Oncogenomic Changes in Pancreatic Cancer and Their Detection in Stool
Abstract
:1. Introduction
2. Alterations in Tumor Tissue
2.1. Chromosomal Aberrations
2.1.1. Cytogenetics
2.1.2. Array-Comparative Genomic Hybridization (aCGH)
2.2. Gene Mutations
2.3. Epigenetic Alterations
2.4. Alterations in Non-Coding DNA
2.4.1. miRNAs
2.4.2. lncRNAs
2.4.3. Other ncRNAs
3. Alterations in Stool
3.1. KRAS and TP53 Mutations
3.2. Methylations
3.3. Altered Expression of miRNA
3.4. Genomic Alterations as Activation of Microbiota Alterations and Vice Versa
4. Clinical Significance of Genomic Alterations in Stool
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA: A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Cancer Facts & Figures 2021, American Cancer Society: Atlanta. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.pdf (accessed on 3 January 2022).
- Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated Projection of US Cancer Incidence and Death to 2040. JAMA Netw. Open 2021, 4, e214708. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Mattiuzzi, C. The global burden of pancreatic cancer. Arch. Med Sci. 2020, 16, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Capasso, M.; Franceschi, M.; Rodriguez-Castro, K.I.; Crafa, P.; Cambiè, G.; Miraglia, C.; Barchi, A.; Nouvenne, A.; Leandro, G.; Meschi, T.; et al. Epidemiology and risk factors of pancreatic cancer. Acta Biomed. 2018, 89, 141–146. [Google Scholar] [CrossRef]
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018, 24, 4846–4861. [Google Scholar] [CrossRef]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Srivastava, S.; Koay, E.J.; Borowsky, A.D.; De Marzo, A.M.; Ghosh, S.; Wagner, P.D.; Kramer, B.S. Cancer overdiagnosis: A biological challenge and clinical dilemma. Nat. Cancer 2019, 19, 349–358. [Google Scholar] [CrossRef]
- Pereira, S.P.; Oldfield, L.; Ney, A.; Hart, P.A.; Keane, M.G.; Pandol, S.J.; Li, D.; Greenhalf, W.; Jeon, C.Y.; Koay, E.J.; et al. Early detection of pancreatic cancer. Lancet Gastroenterol. Hepatol. 2020, 5, 698–710. [Google Scholar] [CrossRef]
- Tonini, V.; Zanni, M. Pancreatic cancer in 2021: What you need to know to win. World J. Gastroenterol. 2021, 27, 5851–5889. [Google Scholar] [CrossRef]
- Al-Shaheri, F.N.; Alhamdani, M.S.; Bauer, A.S.; Giese, N.; Büchler, M.W.; Hackert, T.; Hoheisel, J.D. Blood biomarkers for differential diagnosis and early detection of pancreatic cancer. Cancer Treat. Rev. 2021, 96, 102193. [Google Scholar] [CrossRef]
- Khomiak, A.; Brunner, M.; Kordes, M.; Lindblad, S.; Miksch, R.C.; Öhlund, D.; Regel, I. Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers 2020, 12, 3234. [Google Scholar] [CrossRef]
- O’Neill, R.S.; Stoita, A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J. Gastroenterol. 2021, 27, 4045–4087. [Google Scholar] [CrossRef]
- Miyabayashi, K.; Nakagawa, H.; Koike, K. Molecular and Phenotypic Profiling for Precision Medicine in Pancreatic Cancer: Current Advances and Future Perspectives. Front. Oncol. 2021, 11, 2373. [Google Scholar] [CrossRef]
- Arsenijevic, T.; Nicolle, R.; Bouchart, C.; D’Haene, N.; Demetter, P.; Puleo, F.; Van Laethem, J.-L. Pancreatic Cancer Meets Human Microbiota: Close Encounters of the Third Kind. Cancers 2021, 13, 1231. [Google Scholar] [CrossRef]
- Shirazi, M.S.R.; Al-Alo, K.Z.K.; Al-Yasiri, M.H.; Lateef, Z.M.; Ghasemian, A. Microbiome Dysbiosis and Predominant Bacterial Species as Human Cancer Biomarkers. J. Gastrointest. Cancer 2019, 51, 725–728. [Google Scholar] [CrossRef]
- Sammallahti, H.; Kokkola, A.; Rezasoltani, S.; Ghanbari, R.; Aghdaei, H.A.; Knuutila, S.; Puolakkainen, P.; Sarhadi, V.K. Microbiota Alterations and Their Association with Oncogenomic Changes in Pancreatic Cancer Patients. Int. J. Mol. Sci. 2021, 22, 12978. [Google Scholar] [CrossRef]
- Li, J.J.; Zhu, M.; Kashyap, P.C.; Chia, N.; Tran, N.H.; McWilliams, R.R.; Bekaii-Saab, T.S.; Ma, W.W. The role of microbiome in pancreatic cancer. Cancer Metastasis Rev. 2021, 40, 777–789. [Google Scholar] [CrossRef]
- Leinwand, J.C.; Miller, G. Microbes as biomarkers and targets in pancreatic cancer. Nat. Rev. Clin. Oncol. 2019, 16, 665–666. [Google Scholar] [CrossRef]
- National Library of Medicine (US), National Center for Biotechnology Information: Bethesda (MD). 2004. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 3 January 2022).
