof, F.N.G.; Webb, T.R.; Erdman, R.; et al. Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci. Circ. Res. 2017, 120, 341–353. [Google Scholar] [CrossRef]
- Mangum, K.D.; Farber, M.A. Genetic and epigenetic regulation of abdominal aortic aneurysms. Clin. Genet. 2020, 97, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Natoli, G. Maintaining cell identity through global control of genomic organization. Immunity 2010, 33, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Holliday, R.; Pugh, J.E. DNA modification mechanisms and gene activity during development. Science 1975, 187, 226–232. Available online: http://www.ncbi.nlm.nih.gov/pubmed/1111098 (accessed on 22 November 2018). [CrossRef]
- Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 2000, 9, 2395–2402. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11005794 (accessed on 22 November 2018). [CrossRef] [Green Version]
- Takai, D.; Jones, P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 2002, 99, 3740–3745. [Google Scholar] [CrossRef] [Green Version]
- Van den Bossche, J.; Neele, A.E.; Hoeksema, M.A.; de Winther, M.P.J. Macrophage polarization: The epigenetic point of view. Curr. Opin. Lipidol. 2014, 25, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Sterner, D.E.; Berger, S.L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 2000, 64, 435–459. Available online: http://www.ncbi.nlm.nih.gov/pubmed/10839822 (accessed on 22 November 2018). [CrossRef] [PubMed] [Green Version]
- Ivashkiv, L.B. Epigenetic regulation of macrophage polarization and function. Trends Immunol. 2013, 34, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Marchese, F.P.; Raimondi, I.; Huarte, M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017, 18, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wu, Z.; Fu, X.; Han, W. lncRNAs: Insights into their function and mechanics in underlying disorders. Mutat. Res. Mutat. Res. 2014, 762, 1–21. [Google Scholar] [CrossRef]
- Angrand, P.-O.; Vennin, C.; Le Bourhis, X.; Adriaenssens, E. The role of long non-coding RNAs in genome formatting and expression. Front Genet. 2015, 6, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, T.M. Illuminating the silence: Understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Biol. 2007, 8, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Jeon, K.; Lee, J.T.; Kim, S.; Kim, V.N. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 2002, 21, 4663–4670. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Maegdefessel, L. Non-coding RNA contribution to thoracic and abdominal aortic aneurysm disease development and progression. Front. Physiol. 2017, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Friedman, R.C.; Farh, K.K.-H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.M.M.; Rateri, D.L.L.; Daugherty, A. Mechanisms of aortic aneurysm formation: Translating preclinical studies into clinical therapies. Heart 2014, 100, 1498–1505. [Google Scholar] [CrossRef] [PubMed]
- Raffort, J.; Lareyre, F.; Clément, M.; Hassen-Khodja, R.; Chinetti, G.; Mallat, Z. Monocytes and macrophages in abdominal aortic aneurysm. Nat. Rev. Cardiol. 2017, 14, 457–471. [Google Scholar] [CrossRef]
- Toghill, B.J.; Saratzis, A.; Freeman, P.J.; Sylvius, N.; UKAGS collaborators, M.J.; Bown, M.J. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells. Clin. Epigenetics 2018, 10, 29. [Google Scholar] [CrossRef]
