Assessment of Two Different Glucagon Assays in Healthy Individuals and Type 1 and Type 2 Diabetes Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Experimental Procedures
2.3. Calculations and Statistics
3. Results
3.1. Assessment of Baseline Characteristics
3.2. Assessment of Fasting Glucagon Levels for Healthy Individuals and T1D and T2D Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, J.N.; Ramracheya, R.; Zhang, Q.; Johnson, P.R.V.; Braun, M.; Rorsman, P. Regulation of glucagon secretion by glucose: Paracrine, intrinsic or both? Diabetes Obes. Metab. 2011, 13 (Suppl. 1), 95–105. [Google Scholar] [CrossRef] [PubMed]
- Gromada, J.; Chabosseau, P.; Rutter, G.A. The α-cell in diabetes mellitus. Nat. Rev. Endocrinol. 2018, 14, 694–704. [Google Scholar] [CrossRef]
- Edgerton, D.S.; Cherrington, A.D. Glucagon’s yin and yang effects on hepatic glucose production. Nat. Med. 2013, 19, 674–675. [Google Scholar] [CrossRef] [PubMed]
- Zenz, S.; Mader, J.K.; Regittnig, W.; Brunner, M.; Korsatko, S.; Boulgaropoulos, B.; Magnes, C.; Raml, R.; Narath, S.H.; Pieber, T.R.; et al. Impact of C-Peptide Status on the Response of Glucagon and Endogenous Glucose Production to Induced Hypoglycemia in T1DM. J. Clin. Endocrinol. Metab. 2018, 103, 1408–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raskin, P.; Unger, R.H. Effect of insulin therapy on the profiles of plasma immunoreactive glucagon in juvenile-type and adult-type diabetics. Diabetes 1978, 27, 411–419. [Google Scholar] [CrossRef]
- Lee, Y.H.; Wang, M.Y.; Yu, X.X.; Unger, R.H. Glucagon is the key factor in the development of diabetes. Diabetologia 2016, 59, 1372–1375. [Google Scholar] [CrossRef] [Green Version]
- Bisgaard Bengtsen, M.; Møller, N. Mini-review: Glucagon responses in type 1 diabetes—A matter of complexity. Physiol. Rep. 2021, 9, e15009. [Google Scholar] [CrossRef]
- Hædersdal, S.; Lund, A.; Knop, F.K.; Vilsbøll, T. The Role of Glucagon in the Pathophysiology and Treatment of Type 2 Diabetes. Mayo Clin. Proc. 2018, 93, 217–239. [Google Scholar] [CrossRef] [Green Version]
- Færch, K.; Vistisen, D.; Pacini, G.; Torekov, S.S.; Johansen, N.B.; Witte, D.R.; Jonsson, A.; Pedersen, O.; Hansen, T.; Lauritzen, T.; et al. Insulin resistance is accompanied by increased fasting glucagon and delayed glucagon suppression in individuals with normal and impaired glucose regulation. Diabetes 2016, 65, 3473–3481. [Google Scholar] [CrossRef] [Green Version]
- Knop, F.K.; Aaboe, K.; Vilsbøll, T.; Vølund, A.; Holst, J.J.; Krarup, T.; Madsbad, S. Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabetes Obes. Metab. 2012, 14, 500–510. [Google Scholar] [CrossRef]
- Demant, M.; Bagger, J.I.; Suppli, M.P.; Lund, A.; Gyldenløve, M.; Hansen, K.B.; Hare, K.J.; Christensen, M.; Sonne, D.P.; Holst, J.J.; et al. Determinants of Fasting Hyperglucagonemia in Patients with Type 2 Diabetes and Nondiabetic Control Subjects. Metab. Syndr. Relat. Disord. 2018, 16, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Albrechtsen, N.J.W.; Veedfald, S.; Plamboeck, A.; Deacon, C.F.; Hartmann, B.; Knop, F.K.; Vilsboll, T.; Holst, J.J. Inability of Some Commercial Assays to Measure Suppression of Glucagon Secretion. J. Diabetes Res. 2016, 2016, 83529. [Google Scholar] [CrossRef]
- Bataille, D.; Blache, P.; Mercier, F.; Jarrousse, C.; Kervran, A.; Dufour, M.; Mangeat, P.; Dubrasquet, M.; Mallat, A.; Lotersztajn, S.; et al. Glucagon and related peptides. Molecular structure and biological specificity. Ann. N. Y. Acad. Sci. 1988, 527, 168–185. [Google Scholar] [CrossRef] [PubMed]
- Bromer, W.; Sinn, L.; Staub, A.; Behrens, O.K. The amino acid sequence of glucagon. Diabetes 1957, 6, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J.; Bersani, M.; Johnsen, A.H.; Kofod, H.; Hartmann, B.; Orskov, C. Proglucagon processing in porcine and human pancreas. J. Biol. Chem. 1994, 269, 18827–18833. [Google Scholar] [CrossRef]