- Collisson, E.A.; Bailey, P.; Chang, D.K.; Biankin, A.V. Molecular subtypes of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 207–220. [Google Scholar] [CrossRef]
- Corbo, V.; Mafficini, A.; Amato, E.; Scarpa, A. Pancreatic Cancer Genomics. In Cancer Genomics: Molecular Classification, Prognosis and Response Prediction; Pfeffer, U., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 219–253. [Google Scholar]
- Bardi, G.; Heim, S. Tumors of the digestive tract. In Cancer Cytogenetics; Heim, S., Mitelman, F., Eds.; Wiley Blackwell: Chichester, UK, 2015; pp. 386–388. [Google Scholar]
- Lim, C.-S.; Im, K.; Lee, D.S.; Kwon, W.; Kim, J.R.; Han, Y.; Kim, S.-W.; Jang, J.-Y. The Implication of Cytogenetic Alterations in Pancreatic Ductal Adenocarcinoma and Intraductal Papillary Mucinous Neoplasm Identified by Fluorescence In Situ Hybridization and Their Potential Diagnostic Utility. Gut Liver 2020, 14, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, D.J.; Adélaïde, J.; Mamessier, E.; Finetti, P.; Lagarde, A.; Monges, G.; Viret, F.; Gonçalvès, A.; Turrini, O.; Delpero, J.R.; et al. Genome profiling of pancreatic adenocarcinoma. Genes Chromosom. Cancer 2011, 50, 456–465. [Google Scholar] [CrossRef]
- Raphael, B.J.; Hruban, R.H.; Aguirre, A.J.; Moffitt, R.A.; Yeh, J.J.; Stewart, C.; Robertson, A.G.; Cherniack, A.D.; Gupta, M.; Getz, G.; et al. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017, 32, 185–203.e13. [Google Scholar] [CrossRef] [Green Version]
- Waddell, N.; Pajic, M.; Patch, A.-M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015, 518, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Atlas of Genetics and Cytogenetics in Oncology and Haematology. Available online: http://AtlasGeneticsOncology.org (accessed on 3 January 2022).
