Endocan in Acute Leukemia: Current Knowledge and Future Perspectives
Abstract
:1. Introduction
2. The Structure and Function of Endocan
3. Bone Marrow Expression of Endocan
4. Systemic Endocan and p14 Endocan Fragment Levels in Untreated Acute Leukemia
4.1. Only Endocan but Not p14 Fragment Levels Show a General Increase but with a Wide Variation in Patients with Untreated Disease
4.2. Serum Endocan Levels Show a Wide Variation at the Time of Diagnosis for Many Human Malignancies and High Levels Are Often Associated with Adverse Prognosis
4.3. Angiogenesis and Cancer-Associated Inflammation; Common Characteristics of Acute Leukemias and Solid Tumors and Possible Mechanisms behind the Prognosictic Impact of Endocan in Cancers
5. Systemic Levels of Endocan and the p14 Endocan Fragment in Acute Leukemia Patients with Severe Chemotherapy-Induced Bone Marrow Failure
5.1. Systemic Endocan Levels Are Decreased Following Intensive Chemotherapy but Increase as a Part of the Acute Phase Reaction during Febrile Neutropenia
- Endocan levels are generally increased in untreated acute leukemia [3], whereas the p14 endocan fragment levels do not seem to show a similar general increase (see Section 4.1).
- The results presented in Table S1 showed low levels of the p14 endocan fragment in healthy controls and this is similar to previous studies [31,32]. Acute leukemia patients with chemotherapy-induced cytopenia also showed low levels of p14 endocan, even lower than the healthy controls (Table S1). The p14 endocan levels did not increase even during febrile neutropenia due to bacterial infections (Table S1), and this is also different from the endocan levels that increase during febrile neutropenia similar to the acute phase marker C-reactive protein [3].
- Several patients in complete hematological remission after intensive conventional chemotherapy still show increased endocan levels [77], whereas decreased p14 endocan fragment levels are observed even when patients have reached disease control, i.e., after induction of complete hematological remission (Table S1).
5.2. The Possible Prognostic Impact of Systemic Endocan Levels in Acute Leukemia Patients with Chemotherapy-Induced Bone Marrow Failure and Complicating Infections
6. Endocan and p14 Endocan Fragment Serum Levels in Acute Leukemia Patients Reaching Complete Hematological Remission after Intensive Chemotherapy
7. Endocan and Inflammation: General Mechanisms with a Possible Relevance for the Clinical Course after Allogeneic Stem Cell Transplantation
7.1. Modulation of Systemic Endocan Levels by Nonmalignant Diseases
7.2. Endocan in the Long-Term Follow-Up of Acute Leukemia Patients—Systemic Endocan Level as a Sign of Endothelial Dysfunction and a Cardiovascular Risk Factor
7.3. Endocan Levels in Solid Organ Transplantation and in Cytokine Release Syndromes: Possible Biological Relevance for Allogeneic Stem Cell Transplant Recipients
8. The Possible Prognostic Impact of Endocan in Allogeneic Stem Cell Transplantation
9. Endocan and Other Markers of Endothelial Dysfunction in Allogeneic Stem Cell Transplantation
- Extensive fluid overload has a prognostic impact not only for patients receiving matched family donors but also for haploidentical stem cell grafts and for patients receiving HLA matched stem cell grafts in general [127]. Fluid overload seems to be more common in haploidentical transplantation [127].
- Fluid overload was also associated with increased nonrelapse mortality in patients allotransplanted with CD34+ enriched cells and GVHD prophylaxis without the use of calcineurin inhibitors [128].
- The adverse prognostic impact with increased nonrelapse mortality has also been observed in allotransplanted children [129].
- Severe fluid overload is also associated with nonrelapse mortality in cord blood transplantation [132].
- The Endothelial Activation and Stress Index (EASIX) is defined as lactate dehydrogenase (U/L) × creatinine (mg/dL)/platelets (109 cells/L), and high EASIX at admission was a significant predictor of grade ≥2 fluid overload together with body weight below 80 kg in recipients older than 55 years, and with diabetes [133]. A high EASIX index also predicted severe posttransplant complications and transfer to intensive care units [134].
10. Pharmacological Targeting of Endocan
11. Summarizing Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Geng, H.; Ji, L.; Ma, X.; Yin, Q.; Xiong, H. ESM-1: A Novel Tumor Biomaker and its Research Advances. Anticancer Agents Med. Chem. 2019, 19, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- De Freitas Caires, N.; Gaudet, A.; Portier, L.; Tsicopoulos, A.; Mathieu, D.; Lassalle, P. Endocan, sepsis, pneumonia, and acute respiratory distress syndrome. Crit. Care 2018, 22, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatfield, K.J.; Lassalle, P.; Leiva, R.A.; Lindås, R.; Wendelbo, Ø.; Bruserud, Ø. Serum levels of endothelium-derived endocan are increased in patients with untreated acute myeloid leukemia. Hematology 2011, 16, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Bruserud, Ø.; Aarstad, H.H.; Tvedt, T.H.A. Combined C-Reactive Protein and Novel Inflammatory Parameters as a Predictor in Cancer-What Can We Learn from the Hematological Experience? Cancers 2020, 12, 1966. [Google Scholar] [CrossRef]
- Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Aarstad, H.H.; Moe, S.E.E.; Bruserud, Ø.; Lybak, S.; Aarstad, H.J.; Tvedt, T.H.A. The Acute Phase Reaction and Its Prognostic Impact in Patients with Head and Neck Squamous Cell Carcinoma: Single Biomarkers Including C-Reactive Protein versus Biomarker Profiles. Biomedicines 2020, 8, 418. [Google Scholar] [CrossRef]
- Aarstad, H.H.; Guðbrandsdottir, G.; Hjelle, K.M.; Bostad, L.; Bruserud, Ø.; Tvedt, T.H.A.; Beisland, C. The Biological Context of C-Reactive Protein as a Prognostic Marker in Renal Cell Carcinoma: Studies on the Acute Phase Cytokine Profile. Cancers 2020, 12, 1961. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood J. Am. Soc. Hematol. 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Wenzinger, C.; Williams, E.; Gru, A.A. Updates in the Pathology of Precursor Lymphoid Neoplasms in the Revised Fourth Edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Curr. Hematol. Malig. Rep. 2018, 13, 275–288. [Google Scholar] [CrossRef]
- Reikvam, H.; Hatfield, K.J.; Fredly, H.; Nepstad, I.; Mosevoll, K.A.; Bruserud, Ø. The angioregulatory cytokine network in human acute myeloid leukemia—From leukemogenesis via remission induction to stem cell transplantation. Eur. Cytokine Netw. 2012, 23, 140–153. [Google Scholar] [CrossRef]
- Todorovic, M.; Radisavljevic, Z.; Balint, B.; Andjelic, B.; Todorovic, V.; Jovanovic, M.P.; Mihaljevic, B. Increased angiogenesis-associated poor outcome in acute lymphoblastic leukemia: A single center study. Appl. Immunohistochem. Mol. Morphol. 2012, 20, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Perez-Atayde, A.R.; Sallan, S.E.; Tedrow, U.; Connors, S.; Allred, E.; Folkman, J. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am. J. Pathol. 1997, 150, 815–821. [Google Scholar] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood J. Am. Soc. Hematol. 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavralidis, A.; Brunner, A.M. Novel Therapies in the Treatment of Adult Acute Lymphoblastic Leukemia. Curr. Hematol. Malig. Rep. 2020, 15, 294–304. [Google Scholar] [CrossRef]
- DeAngelo, D.J.; Jabbour, E.; Advani, A. Recent Advances in Managing Acute Lymphoblastic Leukemia. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 330–342. [Google Scholar] [CrossRef]
- Brattås, M.K.; Reikvam, H.; Tvedt, T.H.A.; Bruserud, Ø. Dasatinib as an investigational drug for the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults. Expert Opin. Investig. Drugs 2019, 28, 411–420. [Google Scholar] [CrossRef]
- Tvedt, T.H.; Nepstad, I.; Bruserud, Ø. Antileukemic effects of midostaurin in acute myeloid leukemia—The possible importance of multikinase inhibition in leukemic as well as nonleukemic stromal cells. Expert Opin. Investig. Drugs 2017, 26, 343–355. [Google Scholar] [CrossRef]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood J. Am. Soc. Hematol. 2019, 133, 1630–1643. [Google Scholar] [CrossRef] [Green Version]
- Kechagia, M.; Papassotiriou, I.; Gourgoulianis, K.I. Endocan and the respiratory system: A review. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 3179–3187. [Google Scholar] [CrossRef] [Green Version]
- Scherpereel, A.; Gentina, T.; Grigoriu, B.; Sénéchal, S.; Janin, A.; Tsicopoulos, A.; Plénat, F.; Béchard, D.; Tonnel, A.B.; Lassalle, P. Overexpression of endocan induces tumor formation. Cancer Res. 2003, 63, 6084–6089. [Google Scholar]
- Depontieu, F.; Grigoriu, B.D.; Scherpereel, A.; Adam, E.; Delehedde, M.; Gosset, P.; Lassalle, P. Loss of Endocan tumorigenic properties after alternative splicing of exon 2. BMC Cancer 2008, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebollo, J.; Geliebter, J.; Reyes, N. ESM-1 siRNA Knockdown Decreased Migration and Expression of CXCL3 in Prostate Cancer Cells. Int. J. Biomed. Sci. 2017, 13, 35–42. [Google Scholar] [PubMed]
- Leite, A.R.; Borges-Canha, M.; Cardoso, R.; Neves, J.S.; Castro-Ferreira, R.; Leite-Moreira, A. Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology 2020, 71, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Sarrazin, S.; Adam, E.; Lyon, M.; Depontieu, F.; Motte, V.; Landolfi, C.; Lortat-Jacob, H.; Bechard, D.; Lassalle, P.; Delehedde, M. Endocan or endothelial cell specific molecule-1 (ESM-1): A potential novel endothelial cell marker and a new target for cancer therapy. Biochim. Biophys. Acta Rev. Cancer 2006, 1765, 25–37. [Google Scholar] [CrossRef]
- Reikvam, H.; Hatfield, K.J.; Lassalle, P.; Kittang, A.O.; Ersvaer, E.; Bruserud, Ø. Targeting the angiopoietin (Ang)/Tie-2 pathway in the crosstalk between acute myeloid leukaemia and endothelial cells: Studies of Tie-2 blocking antibodies, exo1genous Ang-2 and inhibition of constitutive agonistic Ang-1 release. Expert Opin. Investig. Drugs 2010, 19, 169–183. [Google Scholar] [CrossRef]
- Akwii, R.G.; Sajib, M.S.; Zahra, F.T.; Mikelis, C.M. Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells 2019, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Johansen, S.; Brenner, A.K.; Bartaula-Brevik, S.; Reikvam, H.; Bruserud, Ø. The Possible Importance of β3 Integrins for Leukemogenesis and Chemoresistance in Acute Myeloid Leukemia. Int. J. Mol. Sci. 2018, 19, 251. [Google Scholar] [CrossRef] [Green Version]
- Madhivathanan, P.R.; Fletcher, N.; Gaze, D.; Thomson, R.; Chandrasekaran, V.; Al-Subaie, N.; Valencia, O.; Sharma, V. Perioperative kinetics of endocan in patients undergoing cardiac surgery with and without cardiopulmonary bypass. Cytokine 2016, 83, 8–12. [Google Scholar] [CrossRef]
