Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes
Abstract
:1. Introduction
2. Structural Determinants of Homo- and Heterologous Protein Complexes of p53
3. Distribution of Cellular p53 between Different Compartments
Compartment | Interaction Partner |
Unstressed Conditions |
Stressed Conditions | p53 Region | Models and Methods Used | Additional Localizations of the Partner |
---|---|---|---|---|---|---|
Cytoplasm | NAD+-dependent protein deacetylase sirtuin 2 (Q8IXJ6, gene SIRT2) [25] | Destabilization of cytosolic p53 upon deacetylation of its K382. Regulation of protein–protein interactions of p53. | CTR | In vitro studies of p53 deacetylation by SIRT2, crystal structures of the bacterial homolog with the C-terminal p53 peptide comprising acetylated/deacetylated K382; p53 half-life assays | Nucleus | |
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Q13526, gene PIN1) [59] | n.d | Isomerization of p53 Pro47 to cis form, required for BAX activation | TAR | H1299 cell line expressing tamoxifen-inducible p53; NMR; large unilamellar vesicle permeabilization assay; in vitro studies of p53-PIN1 interaction and isomerization of p53 Pro47; apoptosis in cells with inhibited protein synthesis; inhibition of BCL2L1-dependent apoptosis to show the key role of PIN1 in activating BAX | Nucleus | |
Ubiquitin carboxyl-terminal hydrolase 7 (Q93009, gene USP7) [56,60,61,62] | Deubiquitinates and stabilizes p53 | Camphotericin-induced monoubiquitination of p53 leads to its mitochondrial translocation and subsequent deubiquitination by USP7, which may lead to transcription-independent apoptosis | CTR | HCT116, RKO and ML cells; manipulated expression of USP7 (+/+ and -/- cells); p53 increases in the USP7 knockout cells in vitro p53 deubiquitination assay; crystal structure of USP7-p53; subcellular fractionation and IP; camptothecin treatment | Nucleus, mitochondria | |
E3 ubiquitin-protein ligase parkin (O60260, gene PRKN) [63] | n.d | P53 binds PRKN and retains it in cytosol, preventing PRKN-dependent autophagy signal transduction | DBD | MEFs, Hl-1 cells, rat neonatal cardiomyocytes, mouse heart lysates; IP; p53 overexpression in MEFs; nutlin and doxorubicin treatments in Hl-1 | Nucleus, endoplasmic reticulum, mitochondrion | |
Glucose-6-phosphate 1 dehydrogenase (P11413, gene G6PD) [15] | G6PD binds almost all cytosolic p53. P53 inhibits G6PD via lasting physical and transient catalytic interactions | Fraction of overexpressed p53 is free of G6PD. G6PD is inhibited by TIGAR, which is a transcriptional target of p53 | CTR | Mouse embryonic fibroblasts (MEFs), mice tissues and cancer cell lines; p53-/- MEFs and cancer cells; pull-down assays in cancer cells; the p53 effect on G6PD dimerization in MEFs and cancer lines; ratios of G6PD and p53 in HCT116 p53+/+ cells are determined to depend on doxorubicin treatment (100:3 and 10:1 in the unstressed and doxorubicin-treated cells, correspondingly) | Cellular membrane | |
Heat shock protein 90 kDa alpha (P08238, gene HSP90AB1) [18,64,65] | Stabilizes the Zn2+-free p53, folds p53. Inhibition of HSP90 promotes p53/PUMA/BAX-mediated apoptosis in p53 wild type cells | DBD | In vitro experiments: NMR spectroscopy and gel electrophoresis show no significant difference between zinc-free and holo-p53 with high concentrations of p53; aggregation assay of zinc-free p53 at physiological p53 concentrations shows decrease in aggregation of unstable zinc-free p53 by HSP90 addition. Colorectal cancer cell lines, also with manipulated expression of p53, PUMA and apoptotic proteins | Nucleus, Hsp90 paralogs in ER (HspC4) and mitochondria (HspC5) | ||
Heat shock 70 kDa protein 1 (P0DMV8, gene HSPA1) [65] | Destabilizes p53 by unfolding | DBD | In vitro experiments | |||
Ribonucleoside-diphosphate reductase subunit M2 B (Q7LG56, gene RRM2B) [66] | P53 binds RRM2B and retains it in cytosol | RRM2B is liberated from p53 and translocated to the nucleus, where it promotes DNA reparation | n.d. | KB cell line; immunoprecipitation (IP) and colocalization with or without UV irradiation | Nucleus | |
Thioredoxin (P10599, gene TXN) [67,68] | Reduced thioredoxin enhances p53 transcriptional activity, while oxidized thioredoxin inhibits p53 transcriptional activity | n.d. | WiDr, MG63, HeLa cells; WiDr and MG63 cells with transient expression of TXN; in vitro electrophoretic mobility shift assay of p53–DNA binding; fluorescent microscopy. Yeast; thioredoxin and/or thioredoxin reductase mutations; in vitro binding assay and one-hybrid assay; p53 cysteines substitutions KD hTXN = 0.9 uM | |||