- Davis, F.M.; Tsoi, L.C.; Melvin, W.J.; denDekker, A.; Wasikowski, R.; Joshi, A.D.; Wolf, S.; Obi, A.T.; Billi, A.C.; Xing, X.; et al. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. J. Exp. Med. 2021, 218, e20201839. [Google Scholar] [CrossRef] [PubMed]
- Galán, M.; Varona, S.; Orriols, M.; Rodríguez, J.A.; Aguiló, S.; Dilmé, J.; Camacho, M.; Martínez-González, J.; Rodriguez, C. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: Therapeutic potential of HDAC inhibitors. Dis. Model. Mech. 2016, 9, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Maegdefessel, L.; Spin, J.M.; Raaz, U.; Eken, S.M.; Toh, R.; Azuma, J.; Adam, M.; Nagakami, F.; Heymann, H.M.; Chernugobova, E.; et al. MiR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat. Commun. 2014, 5, 5214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakao, T.; Horie, T.; Baba, O.; Nishiga, M.; Nishino, T.; Izuhara, M.; Kuwabara, Y.; Nishi, H.; Usami, S.; Nakazeki, F.; et al. Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2161–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toghill, B.J.; Saratzis, A.; Harrison, S.C.; Verissimo, A.R.; Mallon, E.B.; Bown, M.J. The potential role of DNA methylation in the pathogenesis of abdominal aortic aneurysm. Atherosclerosis 2015, 241, 121–129. [Google Scholar] [CrossRef]
- Xia, Q.; Zhang, J.; Han, Y.; Zhang, X.; Jiang, H.; Lun, Y.; Wu, X.; Gang, Q.; Liu, Z.; Böckler, D.; et al. Epigenetic regulation of regulatory T cells in patients with abdominal aortic aneurysm. FEBS Open Bio 2019, 9, 1137–1143. [Google Scholar] [CrossRef] [Green Version]
- Biros, E.; Moran, C.S.; Wang, Y.; Walker, P.J.; Cardinal, J.; Golledge, J. microRNA profiling in patients with abdominal aortic aneurysms: The significance of miR-155. Clin. Sci. 2014, 126, 795–803. [Google Scholar] [CrossRef]
- Walker, L.S.K.; Sansom, D.M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 2011, 11, 852–863. [Google Scholar] [CrossRef]
- Hang, C.T.; Yang, J.; Han, P.; Cheng, H.L.; Shang, C.; Ashley, E.; Zhou, B.; Chang, C.P. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 2010, 466, 62–67. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Weng, X.; Wu, T.; Yu, L.; Xu, Y.; Guo, J. Brg1 trans-activates endothelium-derived colony stimulating factor to promote calcium chloride induced abdominal aortic aneurysm in mice. J. Mol. Cell Cardiol. 2018, 125, 6–17. [Google Scholar] [CrossRef]
- Li, Z.; Kong, X.; Zhang, Y.; Zhang, Y.; Yu, L.; Guo, J.; Xu, Y. Dual roles of chromatin remodeling protein BRG1 in angiotensin II-induced endothelial–mesenchymal transition. Cell Death Dis. 2020, 11, 549. [Google Scholar] [CrossRef]
- Milewicz, D.M. MicroRNAs, fibrotic remodeling, and aortic aneurysms. J. Clin. Investig. 2012, 122, 490–493. [Google Scholar] [CrossRef]
- Gäbel, G.; Northoff, B.H.; Weinzierl, I.; Ludwig, S.; Hinterseher, I.; Wilfert, W.; Teupser, D.; Doderer, S.A.; Bergert, H.; Schönleben, F.; et al. Molecular fingerprint for terminal abdominal aortic aneurysm disease. J. Am. Heart Assoc. 2017, 6, e006798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecce, L.; Xu, Y.; V’Gangula, B.; Chandel, N.; Pothula, V.; Caudrillier, A.; Santini, M.P.; D’Escamard, V.; Ceholski, D.K.; Gorski, P.A.; et al. Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. J. Clin. Investig. 2021, 131, e131178. [Google Scholar] [CrossRef]
- Shen, G.; Sun, Q.; Yao, Y.; Li, S.; Liu, G.; Yuan, C.; Li, H.; Xu, Y.; Wang, H. Role of ADAM9 and miR-126 in the development of abdominal aortic aneurysm. Atherosclerosis 2020, 297, 47–54. [Google Scholar] [CrossRef]