- Holst, J.J.; Wewer Albrechtsen, N.J.; Gabe, M.B.N.; Rosenkilde, M.M. Oxyntomodulin: Actions and role in diabetes. Peptides 2018, 100, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Wewer Albrechtsen, N.J.; Kuhre, R.E.; Pedersen, J.; Knop, F.K.; Holst, J.J. The biology of glucagon and the consequences of hyperglucagonemia. Biomark. Med. 2016, 10, 1141–1151. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, D.A.; D’Alessio, D.A. Physiology of Proglucagon Peptides: Role of Glucagon and GLP-1 in Health and Disease. Physiol. Rev. 2015, 95, 513–548. [Google Scholar] [CrossRef] [Green Version]
- Knop, F.K. EJE PRIZE 2018: A gut feeling about glucagon. Eur. J. Endocrinol. 2018, 178, R267–R280. [Google Scholar] [CrossRef] [Green Version]
- Albrechtsen, N.J.W.; Bak, M.J.; Hartmann, B.; Christensen, L.W.; Kuhre, R.E.; Deacon, C.F.; Holst, J.J. Stability of glucagon-like peptide 1 and glucagon in human plasma. Endocr. Connect. 2015, 4, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Holst, J.J.; Wewer Albrechtsen, N.J. Methods and Guidelines for Measurement of Glucagon in Plasma. Int. J. Mol. Sci. 2019, 20, 5416. [Google Scholar] [CrossRef] [PubMed]
- Cegla, J.; Jones, B.J.; Howard, J.; Kay, R.; Creaser, C.S.; Bloom, S.R.; Tan, T.M. The preanalytical stability of glucagon as measured by liquid chromatography tandem mass spectrometry and two commercially available immunoassays. Ann. Clin. Biochem. 2017, 54, 293–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinke, S.A.; Pospisilik, J.A.; Demuth, H.U.; Mannhart, S.; Kühn-Wache, K.; Hoffmann, T.; Nishimura, E.; Pederson, R.A.; McIntosh, C.H.S. Dipeptidyl Peptidase IV DPIV/CD26) Degradation of Glucagon. J. Biol. Chem. 2000, 275, 3827–3834. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.W.; Kay, R.G.; Tan, T.; Minnion, J.; Creaser, C.S. Identification of plasma protease derived metabolites of glucagon and their formation under typical laboratory sample handling conditions. Rapid. Commun. Mass Spectrom. 2015, 29, 171–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmen, J.M.; Heijboer, A.C.; de Jong, S.M.; Endert, E. Glucagon stability anno 2014. Clin. Chim. Acta 2015, 440, 1–2. [Google Scholar] [CrossRef]
- Wewer Albrechtsen, N.J.; Hartmann, B.; Veedfald, S.; Windeløv, J.A.; Plamboeck, A.; Bojsen-Møller, K.N.; Idorn, T.; Feldt-Rasmussen, B.; Knop, F.K.; Holst, J.J.; et al. Hyperglucagonaemia analysed by glucagon sandwich ELISA: Nonspecific interference or truly elevated levels? Diabetologia 2014, 57, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Warunek, D.; Craft, D. Degradation and Stabilization of Peptide Hormones in Human Blood Specimens. PLoS ONE 2015, 10, e0134427. [Google Scholar] [CrossRef]
- Brunner, M.; Raml, R.; Mautner, S.; Zenz, S.; Lipp, R.; Pieber, T.R. Latest News on Glucagon Stability. In Proceedings of the 77th Scientific Sessions, American Diabetes Association (ADA), San Diego, CA, USA, 9–13 June 2017. [Google Scholar]
- World Medical Association. Declaration of Helsinki. Ethical principles for medical research involving human subjects. J. Indian. Med. Assoc. 2009, 107, 403–405. [Google Scholar]
- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH harmonized tripartite guideline: Guideline for good clinical practice. J. Postgrad. Med. 2009, 47, 45–50. [Google Scholar]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42 (Suppl. 1), S13–S28. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, R.; Takano, K.; Fujimoto, K.; Motomiya, T.; Kobayashi, M.; Kitamura, T.; Shichiri, M. Basal glucagon hypersecretion and response to oral glucose load in prediabetes and mild type 2 diabetes. Endocr. J. 2019, 66, 663–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosokawa, Y.; Kozawa, J.; Nishizawa, H.; Kawamori, D.; Maeda, N.; Otsuki, M.; Matsuoka, T.