Focal adhesion kinase 1 (Q05397, gene PTK2) [69] | Inhibition of cytosolic p53 by PTK2 promotes survival. A feedback loop mechanism of regulation of p53 and PTK2 | PRR | Cancer cells; IP, pull-down and confocal microscopy methods | Nucleus, extracellular space | ||
14-3-3θ (P27348, gene YWHAQ) [70] | Low content of the complex | Highly abundant complex | C277 | Diamide treatment; mass spectrometry | ||
14-3-3σ (P31947, gene SFN) [71] | n.d. | Upon adriamycin and ionizing radiation treatment, binding of p53 to 14-3-3σ increases p53 half-life | CTR | A549, R1B, L17, 293T cells; IP; adriamycin and radiation treatments; immunofluorescence; p53 half-life assays; overexpression of 14-3-3σ; pulse-labeling with [35S]methionine | Nucleus | |
Clathrin heavy chain 1 (Q00610, gene CLTC), Epidermal growth factor receptor(P00533, gene EGFR) [72] | n.d. | Interacting with CLTC and/or EGRF, p53 promotes epidermal growth factor (EGF) internalization through clathrin-mediated endocytosis | n.d. | H1299 and TIG-7 cells; transfection with p53 construct; p53 knockdown; IP; p53-CLTC colocalization; EGF internalization assay | Cellular membrane and vesicles | |
Endoplasmic reticulum (ER) | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (P16615, gene ATP2A2) [73] | n.d. | p53 enhances ATP2A2 activity, causing mitochondrial Ca2+ overload | CTR | MEFs and H1299 cells; ER vesicles isolation; p53 -/- and p53+/+ mice; pull-down assay; coprecipitation assay; Ca2+ accumulation kinetics in ER vesicles; doxorubicin treatment | |
Mitochondrial outer membrane | Apoptosis regulator BAX (Q07812, gene BAX) [74] | No p53 complex formation to activate BCL2L1 | Activation of BCL2L1 in a complex with p53 promotes mitochondrial outer membrane permeabilization (MOMP) and apoptosis | PRR, DBD | MEFs cells; in vitro experiments with mutant proteins; NMR; knockout and overexpression of BAX and/or p53 and its various mutant forms | Cytoplasm |
Bcl-2-like protein 1 (Q07817, gene BCL2L1) [22] | DBD | Crystallization of dimeric p53 DBD with BCL2L1 | Mitochondrial inner membrane, matrix, cytosol, cytosolic side of nuclear membrane | |||
Mitochondrial E3 ubiquitin ligase 1 (Q969V5, gene MUL1) [75] | Ubiquitinates p53 at Lys24 for proteasomal degradation, thus negatively affecting both nuclear and cytoplasmic functions of p53 | TAR2 | H1299, MCF10A, NHLF, U2OS, MCF cells; manipulated expression of MUL1; proteasome inhibition; NMR structural studies of the RING domain of MUL1 and TAR2 of p53; in vitro experiments; pull-down assay and IP; ubiquitination assay in vitro and in vivo | |||
Mitochondrial intermembrane space (IMS) | Mitochondrial intermembrane space import and assembly protein 40 (Q8N4Q1, gene CHCHD4) [16] | Colocalization of p53 with CHCHD4 increases and decreases according to the manipulated expression of CHCHD4 | Overexpressed CHCHD4 decreases nuclear p53, increasing mitochondrial colocalization of p53 and CHCHD4 | n.d. | HCT116 cells and primary human myoblasts; manipulated expression of CHCHD4 and p53, treatment of cells with H2O2 | |
Mitochondrial inner membrane | ATP synthase subunit O, mitochondrial (P48047, gene ATP5PO) [47] | ATP5PO is activated by p53 mitochondrial localization, induces F1-F0 ATP-synthase assembly | n.d. | HCT116 and H1299 cells; IMS and matrix p53 localization; IP and LC-MS identification of ATP5PO-p53 interaction; etoposide treatment; F1-F0 quantification | ||
Mitochondrial matrix | Lon protease homolog, mitochondrial (P36776, gene LONP1) [51] | LONP1 interaction with p53 is observed under normal conditions and during oxidative stress, likely regulating the availability of p53 to interact with its other targets both inside and outside mitochondria | DBD | HSC3 and 293T cells; p53-LONP1 colocalization in H2O2-treated cells; pull-down assay; IP; rotenone treatment, LONP1 and/or p53 overexpression and knockdown | ||
Single-stranded DNA-binding protein, mitochondrial (Q04837, gene SSBP1) [52] | n.d. | SSBP1 enhances 3′-exonuclease activity of p53, promoting base excision repair (BER), presumably activated under stress | TAR1,2 | In vitro experiments using purified proteins | Nucleoid | |
Transcription factor A, mitochondrial (Q00059, gene TFAM) [46] | n.d. | TFAM is guided by p53 to damaged regions of mtDNA | CTR | KB and HCT116 cells; IP; cisplatin and 5-fluorouracyl treatments; pull-down assay | Nucleoid | |
DNA polymerase subunit gamma-1 (P54098, gene POLG) [53] | POLG is activated by p53 independent of ethidium bromide treatment | n.d. | ML-1 and HCT116 cells; IP and colocalization; ethidium bromide treatment, in vitro assays of p53 influence on POLG activity | Nucleoid | ||