- Bessa, J.; Albino-Teixeira, A.; Reina-Couto, M.; Sousa, T. Endocan: A novel biomarker for risk stratification, prognosis and therapeutic monitoring in human cardiovascular and renal diseases. Clin. Chim. Acta 2020, 509, 310–335. [Google Scholar] [CrossRef]
- De Freitas Caires, N.; Legendre, B.; Parmentier, E.; Scherpereel, A.; Tsicopoulos, A.; Mathieu, D.; Lassalle, P. Identification of a 14 kDa endocan fragment generated by cathepsin G, a novel circulating biomarker in patients with sepsis. J. Pharm. Biomed. Anal. 2013, 78, 45–51. [Google Scholar] [CrossRef]
- Gaudet, A.; Portier, L.; Mathieu, D.; Hureau, M.; Tsicopoulos, A.; Lassalle, P.; De Freitas Caires, N. Cleaved endocan acts as a biologic competitor of endocan in the control of ICAM-1-dependent leukocyte diapedesis. J. Leukoc. Biol. 2020, 107, 833–841. [Google Scholar] [CrossRef]
- Zafrani, L.; Resche-Rigon, M.; De Freitas Caires, N.; Gaudet, A.; Mathieu, D.; Parmentier-Decrucq, E.; Lemiale, V.; Mokart, D.; Pène, F.; Kouatchet, A.; et al. Endothelial Cell-Specific Molecule-1 in Critically Ill Patients with Hematologic Malignancy. Crit. Care Med. 2018, 46, e250–e257. [Google Scholar] [CrossRef]
- Abid, M.R.; Yi, X.; Yano, K.; Shih, S.C.; Aird, W.C. Vascular endocan is preferentially expressed in tumor endothelium. Microvasc. Res. 2006, 72, 136–145. [Google Scholar] [CrossRef]
- Zhang, S.M.; Zuo, L.; Zhou, Q.; Gui, S.Y.; Shi, R.; Wu, Q.; Wei, W.; Wang, Y. Expression and distribution of endocan in human tissues. Biotech. Histochem. 2012, 87, 172–178. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, S.; Zhou, Q.; Wang, Y.; Xia, R. Endocan, a potential prognostic and diagnostic biomarker of acute leukemia. Mol. Cell. Biochem. 2014, 395, 117–123. [Google Scholar] [CrossRef]
- Aasebø, E.; Brenner, A.K.; Hernandez-Valladares, M.; Birkeland, E.; Berven, F.S.; Selheim, F.; Bruserud, Ø. Proteomic Comparison of Bone Marrow Derived Osteoblasts and Mesenchymal Stem Cells. Int. J. Mol. Sci. 2021, 22, 5665. [Google Scholar] [CrossRef]
- Aasebø, E.; Brenner, A.K.; Birkeland, E.; Tvedt, T.H.A.; Selheim, F.; Berven, F.S.; Bruserud, Ø. The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells-A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells. Cancers 2021, 13, 1509. [Google Scholar] [CrossRef]
- Aasebø, E.; Birkeland, E.; Selheim, F.; Berven, F. Brenner, A.K.; Bruserud, Ø. The Extracellular Bone Marrow Microenvironment-A Proteomic Comparison of Constitutive Protein Release by In Vitro Cultured Osteoblasts and Mesenchymal Stem Cells. Cancers 2020, 13, 62. [Google Scholar] [CrossRef]
- Aasebø, E.; Brenner, A.K.; Hernandez-Valladares, M.; Birkeland, E.; Mjåvatn, O.; Reikvam, H.; Selheim, F.S.; Berven, F.S.; Bruserud, Ø. Patient Heterogeneity in Acute Myeloid Leukemia: Leukemic Cell Communication by Release of Soluble Mediators and Its Effects on Mesenchymal Stem Cells. Diseases 2021, 9, 74. [Google Scholar] [CrossRef]
- Aasebø, E.; Brenner, A.K.; Hernandez-Valladares, M.; Birkeland, E.; Reikvam, H.; Selheim, F.; Berven, F.S.; Bruserud, Ø. Proteomic Characterization of Spontaneous Stress-Induced In Vitro Apoptosis of Human Acute Myeloid Leukemia Cells; Focus on Patient Heterogeneity and Endoplasmic Reticulum Stress. Hemato 2021, 2, 607–627. [Google Scholar] [CrossRef]
- Aasebø, E.; Berven, F.S.; Bartaula-Brevik, S.; Stokowy, T.; Hovland, R.; Vaudel, M.; Døskeland, S.O.; McCormack, E.; Batth, T.S.; Olsen, J.V.; et al. Proteome and Phosphoproteome Changes Associated with Prognosis in Acute Myeloid Leukemia. Cancers 2020, 12, 709. [Google Scholar] [CrossRef] [Green Version]
- Alatrash, G.; Garber, H.R.; Zhang, M.; Sukhumalchandra, P.; Qiu, Y.; Jakher, H.; Perakis, A.A.; Becker, L.; Yoo, S.Y.; Dwyer, K.C.; et al. Cathepsin G is broadly expressed in acute myeloid leukemia and is an effective immunotherapeutic target. Leukemia 2017, 31, 234–237. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Carmona, S.; Sukhumalchandra, P.; Roszik, J.; Philips, A.; Perakis, A.A.; Kerros, C.; Zhang, M.; Qiao, N.; John, L.S.S.; et al. Cathepsin G Is Expressed by Acute Lymphoblastic Leukemia and Is a Potential Immunotherapeutic Target. Front. Immunol. 2018, 8, 1975. [Google Scholar] [CrossRef]
- Yang, T.H.; St John, L.S.; Garber, H.R.; Kerros, C.; Ruisaard, K.E.; Clise-Dwyer, K.; Alatrash, G.; Ma, Q.; Molldrem, J.J. Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. J. Immunol. 2018, 201, 1389–1399. [Google Scholar] [CrossRef]
- Steger, B.; Floro, L.; Amberger, D.C.; Kroell, T.; Tischer, J.; Kolb, H.J.; Schmetzer, H.M. WT1, PRAME, and PR3 mRNA Expression in Acute Myeloid Leukemia (AML). J. Immunother. 2020, 43, 204–215. [Google Scholar] [CrossRef]
- Honnemyr, M.; Bruserud, Ø.; Brenner, A.K. The constitutive protease release by primary human acute myeloid leukemia cells. J. Cancer Res. Clin. Oncol. 2017, 143, 1985–1998. [Google Scholar] [CrossRef]
- Mirea, A.M.; Toonen, E.J.M.; van den Munckhof, I.; Munsterman, I.D.; Tjwa, E.T.T.L.; Jaeger, M.; Oosting, M.; Schraa, K.; Rutten, J.H.W.; van der Graaf, M.; et al. Increased proteinase 3 and neutrophil elastase plasma concentrations are associated with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. Mol. Med. 2019, 25, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhu, Z.; Liu, Z.; Yi, L.; Yang, Z.; Bian, W.; Chen, W.; Wang, S.; Li, G.; Li, A.; et al. Plasma Neutrophil Elastase and Elafin as Prognostic Biomarker for Acute Respiratory Distress Syndrome: A Multicenter Survival and Longitudinal Prospective Observation Study. Shock 2017, 48, 168–174. [Google Scholar] [CrossRef]