- Kin, K.; Miyagawa, S.; Fukushima, S.; Shirakawa, Y.; Torikai, K.; Shimamura, K.; Daimon, T.; Kawahara, Y.; Kuratani, T.; Sawa, Y. Tissue-and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J. Am. Heart Assoc. 2012, 1, e000745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, D.; Xiang, Y.; Tang, Y.; Ge, Z.; Li, Q.; Zhang, Y. Circ-ADAM9 targeting PTEN and ATG7 promotes autophagy and apoptosis of diabetic endothelial progenitor cells by sponging mir-20a-5p. Cell Death Dis. 2020, 11, 526. [Google Scholar] [CrossRef]
- Pin, A.L.; Houle, F.; Guillonneau, M.; Paquet, É.R.; Simard, M.J.; Huot, J. MIR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis 2012, 15, 593–608. [Google Scholar] [CrossRef]
- Urbich, C.; Kaluza, D.; Frömel, T.; Knau, A.; Bennewitz, K.; Boon, R.A.; Bonauer, A.; Doebele, C.; Boeckel, J.N.; Hergenreider, E.; et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood 2012, 119, 1607–1618. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zou, X.Z.; Huang, N.; Ge, X.Y.; Yao, M.Z.; Liu, H.; Zhang, Z.; Hu, C.P. miR-27a promotes endothelial-mesenchymal transition in hypoxia-induced pulmonary arterial hypertension by suppressing BMP signaling. Life Sci. 2019, 227, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Li, Y.S.; Wu, C.C.; Wang, K.C.; Huang, T.C.; Chen, Z.; Chien, S. Extracellular MicroRNA-92a Mediates Endothelial Cell-Macrophage Communication. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2492–2504. [Google Scholar] [CrossRef] [PubMed]
- Nicoli, S.; Knyphausen, C.P.; Zhu, L.J.; Lakshmanan, A.; Lawson, N.D. MiR-221 Is Required for Endothelial Tip Cell Behaviors during Vascular Development. Dev. Cell. 2012, 22, 418–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; Chen, M.; Li, F. MiR-222-3p downregulation prompted the migration, invasion and recruitment of endothelial progenitor cells via ADIPOR1 expression increase-induced AMKP activation. Microvasc. Res. 2021, 135, 104134. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, W.; Yao, K.; Wang, Z.; He, H. Interleukin 6 induces expression of NADPH oxidase 2 in human aortic endothelial cells via long noncoding RNA MALAT1. Pharmazie 2016, 71, 592–597. [Google Scholar] [CrossRef]
- Thomas, A.A.; Biswas, S.; Feng, B.; Chen, S.; Gonder, J.; Chakrabarti, S. lncRNA H19 prevents endothelial–mesenchymal transition in diabetic retinopathy. Diabetologia 2019, 62, 517–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulberdaa, M.; Scott, E.; Ballantyne, M.; Garcia, R.; Descamps, B.; Angelini, G.D.; Brittan, M.; Hunter, A.; McBride, M.; McClure, J.; et al. A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol. Ther. 2016, 24, 978–990. [Google Scholar] [CrossRef] [Green Version]
- Dawson, J.; Tooze, J.; Cockerill, G.; Choke, E.; Loftus, I.; Thompson, M.M. Endothelial progenitor cells and abdominal aortic aneurysms. In Annals of the New York Academy of Sciences; Blackwell Publishing Inc.: Malden, MA, USA, 2006; Volume 1085, pp. 327–330. [Google Scholar] [CrossRef]