Peptidyl-prolyl cis-trans isomerase F, mitochondrial (P30405, gene PPIF) [54] | Free from p53, PPIF does not induce formation of permeability transition pore (PTP) | PPIF interacts with p53, inducing formation of PTP and necrosis | DBD | MEFs and HCT116 cells; p53 or PPIF -/- MEFs; p53 or PPIF+/- mice; IP; H2O2 treatment; induction of necrosis by targeting p53 to mitochondrial matrix | ||
Superoxide dismutase [Mn], mitochondrial (P04179, gene SOD2) [55] | No complex detected | SOD2 inhibition by p53 causes overproduction of mitochondrial ROS | n.d | JB6 cells and mouse skin epidermis; IP; 12-O-tetradecanoylphorbol-13-acetate treatment; SOD2 assay |
4. Heterologous Complexes of p53 with the Enzymes Regulating Post-Translational Modifications of p53
5. Other Interaction Partners of p53 Outside the Nucleus
5.1. Cytosol
5.2. Endoplasmic Reticulum
5.3. Mitochondria
5.4. Heterologous Complexes Coupling the Redox-Dependent Modifications of p53 Cysteine Residues to the Action of Ribonucleotide Reductase in Different Cellular Compartments
6. Heterologous Complexes in Hierarchical Organization of the p53-Inducible Responses
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An, W.G.; Kanekal, M.; Simon, M.C.; Maltepe, E.; Blagosklonny, M.V.; Neckers, L.M. Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 1998, 392, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Canman, C.E.; Gilmer, T.M.; Coutts, S.B.; Kastan, M.B. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev. 1995, 9, 600–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.P.; Liu, F.; Wang, W. Two-phase dynamics of p53 in the DNA damage response. Proc. Natl. Acad. Sci. USA 2011, 108, 8990–8995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacroix, M.; Riscal, R.; Arena, G.; Linares, L.K.; Le Cam, L. Metabolic Functions of the Tumor Suppressor P53: Implications in Normal Physiology, Metabolic Disorders, and Cancer. Mol. Metab. 2020, 33, 2–22. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, N.; Nagano, H.; Tanaka, T. The Role of Tumor Suppressor P53 in Metabolism and Energy Regulation, and Its Implication in Cancer and Lifestyle-Related Diseases. Endocr. J. 2019, 66, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.; Ahn, J.; Walker, K.K.; Hoffman, W.H.; Evans, R.M.; Levine, A.J.; George, D.L. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 1999, 13, 2490–2501. [Google Scholar] [CrossRef] [Green Version]
- Baptiste, N.; Friedlander, P.; Chen, X.; Prives, C. The proline-rich domain of p53 is required for cooperation with anti-neoplastic agents to promote apoptosis of tumor cells. Oncogene 2002, 21, 9–21. [Google Scholar] [CrossRef]
- Nag, S.; Qin, J.; Srivenugopal, K.S.; Wang, M.; Zhang, R. The MDM2-p53 pathway revisited. J. Biomed. Res. 2013, 27, 254–271. [Google Scholar] [CrossRef]
- Lakin, N.D.; Jackson, S.P. Regulation of p53 in response to DNA damage. Oncogene 1999, 18, 7644–7655. [Google Scholar] [CrossRef] [Green Version]
- Chipuk, J.E.; Maurer, U.; Green, D.R.; Schuler, M. Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 2003, 4, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Cai, M.; Shen, Y.; Lin, D.; Deng, X. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation. Phys. Chem. Chem. Phys. 2021, 23, 23032–23041. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gohain, N.; Chen, S.; Li, Y.; Zhao, X.; Li, B.; Tolbert, W.D.; He, W.; Pazgier, M.; Hu, H.; et al. Design of ultrahigh-affinity and dual-specificity peptide antagonists of MDM2 and MDMX for P53 activation and tumor suppression. Acta Pharm. Sin. B 2021, 11, 2655–2669. [Google Scholar] [CrossRef] [PubMed]
- Katte, R.H.; Chou, R.H.; Yu, C. Pentamidine inhibit S100A4-p53 interaction and decreases cell proliferation activity. Arch. Biochem. Biophys. 2020, 691, 108442. [Google Scholar] [CrossRef] [PubMed]
- Green, D.R.; Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature 2009, 458, 1127–1130. [Google Scholar] [CrossRef]
- Jiang, P.; Du, W.; Wang, X.; Mancuso, A.; Gao, X.; Wu, M.; Yang, X. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 2011, 13, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.; Wang, P.Y.; Huang, X.; Chen, X.; Kang, J.G.; Hwang, P.M. Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity. Proc. Natl. Acad. Sci. USA 2013, 110, 17356–17361. [Google Scholar] [CrossRef] [Green Version]
- Brazda, V.; Fojta, M. The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int. J. Mol. Sci. 2019, 20, 5605. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Dyson, H.J. Aggregation of zinc-free p53 is inhibited by Hsp90 but not other chaperones. Protein Sci. A Publ. Protein Soc. 2019, 28, 2020–2023. [Google Scholar] [CrossRef]