- Berger-Achituv, S.; Elhasid, R. Reduced Neutrophil Elastase Activity and Neutrophil Extracellular Traps in Pediatric Acute Myeloid Leukemia May Increase the Rate of Infections. J. Pediatr. Hematol. Oncol. 2018, 40, e248–e252. [Google Scholar] [CrossRef]
- Balta, S.; Balta, I.; Mikhailidis, D.P. Endocan: A new marker of endothelial function. Curr. Opin. Cardiol. 2021, 36, 462–468. [Google Scholar] [CrossRef]
- Huang, X.; Chen, C.; Wang, X.; Zhang, J.Y.; Ren, B.H.; Ma, D.W.; Xia, L.; Xu, X.Y.; Xu, L. Prognostic value of endocan expression in cancers: Evidence from meta-analysis. Onco Targets Ther. 2016, 9, 6297–6304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.Y.; Yeh, Y.C.; Chu, C.H.; Won, J.G.S.; Shyr, Y.M.; Chao, Y.; Li, C.P.; Wang, S.E.; Chen, M.H. Endocan expression is correlated with poor progression-free survival in patients with pancreatic neuroendocrine tumors. Medicine 2017, 96, e8262. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Pan, K.F.; Lee, W.J.; Chang, J.H.; Tan, P.; Gu, C.C.; Chang, W.M.; Yang, S.F.; Hsiao, M.; Hua, K.T.; et al. Circulating Proteoglycan Endocan Mediates EGFR-Driven Progression of Non-Small Cell Lung Cancer. Cancer Res. 2020, 80, 3292–3304. [Google Scholar] [CrossRef] [PubMed]
- Grigoriu, B.D.; Depontieu, F.; Scherpereel, A.; Gourcerol, D.; Devos, P.; Ouatas, T.; Lafitte, J.J.; Copin, M.C.; Tonnel, A.B.; Lassalle, P. Endocan expression and relationship with survival in human non-small cell lung cancer. Clin. Cancer Res. 2006, 12, 4575–4582. [Google Scholar] [CrossRef] [Green Version]
- El Behery, M.M.; Seksaka, M.A.; Ibrahiem, M.A.; Saleh, H.S.; El Alfy, Y. Clinicopathological correlation of endocan expression and survival in epithelial ovarian cancer. Arch. Gynecol. Obstet. 2013, 288, 1371–1376. [Google Scholar] [CrossRef]
- Hendrix, M.J.; Seftor, E.A.; Hess, A.R.; Seftor, R.E. Molecular plasticity of human melanoma cells. Oncogene 2003, 22, 3070–3075. [Google Scholar] [CrossRef] [Green Version]
- Arslan, B.; Onuk, Ö.; Hazar, İ.; Aydın, M.; Çilesiz, N.C.; Eroglu, A.; Nuhoglu, B. Prognostic value of endocan in prostate cancer: Clinicopathologic association between serum endocan levels and biochemical recurrence after radical prostatectomy. Tumori J. 2017, 103, 204–208. [Google Scholar] [CrossRef]
- Reikvam, H.; Fredly, H.; Kittang, A.O.; Bruserud, Ø. The possible diagnostic and prognostic use of systemic chemokine profiles in clinical medicine—the experience in acute myeloid leukemia from disease development and diagnosis via conventional chemotherapy to allogeneic stem cell transplantation. Toxins 2013, 5, 336–362. [Google Scholar] [CrossRef] [Green Version]
- Faderl, S.; Do, K.A.; Johnson, M.M.; Keating, M.; O’brien, S.; Jilani, I.; Ferrajoli, A.; Ravandi-Kashani, F.; Aguilar, C.; Dey, A.; et al. Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia. Blood J. Am. Soc. Hematol. 2005, 106, 4303–4307. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yang, Q.; Yu, S.; Zhang, X. Endocan: A new marker for cancer and a target for cancer therapy. Biomed. Rep. 2015, 3, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, X.; Fan, X.; Li, D.; Qiao, Z. Effect of ICAM-1 and LFA-1 in hyperleukocytic acute myeloid leukaemia. Clin. Lab. Haematol. 2006, 28, 177–182. [Google Scholar] [CrossRef]
- Graf, M.; Reif, S.; Hecht, K.; Pelka-Fleischer, R.; Kroell, T.; Pfister, K.; Schmetzer, H. High expression of costimulatory molecules correlates with low relapse-free survival probability in acute myeloid leukemia (AML). Ann. Hematol. 2005, 84, 287–297. [Google Scholar] [CrossRef]
- Winter, S.S.; Sweatman, J.J.; Lawrence, M.B.; Rhoades, T.H.; Hart, A.L.; Larson, R.S. Enhanced T-lineage acute lymphoblastic leukaemia cell survival on bone marrow stroma requires involvement of LFA-1 and ICAM-1. Br. J. Haematol. 2001, 115, 862–871. [Google Scholar] [CrossRef]
- Mielcarek, M.; Sperling, C.; Schrappe, M.; Meyer, U.; Riehm, H.; Ludwig, W.D. Expression of intercellular adhesion molecule 1 (ICAM-1) in childhood acute lymphoblastic leukaemia: Correlation with clinical features and outcome. Br. J. Haematol. 1997, 96, 301–307. [Google Scholar] [CrossRef]
- Dennig, D.; Lacerda, J.; Yan, Y.; Gasparetto, C.; O’Reilly, R.J. ICAM-1 (CD54) expression on B lymphocytes is associated with their costimulatory function and can be increased by coactivation with IL-1 and IL-7. Cell. Immunol. 1994, 156, 414–423. [Google Scholar] [CrossRef]
- Hariprabu, K.N.G.; Sathya, M.; Vimalraj, S. CRISPR/Cas9 in cancer therapy: A review with a special focus on tumor angiogenesis. Int. J. Biol. Macromol. 2021, 192, 913–930. [Google Scholar] [CrossRef]
- Pimenta, D.B.; Varela, V.A.; Datoguia, T.S.; Caraciolo, V.B.; Lopes, G.H.; Pereira, W.O. The Bone Marrow Microenvironment Mechanisms in Acute Myeloid Leukemia. Front. Cell. Dev. Biol. 2021, 9, 3164. [Google Scholar] [CrossRef]
- Al-Matary, Y.S.; Botezatu, L.; Opalka, B.; Hönes, J.M.; Lams, R.F.; Thivakaran, A.; Schütte, J.; Köster, R.; Lennartz, K.; Schroeder, T.; et al. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner. Haematologica 2016, 101, 1216–1227. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Wu, H.; Bu, X.; Li, W.; Cai, S.; Du, M.; Gao, Y.; Ping, B. Establishment of Prognosis Model in Acute Myeloid Leukemia Based on Hypoxia Microenvironment, and Exploration of Hypoxia-Related Mechanisms. Front. Genet. 2021, 12, 1945. [Google Scholar] [CrossRef]