- Lyu, Q.; Xu, S.; Lyu, Y.; Choi, M.; Christie, C.K.; Slivano, O.J.; Rahman, A.; Jin, Z.G.; Long, X.; Xu, Y.; et al. SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc. Natl. Acad. Sci. USA 2019, 116, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Tanios, F.; Reeps, C.; Zhang, J.; Schwamborn, K.; Eckstein, H.-H.; Zernecke, A.; Pelisek, J. Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm. Clin. Epigenetics 2016, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Xin, M.; Small, E.M.; Sutherland, L.B.; Qi, X.; McAnally, J.; Plato, C.F.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes. Dev. 2009, 23, 2166–2178. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.; Cheng, Y.; Yue, J.; Yang, J.; Liu, X.; Chen, H.; Dean, D.B.; Zhang, C. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res. 2007, 100, 1579–1588. [Google Scholar] [CrossRef]
- Shi, X.; Ma, W.; Pan, Y.; Li, Y.; Wang, H.; Pan, S.; Tian, Y.; Xu, C.; Li, L. MiR-126-5p promotes contractile switching of aortic smooth muscle cells by targeting VEPH1 and alleviates Ang II-induced abdominal aortic aneurysm in mice. Lab. Investig. 2020, 100, 1564–1574. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xu, C.; Li, Y.; Wang, H.; Ma, W.; Tian, Y.; Yang, H.; Li, L. A novel role of VEPH1 in regulating AoSMC phenotypic switching. J. Cell Physiol. 2020, 235, 9336–9346. [Google Scholar] [CrossRef]
- Si, X.; Chen, Q.; Zhang, J.; Zhou, W.; Chen, L.; Chen, J.; Deng, N.; Li, W.; Liu, D.; Wang, L.; et al. MicroRNA-23b prevents aortic aneurysm formation by inhibiting smooth muscle cell phenotypic switching via FoxO4 suppression. Life Sci. 2021, 119092. [Google Scholar] [CrossRef]
- Iaconetti, C.; De Rosa, S.; Polimeni, A.; Sorrentino, S.; Gareri, C.; Carino, A.; Sabatino, J.; Colangelo, M.; Curcio, A.; Indolfi, C. Down-regulation ofmiR-23b induces phenotypic switching of vascular smoothmuscle cells in vitro and in vivo. Cardiovasc. Res. 2015, 107, 522–533. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.Y.T.; Cheuk, B.L.Y.; Cheng, S.W.K. Abdominal Aortic Aneurysm–Associated MicroRNA-516a-5p Regulates Expressions of Methylenetetrahydrofolate Reductase, Matrix Metalloproteinase-2, and Tissue Inhibitor of Matrix Metalloproteinase-1 in Human Abdominal Aortic Vascular Smooth Muscle Cells. Ann. Vasc. Surg. 2017, 42, 263–273. [Google Scholar] [CrossRef]
- Cheuk, B.L.Y.; Cheng, S.W.K. Identification and characterization of microRNAs in vascular smooth muscle cells from patients with abdominal aortic aneurysms. J. Vasc. Surg. 2014, 59, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Ma, W.; Pan, S.; Li, Y.; Wang, H.; Wang, B.; Khalil, R.A. MiR-126a-5p limits the formation of abdominal aortic aneurysm in mice and decreases ADAMTS-4 expression. J. Cell Mol. Med. 2020, 24, 7896–7906. [Google Scholar] [CrossRef]
- Cao, X.; Cai, Z.; Liu, J.; Zhao, Y.; Wang, X.; Li, X.; Xia, H. miRNA-504 inhibits p53-dependent vascular smooth muscle cell apoptosis and may prevent aneurysm formation. Mol. Med. Rep. 2017, 16, 2570–2578. [Google Scholar] [CrossRef] [Green Version]
- Gan, S.; Mao, J.; Pan, Y.; Tang, J.; Qiu, Z. hsa-miR-15b-5p regulates the proliferation and apoptosis of human vascular smooth muscle cells by targeting the ACSS2/PTGS2 axis. Exp. Ther. Med. 2021, 22, 1208. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Cai, D.; Zhuang, D.; Wang, W.; Wang, X.; Bian, X.; Xu, R.; Wu, G. MiR-96-5p Regulates Proliferation, Migration, and Apoptosis of Vascular Smooth Muscle Cell Induced by Angiotensin II via Targeting NFAT5. J. Vasc. Res. 2020, 57, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Hong, Y.; He, H.; Han, Q.; Mao, M.; Hu, B.; Zhang, H.; Huang, X.; You, W.; Liang, X.; et al. MicroRNA-199a-5p aggravates angiotensin II–induced vascular smooth muscle cell senescence by targeting Sirtuin-1 in abdominal aortic aneurysm. J. Cell Mol. Med. 2021, 25, 6056–6069. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zou, G.; Chen, X.; Lu, W.; Liu, J.; Zhai, S.; Qiao, G. Knockdown of lncRNA PVT1 inhibits vascular smooth muscle cell apoptosis and extracellular matrix disruption in a murine abdominal aortic aneurysm model. Mol. Cells 2019, 42, 218–227. [Google Scholar] [CrossRef]