- Chen, S.; Wu, J.L.; Liang, Y.; Tang, Y.G.; Song, H.X.; Wu, L.L.; Xing, Y.F.; Yan, N.; Li, Y.T.; Wang, Z.Y.; et al. Arsenic Trioxide Rescues Structural p53 Mutations through a Cryptic Allosteric Site. Cancer Cell 2021, 39, 225–239.e228. [Google Scholar] [CrossRef]
- Kitayner, M.; Rozenberg, H.; Kessler, N.; Rabinovich, D.; Shaulov, L.; Haran, T.E.; Shakked, Z. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 2006, 22, 741–753. [Google Scholar] [CrossRef]
- Pietsch, E.C.; Leu, J.I.; Frank, A.; Dumont, P.; George, D.L.; Murphy, M.E. The tetramerization domain of p53 is required for efficient BAK oligomerization. Cancer Biol. Ther. 2007, 6, 1576–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Qu, L.; Dai, S.; Li, Y.; Wang, H.; Feng, Y.; Chen, X.; Jiang, L.; Guo, M.; Li, J.; et al. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nat. Commun. 2021, 12, 2280. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Han, K.H. Target-binding behavior of IDPs via pre-structured motifs. Prog. Mol. Biol. Transl. Sci. 2021, 183, 187–247. [Google Scholar] [CrossRef] [PubMed]
- Rustandi, R.R.; Baldisseri, D.M.; Weber, D.J. Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat. Struct. Biol. 2000, 7, 570–574. [Google Scholar] [CrossRef]
- Cosgrove, M.S.; Bever, K.; Avalos, J.L.; Muhammad, S.; Zhang, X.; Wolberger, C. The structural basis of sirtuin substrate affinity. Biochemistry 2006, 45, 7511–7521. [Google Scholar] [CrossRef]
- Tong, Q.; Mazur, S.J.; Rincon-Arano, H.; Rothbart, S.B.; Kuznetsov, D.M.; Cui, G.; Liu, W.H.; Gete, Y.; Klein, B.J.; Jenkins, L.; et al. An acetyl-methyl switch drives a conformational change in p53. Structure 2015, 23, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Tong, Q.; Cui, G.; Botuyan, M.V.; Rothbart, S.B.; Hayashi, R.; Musselman, C.A.; Singh, N.; Appella, E.; Strahl, B.D.; Mer, G.; et al. Structural plasticity of methyllysine recognition by the tandem tudor domain of 53BP1. Structure 2015, 23, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Ortiz, E.; de la Cruz-Lopez, K.G.; Becerril-Rico, J.; Sarabia-Sanchez, M.A.; Ortiz-Sanchez, E.; Garcia-Carranca, A. Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front. Cell Dev. Biol. 2020, 8, 607670. [Google Scholar] [CrossRef]
- Costa, D.C.; de Oliveira, G.A.; Cino, E.A.; Soares, I.N.; Rangel, L.P.; Silva, J.L. Aggregation and Prion-Like Properties of Misfolded Tumor Suppressors: Is Cancer a Prion Disease? Cold Spring Harb. Perspect. Biol. 2016, 8, a023614. [Google Scholar] [CrossRef]
- Hall, C.; Muller, P.A.J. The Diverse Functions of Mutant 53, Its Family Members and Isoforms in Cancer. Int. J. Mol. Sci. 2019, 20, 6188. [Google Scholar] [CrossRef] [Green Version]
- Strano, S.; Munarriz, E.; Rossi, M.; Cristofanelli, B.; Shaul, Y.; Castagnoli, L.; Levine, A.J.; Sacchi, A.; Cesareni, G.; Oren, M.; et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J. Biol. Chem. 2000, 275, 29503–29512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stindt, M.H.; Muller, P.A.; Ludwig, R.L.; Kehrloesser, S.; Dotsch, V.; Vousden, K.H. Functional interplay between MDM2, p63/p73 and mutant p53. Oncogene 2015, 34, 4300–4310. [Google Scholar] [CrossRef]
- Kehrloesser, S.; Osterburg, C.; Tuppi, M.; Schafer, B.; Vousden, K.H.; Dotsch, V. Intrinsic aggregation propensity of the p63 and p73 TI domains correlates with p53R175H interaction and suggests further significance of aggregation events in the p53 family. Cell Death Differ. 2016, 23, 1952–1960. [Google Scholar] [CrossRef] [PubMed]
- Strano, S.; Fontemaggi, G.; Costanzo, A.; Rizzo, M.G.; Monti, O.; Baccarini, A.; Del Sal, G.; Levrero, M.; Sacchi, A.; Oren, M.; et al. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J. Biol. Chem. 2002, 277, 18817–18826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Prives, C. Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 2007, 26, 2220–2225. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Reumers, J.; Couceiro, J.R.; De Smet, F.; Gallardo, R.; Rudyak, S.; Cornelis, A.; Rozenski, J.; Zwolinska, A.; Marine, J.C.; et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat. Chem. Biol. 2011, 7, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Muller, P.A.; Vousden, K.H. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell 2014, 25, 304–317. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.P.; Lozano, G. Mutant p53 partners in crime. Cell Death Differ. 2018, 25, 161–168. [Google Scholar] [CrossRef]
- Di Minin, G.; Bellazzo, A.; Dal Ferro, M.; Chiaruttini, G.; Nuzzo, S.; Bicciato, S.; Piazza, S.; Rami, D.; Bulla, R.; Sommaggio, R.; et al. Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP. Mol. Cell 2014, 56, 617–629. [Google Scholar] [CrossRef] [Green Version]