- Singhi, A.D.; Wood, L.D. Early detection of pancreatic cancer using DNA-based molecular approaches. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Natale, F.; Vivo, M.; Falco, G.; Angrisano, T. Deciphering DNA methylation signatures of pancreatic cancer and pancreatitis. Clin. Epigenetics 2019, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Zhang, B.; Li, H. The Roles of Frequently Mutated Genes of Pancreatic Cancer in Regulation of Tumor Microenvironment. Technol. Cancer Res. Treat. 2020, 19, 1533033820920969. [Google Scholar] [CrossRef] [PubMed]
- Al-Share, B.; Hammad, N.; Diab, M. Pancreatic adenocarcinoma: Molecular drivers and the role of targeted therapy. Cancer Metastasis Rev. 2021, 40, 355–371. [Google Scholar] [CrossRef]
- Yao, W.; Maitra, A.; Ying, H. Recent insights into the biology of pancreatic cancer. eBioMedicine 2020, 53, 102655. [Google Scholar] [CrossRef]
- Yang, Z.; Jones, A.; Widschwendter, M.; Teschendorff, A.E. An integrative pan-cancer-wide analysis of epigenetic enzymes reveals universal patterns of epigenomic deregulation in cancer. Genome Biol. 2015, 16, 140. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002, 3, 415–428. [Google Scholar] [CrossRef]
- Toruner, M.; Fernandez-Zapico, M.E.; Pin, C.L. New Aspects of the Epigenetics of Pancreatic Carcinogenesis. Epigenomes 2020, 4, 18. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, Y. DNA methylation in human diseases. Genes Dis. 2018, 5, 1–8. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, M.-Y. Cancer epigenetics: Past, present and future. Semin. Cancer Biol. 2021. [Google Scholar] [CrossRef]
- Van Tongelen, A.; Loriot, A.; De Smet, C. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett. 2017, 396, 130–137. [Google Scholar] [CrossRef]
- Kohli, R.M.; Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013, 502, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.K.; Guda, C. Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer. Oncotarget 2017, 8, 28990–29012. [Google Scholar] [CrossRef] [Green Version]
- Stratford, J.K.; Bentrem, D.J.; Anderson, J.M.; Fan, C.; Volmar, K.A.; Marron, J.S.; Routh, E.D.; Caskey, L.S.; Samuel, J.C.; Der, C.; et al. A Six-Gene Signature Predicts Survival of Patients with Localized Pancreatic Ductal Adenocarcinoma. PLoS Med. 2010, 7, e1000307. [Google Scholar] [CrossRef] [Green Version]
- Sato, N.; Maitra, A.; Fukushima, N.; van Heek, N.T.; Matsubayashi, H.; Iacobuzio-Donahue, C.A.; Rosty, C.; Goggins, M. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 2003, 63, 4158–4166. [Google Scholar]
- Klump, B.; Hsieh, C.J.; Nehls, O.; Dette, S.; Holzmann, K.; Kießlich, R.; Jung, M.; Sinn, U.; Ortner, M.; Porschen, R.; et al. Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions. Br. J. Cancer 2003, 88, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Kuroki, T.; Tajima, Y.; Kanematsu, T. Role of Hypermethylation on Carcinogenesis in the Pancreas. Surg. Today 2004, 34, 981–986. [Google Scholar] [CrossRef]
- Dammann, R.; Schagdarsurengin, U.; Liu, L.; Otto, N.; Gimm, O.; Dralle, H.; Boehm, B.O.; Pfeifer, G.P.; Hoang-Vu, C. Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene 2003, 22, 3806–3812. [Google Scholar] [CrossRef] [Green Version]
- Sato, N.; Matsubayashi, H.; Abe, T.; Fukushima, N.; Goggins, M. Epigenetic Down-Regulation of CDKN1C/p57KIP2 in Pancreatic Ductal Neoplasms Identified by Gene Expression Profiling. Clin. Cancer Res. 2005, 11, 4681–4688. [Google Scholar] [CrossRef] [Green Version]
- Vincent, A.; Omura, N.; Hong, S.-M.; Jaffe, A.; Eshleman, J.; Goggins, M. Genome-Wide Analysis of Promoter Methylation Associated with Gene Expression Profile in Pancreatic Adenocarcinoma. Clin. Cancer Res. 2011, 17, 4341–4354. [Google Scholar] [CrossRef] [Green Version]