- Ciciarello, M.; Corradi, G.; Forte, D.; Cavo, M.; Curti, A. Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance? Cancers 2021, 13, 5319. [Google Scholar] [CrossRef]
- Soto, C.A.; Lo Celso, C.; Purton, L.E.; Frisch, B.J. From the niche to malignant hematopoiesis and back: Reciprocal interactions between leukemia and the bone marrow microenvironment. JBMR Plus 2021, 5, e10516. [Google Scholar] [CrossRef]
- Dou, L.; Shi, M.; Song, J.; Niu, X.; Niu, J.; Wei, S.; Li, D.; Bai, Y.; Sun, K. The Prognostic Significance of C-Reactive Protein to Albumin Ratio in Newly Diagnosed Acute Myeloid Leukaemia Patients. Cancer Manag. Res. 2022, 14, 303–316. [Google Scholar] [CrossRef]
- Heini, A.D.; Hugo, R.; Berger, M.D.; Novak, U.; Bacher, U.; Pabst, T. Simple acute phase protein score to predict long-term survival in patients with acute myeloid leukemia. Hematol. Oncol. 2020, 38, 74–81. [Google Scholar] [CrossRef]
- Tang, H.N.; Pan, B.H.; Wang, L.; Zhu, H.Y.; Fan, L.; Xu, W.; Li, J.Y. C-reactive protein-to-albumin ratio is an independent poor prognostic factor in newly diagnosed chronic lymphocytic leukaemia: A clinical analysis of 322 cases. Transl. Oncol. 2021, 14, 101035. [Google Scholar] [CrossRef]
- Herishanu, Y.; Polliack, A.; Shenhar-Tsarfaty, S.; Weinberger, R.; Gelman, R.; Ziv-Baran, T.; Zeltser, D.; Shapira, I.; Berliner, S.; Rogowski, O. Increased serum C-reactive protein levels are associated with shorter survival and development of second cancers in chronic lymphocytic leukemia. Ann. Med. 2017, 49, 75–82. [Google Scholar] [CrossRef]
- Troppan, K.T.; Schlick, K.; Deutsch, A.; Melchardt, T.; Egle, A.; Stojakovic, T.; Beham-Schmid, C.; Weiss, L.; Neureiter, D.; Wenzl, K.; et al. C-reactive protein level is a prognostic indicator for survival and improves the predictive ability of the R-IPI score in diffuse large B-cell lymphoma patients. Br. J. Cancer 2014, 111, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Lindås, R.; Tvedt, T.H.; Hatfield, K.J.; Reikvam, H.; Bruserud, Ø. Preconditioning serum levels of endothelial cell-derived molecules and the risk of posttransplant complications in patients treated with allogeneic stem cell transplantation. J. Transplant. 2014, 2014, 404096. [Google Scholar] [CrossRef] [Green Version]
- Kiral, E.; Dinleyici, E.C.; Bozkurt-Turhan, A.; Bor, O.; Akgun, Y.; Akgun, N.A. Serum Endocan Levels in Children with Febrile Neutropenia. Hematol. Rep. 2016, 8, 6110. [Google Scholar] [CrossRef] [Green Version]
- Gaudet, A.; Parmentier, E.; Dubucquoi, S.; Poissy, J.; Duburcq, T.; Lassalle, P.; De Freitas Caires, N.; Mathieu, D. Low endocan levels are predictive of Acute Respiratory Distress Syndrome in severe sepsis and septic shock. J. Crit. Care 2018, 47, 121–126. [Google Scholar] [CrossRef]
- Bruserud, Ø.; Akselen, P.E.; Bergheim, J.; Nesthus, I. Serum concentrations of E-selectin, P-selectin, ICAM-1 and interleukin 6 in acute leukaemia patients with chemotherapy-induced leucopenia and bacterial infections. Br. J. Haematol. 1995, 91, 394–402. [Google Scholar] [CrossRef]
- Bruserud, Ø.; Halstensen, A.; Peen, E.; Solberg, C.O. Serum levels of adhesion molecules and cytokines in patients with acute leukaemia. Leuk. Lymphoma 1996, 23, 423–430. [Google Scholar] [CrossRef]
- Gaudet, A.; Parmentier, E.; Dubucquoi, S.; Poissy, J.; Duburcq, T.; Portier, L.; Lassalle, P.; De Freitas Caires, N.; Mathieu, D. The complex kinetics of blood endocan during the time course of sepsis and acute respiratory distress syndrome. Crit. Care 2019, 23, 86. [Google Scholar] [CrossRef] [Green Version]
- Pascreau, T.; Tcherakian, C.; Zuber, B.; Farfour, E.; Vasse, M.; Lassalle, P. A high blood endocan profile during COVID-19 distinguishes moderate from severe acute respiratory distress syndrome. Crit. Care 2021, 25, 166. [Google Scholar] [CrossRef]
- Sherief, L.M.; Abd El-Khalek, E.R.; Libda, I.A.; Gaber, O.A.; Kamal, N.M.; Soliman, B.K.; Mokhtar, W.A.; Mokhtar, G.A.; Salah, H.E.; Kamar, G.M.; et al. Serum endocan and endothelial dysfunction in childhood acute lymphoblastic leukemia survivors: A tertiary center experience. Ther. Adv. Chronic Dis. 2021, 12, 20406223211015963. [Google Scholar] [CrossRef]
- Polak, J.F.; O’Leary, D.H. Carotid Intima-Media Thickness as Surrogate for and Predictor of CVD. Glob. Heart 2016, 11, 295–312. [Google Scholar] [CrossRef]
- Saba, L.; Jamthikar, A.; Gupta, D.; Khanna, N.N.; Viskovic, K.; Suri, H.S.; Gupta, A.; Mavrogeni, S.; Turk, M.; Laird, J.R.; et al. Global perspective on carotid intima-media thickness and plaque: Should the current measurement guidelines be revisited? Int. Angiol. 2019, 38, 451–465. [Google Scholar] [CrossRef]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez Hernandez, R.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar]
- Ociepa, T.; Posio, W.; Sawicki, M.; Urasiński, T. CIMT does not identify early vascular changes in childhood acute lymphoblastic leukemia survivors. Adv. Clin. Exp. Med. 2020, 29, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Morel, S.; Léveillé, P.; Samoilenko, M.; Franco, A.; England, J.; Malaquin, N.; Tu, V.; Cardin, G.B.; Drouin, S.; Rodier, F.; et al. Biomarkers of cardiometabolic complications in survivors of childhood acute lymphoblastic leukemia. Sci. Rep. 2020, 10, 21507. [Google Scholar] [CrossRef]