- Valentino, E.; Bellazzo, A.; Di Minin, G.; Sicari, D.; Apollonio, M.; Scognamiglio, G.; Di Bonito, M.; Botti, G.; Del Sal, G.; Collavin, L. Mutant p53 potentiates the oncogenic effects of insulin by inhibiting the tumor suppressor DAB2IP. Proc. Natl. Acad. Sci. USA 2017, 114, 7623–7628. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Zhang, C.; Zhao, Y.; Liu, J.; Lin, A.W.; Tan, V.M.; Drake, J.M.; Liu, L.; Boateng, M.N.; Li, J.; et al. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression. Genes Dev. 2017, 31, 1641–1654. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Hu, W.; de Stanchina, E.; Teresky, A.K.; Jin, S.; Lowe, S.; Levine, A.J. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007, 67, 3043–3053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, G.; Wang, J.; Zhao, M.; Xie, T.X.; Tanaka, N.; Sano, D.; Patel, A.A.; Ward, A.M.; Sandulache, V.C.; Jasser, S.A.; et al. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol. Cell 2014, 54, 960–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faubert, B.; Boily, G.; Izreig, S.; Griss, T.; Samborska, B.; Dong, Z.; Dupuy, F.; Chambers, C.; Fuerth, B.J.; Viollet, B.; et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013, 17, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberg, R.L.; Veprintsev, D.B.; Bycroft, M.; Fersht, A.R. Comparative binding of p53 to its promoter and DNA recognition elements. J. Mol. Biol. 2005, 348, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Izumi, H.; Torigoe, T.; Ishiguchi, H.; Itoh, H.; Kang, D.; Kohno, K. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res. 2003, 63, 3729–3734. [Google Scholar] [PubMed]
- Bergeaud, M.; Mathieu, L.; Guillaume, A.; Moll, U.M.; Mignotte, B.; Le Floch, N.; Vayssiere, J.L.; Rincheval, V. Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F(1)F0-ATP synthase. Cell Cycle 2013, 12, 2781–2793. [Google Scholar] [CrossRef] [Green Version]
- Heyne, K.; Schmitt, K.; Mueller, D.; Armbruester, V.; Mestres, P.; Roemer, K. Resistance of mitochondrial p53 to dominant inhibition. Mol. Cancer 2008, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Stommel, J.M.; Marchenko, N.D.; Jimenez, G.S.; Moll, U.M.; Hope, T.J.; Wahl, G.M. A leucine-rich nuclear export signal in the p53 tetramerization domain: Regulation of subcellular localization and p53 activity by NES masking. EMBO J. 1999, 18, 1660–1672. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, I.; Nemajerova, A.; Foda, Z.H.; Kornaj, M.; Tong, M.; Moll, U.M.; Seeliger, M.A. A Novel In Vitro CypD-Mediated p53 Aggregation Assay Suggests a Model for Mitochondrial Permeability Transition by Chaperone Systems. J. Mol. Biol. 2016, 428, 4154–4167. [Google Scholar] [CrossRef] [Green Version]
- Sung, Y.J.; Kao, T.Y.; Kuo, C.L.; Fan, C.C.; Cheng, A.N.; Fang, W.C.; Chou, H.Y.; Lo, Y.K.; Chen, C.H.; Jiang, S.S.; et al. Mitochondrial Lon sequesters and stabilizes p53 in the matrix to restrain apoptosis under oxidative stress via its chaperone activity. Cell Death Dis. 2018, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.S.; Rajagopalan, S.; Townsley, F.M.; Freund, S.M.; Petrovich, M.; Loakes, D.; Fersht, A.R. Physical and functional interactions between human mitochondrial single-stranded DNA-binding protein and tumour suppressor p53. Nucleic Acids Res. 2009, 37, 568–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achanta, G.; Sasaki, R.; Feng, L.; Carew, J.S.; Lu, W.; Pelicano, H.; Keating, M.J.; Huang, P. Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J. 2005, 24, 3482–3492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaseva, A.V.; Marchenko, N.D.; Ji, K.; Tsirka, S.E.; Holzmann, S.; Moll, U.M. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 2012, 149, 1536–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Chaiswing, L.; Velez, J.M.; Batinic-Haberle, I.; Colburn, N.H.; Oberley, T.D.; St Clair, D.K. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 2005, 65, 3745–3750. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, N.D.; Wolff, S.; Erster, S.; Becker, K.; Moll, U.M. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 2007, 26, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Gencel-Augusto, J.; Lozano, G. p53 tetramerization: At the center of the dominant-negative effect of mutant p53. Genes Dev. 2020, 34, 1128–1146. [Google Scholar] [CrossRef]