- Li, D.Y.; Busch, A.; Jin, H.; Chernogubova, E.; Pelisek, J.; Karlsson, J.; Sennblad, B.; Liu, S.; Lao, S.; Hofmann, P.; et al. H19 induces abdominal aortic aneurysm development and progression. Circulation 2018, 138, 1551–1568. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, M.; Kou, L.; Zhou, Y.; Qin, Y.; Liu, X.; Chen, Z. Long Noncoding RNA Expression Signatures of Abdominal Aortic Aneurysm Revealed by Microarray. Biomed. Environ. Sci. 2016, 29, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Cui, M.; Zhang, K.; Wang, G.; Zhai, S. LncRNA CRNDE affects the proliferation and apoptosis of vascular smooth muscle cells in abdominal aortic aneurysms by regulating the expression of Smad3 by Bcl-3. Cell Cycle 2020, 19, 1036–1047. [Google Scholar] [CrossRef]
- Cai, Z.; Huang, J.; Yang, J.; Pan, B.; Wang, W.; Ou, Y.; Wang, X.; Yang, P. LncRNA SENCR suppresses abdominal aortic aneurysm formation by inhibiting smooth muscle cells apoptosis and extracellular matrix degradation. Bosn. J. Basic Med. Sci. 2021, 21, 323–330. [Google Scholar] [CrossRef]
- Gurung, R.; Choong, A.M.; Woo, C.C.; Foo, R.; Sorokin, V. Genetic and epigenetic mechanisms underlying vascular smooth muscle cell phenotypic modulation in abdominal aortic aneurysm. Int. J. Mol. Sci. 2020, 21, 6334. [Google Scholar] [CrossRef] [PubMed]
- Neele, A.E.; Van den Bossche, J.; Hoeksema, M.A.; de Winther, M.P.J. Epigenetic pathways in macrophages emerge as novel targets in atherosclerosis. Eur. J. Pharmacol. 2015, 763 Pt A, 79–89. [Google Scholar] [CrossRef]
Epigenetic Modification | Cellular Origin | Regulation | Target Gene(s) | Related Function |
---|---|---|---|---|
DNA Methylation | ||||
DNMT1, DNMT3A | T-lymphocyte | Downregulated | --- | Potential role in T-cell dysfunction, particularly decreased suppressive effects of CD4 + CD25+ T regulatory cells |
Histone Modification | ||||
JMJD3 | Macrophage | Upregulated | H3K27me3 on promoters for: IL1β, TNF, IL23 | Increases macrophage inflammatory cytokine production; macrophage proinflammatory polarization |
HDAC I and IIa | Macrophage | Upregulated | --- | Increased proinflammatory macrophage phenotype and inflammatory mediators |
Non-coding RNA | ||||
miRNA-24 | Macrophage | Upregulated | Chi311 | Limits inflammation and ECM degeneration; overexpression reduces AAA |
miRNA-33 | Macrophage | Downregulated | ABCA1 | Monocyte chemotaxis, macrophage accumulation; inhibition reduces AAA |
miRNA-181b | Macrophage | Upregulated | TIMP3, ELN | Downregulates ECM |
miRNA-223 | Macrophage | Upregulated in tissue, downregulated plasma | MMP12 | Inhibits vascular inflammation |
miRNA-155 | T-lymphocyte | Upregulated | CTLA4 | Regulation of T-cell activation |
Epigenetic Modification | Cellular Origin | Regulation | Target Gene(s) | Related Function |
---|---|---|---|---|
Histone Modification | ||||
BRG1 | Endothelial cell | COL1A1, COL1A2, vimentin | Promotes AAA formation upregulation of fibrotic gene expression | |
HDAC9 | Endothelial cell | Enhances endothelial-to-mesenchymal transition | ||
Non-coding RNAs | ||||
miRNA-20a | Endothelial cell | Upregulated | PTEN, ATG7 | Inhibits endothelial cell apoptosis |