- Levy, E.; Samoilenko, M.; Morel, S.; England, J.; Amre, D.; Bertout, L.; Drouin, S.; Laverdière, C.; Krajinovic, M.; Sinnett, D.; et al. Cardiometabolic Risk Factors in Childhood, Adolescent and Young Adult Survivors of Acute Lymphoblastic Leukemia—A Petale Cohort. Sci. Rep. 2017, 7, 17684. [Google Scholar] [CrossRef] [Green Version]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Minciullo, P.L.; Catalano, A.; Mandraffino, G.; Casciaro, M.; Crucitti, A.; Maltese, G.; Morabito, N.; Lasco, A.; Gangemi, S.; Basile, G. Inflammaging and Anti-Inflammaging: The Role of Cytokines in Extreme Longevity. Arch. Immunol. Ther. Exp. 2016, 64, 111–126. [Google Scholar] [CrossRef]
- Soysal, P.; Arik, F.; Smith, L.; Jackson, S.E.; Isik, A.T. Inflammation, Frailty and Cardiovascular Disease. Adv. Exp. Med. Biol. 2020, 1216, 55–64. [Google Scholar]
- Tracy, R.P.; Lemaitre, R.N.; Psaty, B.M.; Ives, D.G.; Evans, R.W.; Cushman, M.; Meilahn, E.N.; Kuller, L.H. Relationship of C-reactive protein to risk of cardiovascular disease in the elderly. Results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 1121–1127. [Google Scholar] [CrossRef]
- Cesari, M.; Penninx, B.W.; Newman, A.B.; Kritchevsky, S.B.; Nicklas, B.J.; Sutton-Tyrrell, K.; Tracy, R.P.; Rubin, S.M.; Harris, T.B.; Pahor, M. Inflammatory markers and cardiovascular disease (The Health, Aging and Body Composition [Health ABC] Study). Am. J. Cardiol. 2003, 92, 522–528. [Google Scholar] [CrossRef]
- Cesari, M.; Penninx, B.W.; Newman, A.B.; Kritchevsky, S.B.; Nicklas, B.J.; Sutton-Tyrrell, K.; Rubin, S.M.; Ding, J.; Simonsick, E.M.; Harris, T.B.; et al. Inflammatory markers and onset of cardiovascular events: Results from the Health ABC study. Circulation 2003, 108, 2317–2322. [Google Scholar] [CrossRef] [Green Version]
- Makita, S.; Nakamura, M.; Hiramori, K. The association of C-reactive protein levels with carotid intima-media complex thickness and plaque formation in the general population. Stroke 2005, 36, 2138–2142. [Google Scholar] [CrossRef] [Green Version]
- Hosford-Donovan, A.; Nilsson, A.; Wåhlin-Larsson, B.; Kadi, F. Observational and mechanistic links between C-reactive protein and blood pressure in elderly women. Maturitas 2016, 89, 52–57. [Google Scholar] [CrossRef]
- Hage, F.G. C-reactive protein and hypertension. J. Hum. Hypertens. 2014, 28, 410–415. [Google Scholar] [CrossRef]
- Koyama, M.; Hill, G.R. Mouse Models of Antigen Presentation in Hematopoietic Stem Cell Transplantation. Front. Immunol. 2021, 12, 715893. [Google Scholar] [CrossRef]
- Summers, C.; Sheth, V.S.; Bleakley, M. Minor Histocompatibility Antigen-Specific T Cells. Front. Pediatr. 2020, 8, 284. [Google Scholar] [CrossRef]
- Roopenian, D.; Choi, E.Y.; Brown, A. The immunogenomics of minor histocompatibility antigens. Immunol. Rev. 2002, 190, 86–94. [Google Scholar] [CrossRef]
- Janelle, V.; Rulleau, C.; Del Testa, S.; Carli, C.; Delisle, J.S. T-Cell Immunotherapies Targeting Histocompatibility and Tumor Antigens in Hematological Malignancies. Front. Immunol. 2020, 11, 276. [Google Scholar] [CrossRef] [Green Version]
- Sá, H.; Leal, R.; Rosa, M.S. Renal transplant immunology in the last 20 years: A revolution towards graft and patient survival improvement. Int. Rev. Immunol. 2017, 36, 182–203. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Wang, C.; Wang, Q.; Yang, H.; Liang, P.; Jin, F. Detection on dynamic changes of endothelial cell specific molecule-1 in acute rejection after renal transplantation. Urology 2012, 80, e1–e8. [Google Scholar] [CrossRef]
- Su, Y.H.; Shu, K.H.; Hu, C.P.; Cheng, C.H.; Wu, M.J.; Yu, T.M.; Chuang, Y.W.; Huang, S.T.; Chen, C.H. Serum Endocan correlated with stage of chronic kidney disease and deterioration in renal transplant recipients. Transplant. Proc. 2014, 46, 323–327. [Google Scholar] [CrossRef]
- Melve, G.K.; Ersvssr, E.; Kittang, A.O.; Bruserud, Ø. The chemokine system in allogeneic stem-cell transplantation: A possible therapeutic target? Expert Rev. Hematol. 2011, 4, 563–576. [Google Scholar] [CrossRef]
- Ogonek, J.; Kralj Juric, M.; Ghimire, S.; Varanasi, P.R.; Holler, E.; Greinix, H.; Weissinger, E. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation. Front. Immunol. 2016, 7, 507. [Google Scholar] [CrossRef] [Green Version]
- Leufven, E.; Bruserud, Ø. Immunosuppression and Immunotargeted Therapy in Acute Myeloid Leukemia—The Potential Use of Checkpoint Inhibitors in Combination with Other Treatments. Curr. Med. Chem. 2019, 26, 5244–5261. [Google Scholar] [CrossRef]
- Aldoss, I.; Khaled, S.K.; Budde, E.; Stein, A.S. Cytokine Release Syndrome with the Novel Treatments of Acute Lymphoblastic Leukemia: Pathophysiology, Prevention, and Treatment. Curr. Oncol. Rep. 2019, 21, 4. [Google Scholar] [CrossRef]
- Frey, N.; Porter, D. Cytokine Release Syndrome with Chimeric Antigen Receptor T Cell Therapy. Biol. Blood Marrow Transplant. 2019, 25, e123–e127. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Tvedt, T.H.A.; Vo, A.K.; Bruserud, Ø.; Reikvam, H. Cytokine release syndrome in the immunotherapy of hematological malignancies: The biology behind and possible clinical consequences. J. Clin. Med. 2021, 10, 5190. [Google Scholar] [CrossRef]
- Chou, C.K.; Turtle, C.J. Assessment and management of cytokine release syndrome and neurotoxicity following CD19 CAR-T cell therapy. Expert Opin. Biol. Ther. 2020, 20, 653–664. [Google Scholar] [CrossRef]