- Liu, Y.; Tavana, O.; Gu, W. p53 modifications: Exquisite decorations of the powerful guardian. J. Mol. Cell Biol. 2019, 11, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Follis, A.V.; Llambi, F.; Merritt, P.; Chipuk, J.E.; Green, D.R.; Kriwacki, R.W. Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis. Mol. Cell 2015, 59, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Cummins, J.M.; Vogelstein, B. HAUSP is required for p53 destabilization. Cell Cycle 2004, 3, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Saridakis, V.; Sarkari, F.; Duan, S.; Wu, T.; Arrowsmith, C.H.; Frappier, L. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat. Struct. Mol. Biol. 2006, 13, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, D.; Shiloh, A.; Luo, J.; Nikolaev, A.Y.; Qin, J.; Gu, W. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 2002, 416, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.; Mita, Y.; Okawa, Y.; Ariyoshi, M.; Iwai-Kanai, E.; Ueyama, T.; Ikeda, K.; Ogata, T.; Matoba, S. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 2013, 4, 2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Zheng, X.; Zhang, L.; Yu, J. Hsp90 Inhibitors Promote P53-Dependent Apoptosis through Puma and Bax. Mol. Cancer Ther. 2013, 12, 2559–2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahiya, V.; Agam, G.; Lawatscheck, J.; Rutz, D.A.; Lamb, D.C.; Buchner, J. Coordinated Conformational Processing of the Tumor Suppressor Protein p53 by the Hsp70 and Hsp90 Chaperone Machineries. Mol. Cell 2019, 74, 816–830.e817. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Zhou, B.; Liu, X.; Qiu, W.; Jin, Z.; Yen, Y. Wild-type p53 regulates human ribonucleotide reductase by protein-protein interaction with p53R2 as well as hRRM2 subunits. Cancer Res. 2003, 63, 980–986. [Google Scholar] [PubMed]
- Stoner, C.S.; Pearson, G.D.; Koc, A.; Merwin, J.R.; Lopez, N.I.; Merrill, G.F. Effect of thioredoxin deletion and p53 cysteine replacement on human p53 activity in wild-type and thioredoxin reductase null yeast. Biochemistry 2009, 48, 9156–9169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueno, M.; Masutani, H.; Arai, R.J.; Yamauchi, A.; Hirota, K.; Sakai, T.; Inamoto, T.; Yamaoka, Y.; Yodoi, J.; Nikaido, T. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J. Biol. Chem. 1999, 274, 35809–35815. [Google Scholar] [CrossRef] [Green Version]
- Golubovskaya, V.M.; Cance, W.G. FAK and p53 protein interactions. Anticancer Agents Med. Chem. 2011, 11, 617–619. [Google Scholar] [CrossRef]
- Shi, T.; Polderman, P.E.; Pages-Gallego, M.; van Es, R.M.; Vos, H.R.; Burgering, B.M.T.; Dansen, T.B. p53 Forms Redox-Dependent Protein-Protein Interactions through Cysteine 277. Antioxidants 2021, 10, 1578. [Google Scholar] [CrossRef]
- Yang, H.Y.; Wen, Y.Y.; Chen, C.H.; Lozano, G.; Lee, M.H. 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol. Cell. Biol. 2003, 23, 7096–7107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, Y.; Sugiyama, A.; Li, S.A.; Ohmori, K.; Ohata, H.; Yoshida, Y.; Shibuya, M.; Takei, K.; Enari, M.; Taya, Y. Regulation of clathrin-mediated endocytosis by p53. Genes Cells 2008, 13, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, C.; Bonora, M.; Sorrentino, G.; Missiroli, S.; Poletti, F.; Suski, J.M.; Galindo Ramirez, F.; Rizzuto, R.; Di Virgilio, F.; Zito, E.; et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc. Natl. Acad. Sci. USA 2015, 112, 1779–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chipuk, J.E.; Kuwana, T.; Bouchier-Hayes, L.; Droin, N.M.; Newmeyer, D.D.; Schuler, M.; Green, D.R. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303, 1010–1014. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.H.; Bae, S.; Lee, J.Y.; Woo, S.R.; Cha, H.J.; Yoon, Y.; Suh, K.S.; Lee, S.J.; Park, I.C.; Jin, Y.W.; et al. E3 ubiquitin ligase Hades negatively regulates the exonuclear function of p53. Cell Death Differ. 2011, 18, 1865–1875. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, S.Y.; Fried, V.A.; Ronai, Z. Stress-activated kinases regulate protein stability. Oncogene 1998, 17, 1483–1490. [Google Scholar] [CrossRef] [Green Version]
- Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 1997, 387, 296–299. [Google Scholar] [CrossRef]
- Kubbutat, M.H.; Jones, S.N.; Vousden, K.H. Regulation of p53 stability by Mdm2. Nature 1997, 387, 299–303. [Google Scholar] [CrossRef]
- Momand, J.; Zambetti, G.P. Mdm-2: “big brother” of p53. J. Cell. Biochem. 1997, 64, 343–352. [Google Scholar] [CrossRef]