-A.; Iwahashi, H.; Shimomura, I. Positive correlation between fasting plasma glucagon and serum C-peptide in Japanese patients with diabetes. Heliyon 2019, 5, e01715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, T.; Miyagawa, J.; Kusunoki, Y.; Miuchi, M.; Ikawa, T.; Akagami, T.; Tokuda, M.; Katsuno, T.; Kushida, A.; Inagaki, T.; et al. Postabsorptive hyperglucagonemia in patients with type 2 diabetes mellitus analyzed with a novel enzyme-linked immunosorbent assay. J. Diabetes Investig. 2016, 7, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Bak, M.J.; Albrechtsen, N.W.; Pedersen, J.; Hartmann, B.; Christensen, M.; Vilsbøll, T.; Knop, F.K.; Deacon, C.F.; O Dragsted, L.; Holst, J.J. Specificity and sensitivity of commercially available assays for glucagon and oxyntomodulin measurement in humans. Eur. J. Endocrinol. 2014, 170, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, Y.; Hosojima, M.; Kabasawa, H.; Tanabe, N.; Miyachi, A.; Hamajima, H.; Mieno, E.; Kobayashi, M.; Kitamura, T.; Narita, I.; et al. Measurement of Plasma Glucagon Levels Using Mass Spectrometry in Patients with Type 2 Diabetes on Maintenance Hemodialysis. Kidney Blood Press Res. 2021, 46, 652–656. [Google Scholar] [CrossRef]
- Kawamori, D.; Katakami, N.; Takahara, M.; Miyashita, K.; Sakamoto, F.; Yasuda, T.; Matsuoka, T.-A.; Shimomura, I. Dysregulated plasma glucagon levels in Japanese young adult type 1 diabetes patients. J. Diabetes Investig. 2019, 10, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Satoh, H.; Matsuo, T.; Kusunoki, Y.; Tokushima, M.; Watada, H.; Namba, M.; Kitamura, T. Plasma glucagon levels measured by sandwich ELISA are correlated with impaired glucose tolerance in type 2 diabetes. Endocr. J. 2020, 67, 903–922. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J. From the Incretin Concept and the Discovery of GLP-1 to Today’s Diabetes Therapy. Front. Endocrinol. 2019, 10, 260. [Google Scholar] [CrossRef]
Healthy (n = 20) | Type 1 Diabetes (n = 20) | Type 2 Diabetes (n = 20) | p-Value | |
---|---|---|---|---|
Sex (male/female) | 7/13 | 15/5 # | 12/8 | 0.035 |
Age (years) | 29.5 ± 6.5 | 35.5 ± 15.6 | 63.6 ± 8.9 * | 0.000 |
Fasting plasma glucose (mg/dL) | 87 ± 5 | 161 ± 59 # | 168 ± 57 # | 0.000 |
Diabetes duration (years) | - | 18.2 ± 11.9 | 19.3 ± 10.2 | |
HbA1c (mmol/mol) | - | 71 ± 17 | 64 ± 14 | |
Types of therapy (%) | ||||
Insulin | 100 | 80 | ||
Metformin | 0 | 55 | ||
DPP IV inhibitor | 0 | 35 | ||
SGLT-2 inhibitor | 0 | 10 | ||
Sulfonylurea/Glinide | 0 | 10/5 | ||
GLP1-RA | 0 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunner, M.; Moser, O.; Raml, R.; Haberlander, M.; Boulgaropoulos, B.; Obermayer-Pietsch, B.; Svehlikova, E.; Pieber, T.R.; Sourij, H. Assessment of Two Different Glucagon Assays in Healthy Individuals and Type 1 and Type 2 Diabetes Patients. Biomolecules 2022, 12, 466. https://doi.org/10.3390/biom12030466
Brunner M, Moser O, Raml R, Haberlander M, Boulgaropoulos B, Obermayer-Pietsch B, Svehlikova E, Pieber TR, Sourij H. Assessment of Two Different Glucagon Assays in Healthy Individuals and Type 1 and Type 2 Diabetes Patients. Biomolecules. 2022; 12(3):466. https://doi.org/10.3390/biom12030466
Chicago/Turabian StyleBrunner, Martina, Othmar Moser, Reingard Raml, Maximilian Haberlander, Beate Boulgaropoulos, Barbara Obermayer-Pietsch, Eva Svehlikova, Thomas R. Pieber, and Harald Sourij. 2022. "Assessment of Two Different Glucagon Assays in Healthy Individuals and Type 1 and Type 2 Diabetes Patients" Biomolecules 12, no. 3: 466. https://doi.org/10.3390/biom12030466
APA StyleBrunner, M., Moser, O., Raml, R., Haberlander, M., Boulgaropoulos, B., Obermayer-Pietsch, B., Svehlikova, E., Pieber, T. R., & Sourij, H. (2022). Assessment of Two Different Glucagon Assays in Healthy Individuals and Type 1 and Type 2 Diabetes Patients. Biomolecules, 12(3), 466. https://doi.org/10.3390/biom12030466