- Acharya, U.H.; Dhawale, T.; Yun, S.; Jacobson, C.A.; Chavez, J.C.; Ramos, J.D.; Appelbaum, J.; Maloney, D.G. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Rev. Hematol. 2019, 12, 195–205. [Google Scholar] [CrossRef]
- Li, X.; Shao, M.; Zeng, X.; Qian, P.; Huang, H. Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Signal. Transduct. Target. Ther. 2021, 6, 367. [Google Scholar] [CrossRef]
- Dave, P.; Pallares Vela, E.; Cancarevic, I. Is Prophylaxis the Only Way Out for Cytokine Release Syndrome Associated With Chimeric Antigen T-cell Therapy? Cureus 2021, 13, e17709. [Google Scholar] [CrossRef]
- Cobb, D.A.; Lee, D.W. Cytokine Release Syndrome Biology and Management. Cancer J. 2021, 27, 119–125. [Google Scholar] [CrossRef]
- Lia, G.; Giaccone, L.; Leone, S.; Bruno, B. Biomarkers for Early Complications of Endothelial Origin After Allogeneic Hematopoietic Stem Cell Transplantation: Do They Have a Potential Clinical Role? Front. Immunol. 2021, 12, 641427. [Google Scholar] [CrossRef]
- Loke, J.; Malladi, R.; Moss, P.; Craddock, C. The role of allogeneic stem cell transplantation in the management of acute myeloid leukaemia: A triumph of hope and experience. Br. J. Haematol. 2020, 188, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Saadeh, S.S.; Litzow, M.R. Hematopoietic stem cell transplant in adults with acute lymphoblastic leukemia: The present state. Expert Rev. Hematol. 2018, 11, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Reikvam, H.; Grønningsæter, I.S.; Ahmed, A.B.; Hatfield, K.; Bruserud, Ø. Metabolic serum profiles for patients receiving allogeneic stem cell transplantation: The pretransplant profile differs for patients with and without posttransplant capillary leak syndrome. Dis. Mark. 2015, 2015, 943430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reikvam, H.; Mosevoll, K.A.; Melve, G.K.; Günther, C.C.; Sjo, M.; Bentsen, P.T.; Bruserud, Ø. The pretransplantation serum cytokine profile in allogeneic stem cell recipients differs from healthy individuals, and various profiles are associated with different risks of posttransplantation complications. Biol. Blood Marrow Transplant. 2012, 18, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Pagliuca, S.; Michonneau, D.; Sicre de Fontbrune, F.; Sutra Del Galy, A.; Xhaard, A.; Robin, M.; Peffault de Latour, R.; Socie, G. Allogeneic reactivity-mediated endothelial cell complications after HSCT: A plea for consensual definitions. Blood Adv. 2019, 3, 2424–2435. [Google Scholar] [CrossRef] [Green Version]
- Luft, T.; Dreger, P.; Radujkovic, A. Endothelial cell dysfunction: A key determinant for the outcome of allogeneic stem cell transplantation. Bone Marrow Transplant. 2021, 56, 2326–2335. [Google Scholar] [CrossRef]
- Tvedt, T.H.; Lie, S.A.; Reikvam, H.; Rye, K.P.; Lindås, R.; Gedde-Dahl, T.; Ahmed, A.B.; Bruserud, Ø. Pretransplant Levels of CRP and Interleukin-6 Family Cytokines; Effects on Outcome after Allogeneic Stem Cell Transplantation. Int. J. Mol. Sci. 2016, 17, 1823. [Google Scholar] [CrossRef] [Green Version]
- Rondón, G.; Saliba, R.M.; Chen, J.; Ledesma, C.; Alousi, A.M.; Oran, B.; Hosing, C.M.; Kebriaei, P.; Khouri, I.F.; Shpall, E.J.; et al. Impact of Fluid Overload as New Toxicity Category on Hematopoietic Stem Cell Transplantation Outcomes. Biol. Blood Marrow Transplant. 2017, 23, 2166–2171. [Google Scholar] [CrossRef] [Green Version]
- Rondon-Clavo, C.; Scordo, M.; Hilden, P.; Shah, G.L.; Cho, C.; Maloy, M.A.; Papadopoulos, E.B.; Jakubowski, A.A.; O’Reilly, R.J.; Gyurkocza, B.; et al. Early Fluid Overload Is Associated with an Increased Risk of Nonrelapse Mortality after Ex Vivo CD34-Selected Allogeneic Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2018, 24, 2517–2522. [Google Scholar] [CrossRef] [Green Version]
- Lucchini, G.; Willasch, A.M.; Daniel, J.; Soerensen, J.; Jarisch, A.; Bakhtiar, S.; Rettinger, E.; Brandt, J.; Klingebiel, T.; Bader, P. Epidemiology, risk factors, and prognosis of capillary leak syndrome in pediatric recipients of stem cell transplants: A retrospective single-center cohort study. Pediatr. Transplant. 2016, 20, 1132–1136. [Google Scholar] [CrossRef]
- Sallee, C.J.; Smith, L.S.; Rowan, C.M.; Heckbert, S.R.; Angelo, J.R.; Daniel, M.C.; Gertz, S.J.; Hsing, D.D.; Mahadeo, K.M.; McArthur, J.A.; et al. Early Cumulative Fluid Balance and Outcomes in Pediatric Allogeneic Hematopoietic Cell Transplant Recipients with Acute Respiratory Failure: A Multicenter Study. Front. Oncol. 2021, 11, 705602. [Google Scholar] [CrossRef]
- Elbahlawan, L.; Morrison, R.; Li, Y.; Huang, S.; Cheng, C.; Avent, Y.; Madden, R. Outcome of Acute Respiratory Failure Secondary to Engraftment in Children After Hematopoietic Stem Cell Transplant. Front. Oncol. 2020, 10, 584269. [Google Scholar] [CrossRef]
- Konuma, T.; Oiwa-Monna, M.; Mizusawa, M.; Isobe, M.; Kato, S.; Takahashi, S.; Tojo, A. Early fluid overload predicts higher non-relapse and overall mortality in adults after single-unit cord blood transplantation. Bone Marrow Transplant. 2019, 54, 2096–2101. [Google Scholar] [CrossRef] [PubMed]
- Varma, A.; Rondon, G.; Srour, S.A.; Chen, J.; Ledesma, C.; Champlin, R.E.; Ciurea, S.O.; Saliba, R.M. Endothelial Activation and Stress Index (EASIX) at Admission Predicts Fluid Overload in Recipients of Allogeneic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2020, 26, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Peña, M.; Salas, M.Q.; Mussetti, A.; Moreno-Gonzalez, G.; Bosch, A.; Patiño, B.; Jiménez, L.; Kara, M.; Parody, R.; Sureda, A. Pretransplantation EASIX predicts intensive care unit admission in allogeneic hematopoietic cell transplantation. Blood Adv. 2021, 5, 3418–3426. [Google Scholar] [CrossRef] [PubMed]