- Gu, W.; Roeder, R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997, 90, 595–606. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Scolnick, D.M.; Trievel, R.C.; Zhang, H.B.; Marmorstein, R.; Halazonetis, T.D.; Berger, S.L. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell Biol. 1999, 19, 1202–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakaguchi, K.; Herrera, J.E.; Saito, S.; Miki, T.; Bustin, M.; Vassilev, A.; Anderson, C.W.; Appella, E. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 1998, 12, 2831–2841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchenko, N.D.; Moll, U.M. The role of ubiquitination in the direct mitochondrial death program of p53. Cell Cycle 2007, 6, 1718–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.S.; Lee, S.O.; Lee, M.K.; Yi, G.S.; Lee, C.K.; Ryu, K.S.; Chi, S.W. Solution structure of MUL1-RING domain and its interaction with p53 transactivation domain. Biochem. Biophys. Res. Commun. 2019, 516, 533–539. [Google Scholar] [CrossRef]
- Hainaut, P.; Milner, J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res. 1993, 53, 4469–4473. [Google Scholar]
- Rainwater, R.; Parks, D.; Anderson, M.E.; Tegtmeyer, P.; Mann, K. Role of cysteine residues in regulation of p53 function. Mol. Cell. Biol. 1995, 15, 3892–3903. [Google Scholar] [CrossRef] [Green Version]
- Fojta, M.; Kubicarova, T.; Vojtesek, B.; Palecek, E. Effect of p53 protein redox states on binding to supercoiled and linear DNA. J. Biol. Chem. 1999, 274, 25749–25755. [Google Scholar] [CrossRef] [Green Version]
- Hupp, T.R.; Meek, D.W.; Midgley, C.A.; Lane, D.P. Activation of the cryptic DNA binding function of mutant forms of p53. Nucleic Acids Res. 1993, 21, 3167–3174. [Google Scholar] [CrossRef] [Green Version]
- Scotcher, J.; Clarke, D.J.; Mackay, C.L.; Hupp, T.; Sadler, P.J.; Langridge-Smith, P.R.R. Redox regulation of tumour suppressor protein p53: Identification of the sites of hydrogen peroxide oxidation and glutathionylation. Chem. Sci. 2013, 4, 1257–1269. [Google Scholar] [CrossRef]
- Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.C.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis. Cell 2006, 126, 107–120. [Google Scholar] [CrossRef] [Green Version]
- White, E. Autophagy and p53. Cold Spring Harb. Perspect. Med. 2016, 6, a026120. [Google Scholar] [CrossRef] [PubMed]
- Morselli, E.; Tasdemir, E.; Maiuri, M.C.; Galluzzi, L.; Kepp, O.; Criollo, A.; Vicencio, J.M.; Soussi, T.; Kroemer, G. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 2008, 7, 3056–3061. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Y.; Song, L.; Yu, L.; Zhang, L.; Zhang, Y.; Xing, Y.; Yin, Y.; Ma, H. SIRT3 deficiency exacerbates p53/Parkinmediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. Int. J. Mol. Med. 2018, 41, 3517–3526. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Lambert, P.F.; Rapraeger, A.C.; Anderson, R.A. Stress-Induced EGFR Trafficking: Mechanisms, Functions, and Therapeutic Implications. Trends Cell Biol. 2016, 26, 352–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernales, S.; Papa, F.R.; Walter, P. Intracellular signaling by the unfolded protein response. Annu. Rev. Cell Dev. Biol. 2006, 22, 487–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehgal, P.; Szalai, P.; Olesen, C.; Praetorius, H.A.; Nissen, P.; Christensen, S.B.; Engedal, N.; Moller, J.V. Inhibition of the sarco/endoplasmic reticulum (ER) Ca(2+)-ATPase by thapsigargin analogs induces cell death via ER Ca(2+) depletion and the unfolded protein response. J. Biol. Chem. 2017, 292, 19656–19673. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, C.; Baldassari, F.; Bononi, A.; Bonora, M.; De Marchi, E.; Marchi, S.; Missiroli, S.; Patergnani, S.; Rimessi, A.; Suski, J.M.; et al. Mitochondrial Ca(2+) and apoptosis. Cell Calcium 2012, 52, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Orrenius, S.; Zhivotovsky, B.; Nicotera, P. Regulation of cell death: The calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 2003, 4, 552–565. [Google Scholar] [CrossRef]
- Mattson, M.P.; Chan, S.L. Calcium orchestrates apoptosis. Nat. Cell Biol. 2003, 5, 1041–1043. [Google Scholar] [CrossRef] [Green Version]
- Clapham, D.E. Calcium signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef] [Green Version]
- Marchi, S.; Patergnani, S.; Missiroli, S.; Morciano, G.; Rimessi, A.; Wieckowski, M.R.; Giorgi, C.; Pinton, P. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 2018, 69, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Follis, A.V.; Llambi, F.; Ou, L.; Baran, K.; Green, D.R.; Kriwacki, R.W. The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nat. Struct. Mol. Biol. 2014, 21, 535–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M.; Riemer, J. The Mitochondrial Disulfide Relay System: Roles in Oxidative Protein Folding and Beyond. Int. J. Cell Biol. 2013, 2013, 742923. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.; Kamp, W.M.; Li, J.; Liu, C.; Kang, J.G.; Wang, P.Y.; Hwang, P.M. Forkhead Box O3A (FOXO3) and the Mitochondrial Disulfide Relay Carrier (CHCHD4) Regulate p53 Protein Nuclear Activity in Response to Exercise. J. Biol. Chem. 2016, 291, 24819–24827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nithipongvanitch, R.; Ittarat, W.; Velez, J.M.; Zhao, R.; St Clair, D.K.; Oberley, T.D. Evidence for p53 as guardian of the cardiomyocyte mitochondrial genome following acute adriamycin treatment. J. Histochem. Cytochem. 2007, 55, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Zhuang, J.; Li, J.; Hwang, P.M. p53 as guardian of the mitochondrial genome. FEBS Lett. 2016, 590, 924–934. [Google Scholar] [CrossRef]