miRNA-21 | Endothelial cell | Upregulated | ||
miRNA-27a | Endothelial cell | Upregulated | SEMA6A | Promotes endothelial-to-mesenchymal transition |
miRNA-92a | Endothelial cell | Upregulated | KLF4 | Secreted by EC, inhibits KLF4 expression in macrophages; enhances atherosclerotic lesion formation |
miRNA-126 | Endothelial cell | Upregulated | ADAM9 | Overexpression reduces AAA formation; suppression of inflammatory cytokines |
miRNA-221 | Endothelial cell | Upregulated | CDKN1B, PIK3R1 | Promotes angiogenesis via regulating endothelial tip-cell proliferation and migration |
miRNA-222 | Endothelial cell | Upregulated | ADIPOR1 | Overexpression promotes AAA by interfering with endothelial progenitor cell function |
Let-7 (miRNA) | Endothelial cell | Upregulated | ||
GATA6-AS (lncRNA) | Endothelial cell | Upregulated? | LOXL2 | Inhibition of TGFβ2-mediated endothelial-to-mesenchymal transition |
H19 (lncRNA) | Endothelial cell | Inhibition of endothelial-to-mesenchymal transition | ||
MALAT-1 (lncRNA) | Endothelial cell | NOX2 | Increased inflammation and ROS production | |
SENCR (lncRNA) | Endothelial cell | CKAP4 | Stabilizes vascular EC adherens junctions |
Epigenetic Modification | Cellular Origin | Regulation | Target Gene(s) | Related Function |
---|---|---|---|---|
Non-Coding RNAs | ||||
miRNA-15b-5p | SMC | Upregulated | ACSS2 | Promotes SMC apoptosis |
miRNA-23b | SMC | FOXO4 | Inhibits AAA formation; maintains SMC mature phenotype, inhibits phenotypic modulation | |
miRNA-96-5p | SMC | NFAT5 | Promotes SMC apoptosis | |
miRNA-126-5p | SMC | Downregulated | VEPH1 | Inhibits AAA formation; overexpression inhibits MMP-9 and MMP-2 expression and promotes SMC differentiation |
miRNA-143/145 | SMC | Downregulated | SRF, myocardin, KLF4/5, MRTF-B | Inhibits phenotypic modulation in SMC after vessel injury |
miRNA-199a-5p | SMC | Upregulated | SIRT1 | Increases SMC senescence and ROS production |
miRNA-504 | SMC | Downregulated | p53 | Inhibits p53-induced SMC apoptosis |
miRNA-516a | SMC | Upregulated | MTHFR | Overexpression leads to increased expression of MMP-2 and decreased expression of TIMP-1 |
CRNDE | SMC | Downregulated | SMAD3 | Increases SMC proliferation, inhibits SMC apoptosis; inhibits AAA progression |
H19 | SMC | Upregulated | HIF1α | Increases SMC apoptosis |
PVT1 | SMC | Upregulated | Induces SMC phenotypic modulation | |
SENCE | SMC | Downregulated | Increases SMC apoptosis and expression of MMP-2 and MMP-9; decreases AAA formation | |
SMYD2 | SMC | Downregulated | Increased promoter methylation in AAA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangum, K.; Gallagher, K.; Davis, F.M. The Role of Epigenetic Modifications in Abdominal Aortic Aneurysm Pathogenesis. Biomolecules 2022, 12, 172. https://doi.org/10.3390/biom12020172
Mangum K, Gallagher K, Davis FM. The Role of Epigenetic Modifications in Abdominal Aortic Aneurysm Pathogenesis. Biomolecules. 2022; 12(2):172. https://doi.org/10.3390/biom12020172
Chicago/Turabian StyleMangum, Kevin, Katherine Gallagher, and Frank M. Davis. 2022. "The Role of Epigenetic Modifications in Abdominal Aortic Aneurysm Pathogenesis" Biomolecules 12, no. 2: 172. https://doi.org/10.3390/biom12020172
APA StyleMangum, K., Gallagher, K., & Davis, F. M. (2022). The Role of Epigenetic Modifications in Abdominal Aortic Aneurysm Pathogenesis. Biomolecules, 12(2), 172. https://doi.org/10.3390/biom12020172