- Ryningen, A.; Stapnes, C.; Paulsen, K.; Lassalle, P.; Gjertsen, B.T.; Bruserud, Ø. In Vivo biological effects of ATRA in the treatment of AML. Expert Opin. Investig. Drugs 2008, 17, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Ryningen, A.; Stapnes, C.; Lassalle, P.; Corbascio, M.; Gjertsen, B.T.; Bruserud, Ø. A subset of patients with high-risk acute myelogenous leukemia shows improved peripheral blood cell counts when treated with the combination of valproic acid, theophylline and all-trans retinoic acid. Leuk. Res. 2009, 33, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Gozzini, A.; Santini, V. Butyrates and decitabine cooperate to induce histone acetylation and granulocytic maturation of t(8;21) acute myeloid leukemia blasts. Ann. Hematol. 2005, 84, 54–60. [Google Scholar] [CrossRef]
- Ryningen, A.; Stapnes, C.; Bruserud, Ø. Clonogenic acute myelogenous leukemia cells are heterogeneous with regard to regulation of differentiation and effect of epigenetic pharmacological targeting. Leuk. Res. 2007, 31, 1303–1313. [Google Scholar] [CrossRef]
- Zuo, L.; Lu, M.; Zhou, Q.; Wei, W.; Wang, Y. Butyrate suppresses proliferation and migration of RKO colon cancer cells though regulating endocan expression by MAPK signaling pathway. Food Chem. Toxicol. 2013, 62, 892–900. [Google Scholar] [CrossRef]
- Kartik Kumar, S.; Muthusamy, S.; Kadhirvel, S.; Mani, K.P. In-silico and in-vitro analysis of endocan interaction with statins. Int. J. Biol. Macromol. 2020, 146, 1087–1099. [Google Scholar] [CrossRef]
- Tunçez, A.; Altunkeser, B.B.; Öztürk, B.; Ateş, M.S.; Tezcan, H.; Aydoğan, C.; Kırık, E.C.; Yalçın, U.; Aygül, N.; Demir, K.; et al. Comparative effects of atorvastatin 80 mg and rosuvastatin 40 mg on the levels of serum endocan, chemerin, and galectin-3 in patients with acute myocardial infarction. Anatol. J. Cardiol. 2019, 22, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Besien, H.; Sassano, A.; Altman, J.K.; Platanias, L.C. Antileukemic properties of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. Leuk. Lymphoma 2013, 54, 2601–2605. [Google Scholar] [CrossRef] [PubMed]
- Valli, D.; Gruszka, A.M.; Alcalay, M. Has Drug Repurposing Fulfilled its Promise in Acute Myeloid Leukaemia? J. Clin. Med. 2020, 9, 1892. [Google Scholar] [CrossRef] [PubMed]
Strategy | Description and Comment |
---|---|
ATRA [135] | A clinical study on AML patients with newly diagnosed leukemia showed that serum endocan levels increased after two days of oral ATRA monotherapy. |
ATRA + valproic acid + theophylline [136] | Increased endocan serum levels were also seen in patients with newly diagnosed AML after seven days of combined treatment with ATRA plus the HDAC inhibitor valproic acid and theophylline. |
Intensive induction acute leukemia therapy [3] | Patients with untreated AML have increased serum endocan levels; these levels decrease after intensive induction chemotherapy when patients develop severe pancytopenia, but slightly increased levels persist even after complete hematological remission is achieved. |
Intensive consolidation acute leukemia chemotherapy [3] | Serum endocan levels also decrease during severe chemotherapy-induced pancytopenia following consolidation therapy. |
Butyrate [137,138,139] | Butyrate is regarded as a histone deacetylase inhibitor and it has antileukemic effects in experimental studies of primary AML cells [135,136]; studies in colonic cancer cell lines have shown that butyrate increases endocan levels [138]. |
Inhibition of intracellular signaling [1,2,19,23,24,139] | Inhibition of TNFα, IL1, HGF, or VEGF initiated intracellular signaling would be expected to decrease endocan levels (see Section 2). Endocan promotes tumor cell proliferation in experimental studies through Akt-NFκB signaling; inhibition of either PI3K-Akt signaling or NFκB activity may therefore decrease endocan activity. |
Statins [140,141] | Clinical studies suggest that statins can reduce systemic endocan levels. |
Endocan-specific monoclonal antibodies [20] | Monoclonal antibodies directed against the amino-terminal parts of the endocan molecule seem to inhibit cancer-supportive effects of endocan in experimental studies (see Section 2). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reikvam, H.; Hatfield, K.J.; Wendelbo, Ø.; Lindås, R.; Lassalle, P.; Bruserud, Ø. Endocan in Acute Leukemia: Current Knowledge and Future Perspectives. Biomolecules 2022, 12, 492. https://doi.org/10.3390/biom12040492
Reikvam H, Hatfield KJ, Wendelbo Ø, Lindås R, Lassalle P, Bruserud Ø. Endocan in Acute Leukemia: Current Knowledge and Future Perspectives. Biomolecules. 2022; 12(4):492. https://doi.org/10.3390/biom12040492
Chicago/Turabian StyleReikvam, Håkon, Kimberley Joanne Hatfield, Øystein Wendelbo, Roald Lindås, Philippe Lassalle, and Øystein Bruserud. 2022. "Endocan in Acute Leukemia: Current Knowledge and Future Perspectives" Biomolecules 12, no. 4: 492. https://doi.org/10.3390/biom12040492
APA StyleReikvam, H., Hatfield, K. J., Wendelbo, Ø., Lindås, R., Lassalle, P., & Bruserud, Ø. (2022). Endocan in Acute Leukemia: Current Knowledge and Future Perspectives. Biomolecules, 12(4), 492. https://doi.org/10.3390/biom12040492