- Alavian, K.N.; Beutner, G.; Lazrove, E.; Sacchetti, S.; Park, H.A.; Licznerski, P.; Li, H.; Nabili, P.; Hockensmith, K.; Graham, M.; et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc. Natl. Acad. Sci. USA 2014, 111, 10580–10585. [Google Scholar] [CrossRef] [Green Version]
- Giorgio, V.; Bisetto, E.; Soriano, M.E.; Dabbeni-Sala, F.; Basso, E.; Petronilli, V.; Forte, M.A.; Bernardi, P.; Lippe, G. Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J. Biol. Chem. 2009, 284, 33982–33988. [Google Scholar] [CrossRef] [Green Version]
- Falcicchio, M.; Ward, J.A.; Macip, S.; Doveston, R.G. Regulation of p53 by the 14-3-3 protein interaction network: New opportunities for drug discovery in cancer. Cell Death Discov. 2020, 6, 126. [Google Scholar] [CrossRef]
- Nakano, K.; Balint, E.; Ashcroft, M.; Vousden, K.H. A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene 2000, 19, 4283–4289. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhou, B.; Xue, L.; Shih, J.; Tye, K.; Qi, C.; Yen, Y. The ribonucleotide reductase subunit M2B subcellular localization and functional importance for DNA replication in physiological growth of KB cells. Biochem. Pharmacol. 2005, 70, 1288–1297. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Arakawa, H.; Yamaguchi, T.; Shiraishi, K.; Fukuda, S.; Matsui, K.; Takei, Y.; Nakamura, Y. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 2000, 404, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Matsuda, K.; Sagiya, Y.; Iwadate, M.; Fujino, M.A.; Nakamura, Y.; Arakawa, H. p53R2-dependent pathway for DNA synthesis in a p53-regulated cell cycle checkpoint. Cancer Res. 2001, 61, 8256–8262. [Google Scholar] [PubMed]
- Niida, H.; Katsuno, Y.; Sengoku, M.; Shimada, M.; Yukawa, M.; Ikura, M.; Ikura, T.; Kohno, K.; Shima, H.; Suzuki, H.; et al. Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev. 2010, 24, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Pontarin, G.; Fijolek, A.; Pizzo, P.; Ferraro, P.; Rampazzo, C.; Pozzan, T.; Thelander, L.; Reichard, P.A.; Bianchi, V. Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc. Natl. Acad. Sci. USA 2008, 105, 17801–17806. [Google Scholar] [CrossRef] [Green Version]
- Niida, H.; Shimada, M.; Murakami, H.; Nakanishi, M. Mechanisms of dNTP supply that play an essential role in maintaining genome integrity in eukaryotic cells. Cancer Sci. 2010, 101, 2505–2509. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, H.B.; Piao, C.; Kang, M.Y.; Park, S.G.; Kim, S.W.; Lee, J.H. p53R2 regulates thioredoxin reductase activity through interaction with TrxR2. Biochem. Biophys. Res. Commun. 2017, 482, 706–712. [Google Scholar] [CrossRef]
- Folda, A.; Citta, A.; Scalcon, V.; Cali, T.; Zonta, F.; Scutari, G.; Bindoli, A.; Rigobello, M.P. Mitochondrial Thioredoxin System as a Modulator of Cyclophilin D Redox State. Sci. Rep. 2016, 6, 23071. [Google Scholar] [CrossRef] [Green Version]
- Bourdon, A.; Minai, L.; Serre, V.; Jais, J.P.; Sarzi, E.; Aubert, S.; Chretien, D.; de Lonlay, P.; Paquis-Flucklinger, V.; Arakawa, H.; et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 2007, 39, 776–780. [Google Scholar] [CrossRef]
- Toledano, M.B.; Delaunay, A.; Monceau, L.; Tacnet, F. Microbial H2O2 sensors as archetypical redox signaling modules. Trends Biochem. Sci. 2004, 29, 351–357. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavileyskiy, L.; Bunik, V. Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Biomolecules 2022, 12, 327. https://doi.org/10.3390/biom12020327
Zavileyskiy L, Bunik V. Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Biomolecules. 2022; 12(2):327. https://doi.org/10.3390/biom12020327
Chicago/Turabian StyleZavileyskiy, Lev, and Victoria Bunik. 2022. "Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes" Biomolecules 12, no. 2: 327. https://doi.org/10.3390/biom12020327
APA StyleZavileyskiy, L., & Bunik, V. (2022). Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Biomolecules, 12(2), 327. https://doi.org/10.3390/biom12020327