- Omura, N.; Li, C.-P.; Li, A.; Hong, S.-M.; Walter, K.; Jimeno, A.; Hidalgo, M.; Goggins, M. Genome-wide profiling at methylated promoters in pancreatic adenocarcinoma. Cancer Biol. Ther. 2008, 7, 1146–1156. [Google Scholar] [CrossRef] [Green Version]
- Matsubayashi, H.; Sato, N.; Fukushima, N.; Yeo, C.J.; Walter, K.M.; Brune, K.; Sahin, F.; Hruban, R.H.; Goggins, M. Methylation of cyclin D2 is observed frequently in pancreatic cancer but is also an age-related phenomenon in gastrointestinal tissues. Clin. Cancer Res. 2003, 9, 1446–1452. [Google Scholar]
- Fukushima, N.; Sato, N.; Ueki, T.; Rosty, C.; Walter, K.M.; Wilentz, R.E.; Yeo, C.J.; Hruban, R.H.; Goggins, M. Aberrant Methylation of Preproenkephalin and p16 Genes in Pancreatic Intraepithelial Neoplasia and Pancreatic Ductal Adenocarcinoma. Am. J. Pathol. 2002, 160, 1573–1581. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Liu, X.; Yan, X.; Tahir, M.; Ali, S.; Huang, H. An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression. Cancer Metastasis Rev. 2021, 40, 245–272. [Google Scholar] [CrossRef]
- Elliott, K.; Larsson, E. Non-coding driver mutations in human cancer. Nat. Cancer 2021, 21, 500–509. [Google Scholar] [CrossRef]
- Pagni, S.; Mills, J.D.; Frankish, A.; Mudge, J.M.; Sisodiya, S.M. Non-coding regulatory elements: Potential roles in disease and the case of epilepsy. Neuropathol. Appl. Neurobiol. 2021, 48. [Google Scholar] [CrossRef]
- Acunzo, M.; Romano, G.; Wernicke, D.; Croce, C.M. MicroRNA and cancer—A brief overview. Adv. Biol. Regul. 2015, 57, 1–9. [Google Scholar] [CrossRef]
- Müller, S.; Raulefs, S.; Bruns, P.; Afonso-Grunz, F.; Plötner, A.; Thermann, R.; Jäger, C.; Schlitter, A.M.; Kong, B.; Regel, I.; et al. Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol. Cancer 2015, 14, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonemori, K.; Kurahara, H.; Maemura, K.; Natsugoe, S. MicroRNA in pancreatic cancer. J. Hum. Genet. 2016, 62, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, A.A.; Azmi, A.S.; Philip, P.A. miRNA and Gene Expression in Pancreatic Ductal Adenocarcinoma. Am. J. Pathol. 2019, 189, 58–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Al Hallak, M.N.; Philip, P.A.; Azmi, A.S.; Mohammad, R.M. Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on lncRNAs, circRNAs, and piRNAs. Cancers 2021, 13, 4161. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lv, W.; Zhang, J.-H.; Lu, D.-L. miR-96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. Int. J. Mol. Med. 2014, 34, 1599–1605. [Google Scholar] [CrossRef] [Green Version]
- Moro, L. Mitochondrial DNA and MitomiR Variations in Pancreatic Cancer: Potential Diagnostic and Prognostic Biomarkers. Int. J. Mol. Sci. 2021, 22, 9692. [Google Scholar] [CrossRef]
- Fathi, M.; Ghafouri-Fard, S.; Abak, A.; Taheri, M. Emerging roles of miRNAs in the development of pancreatic cancer. Biomed. Pharmacother. 2021, 141, 111914. [Google Scholar] [CrossRef]
- Yang, K.; He, M.; Cai, Z.; Ni, C.; Deng, J.; Ta, N.; Xu, J.; Zheng, J. A decrease in miR-150 regulates the malignancy of pancreatic cancer by targeting c-Myb and MUC4. Pancreas 2015, 44, 370–379. [Google Scholar] [CrossRef]
- Zhou, L.; Jia, S.; Ding, G.; Zhang, M.; Yu, W.; Wu, Z.; Cao, L. Down-regulation of miR-30a-5p is Associated with Poor Prognosis and Promotes Chemoresistance of Gemcitabine in Pancreatic Ductal Adenocarcinoma. J. Cancer 2019, 10, 5031–5040. [Google Scholar] [CrossRef]
- Kadera, B.; Li, L.; Toste, P.A.; Wu, N.; Adams, C.; Dawson, D.W.; Donahue, T.R. MicroRNA-21 in Pancreatic Ductal Adenocarcinoma Tumor-Associated Fibroblasts Promotes Metastasis. PLoS ONE 2013, 8, e71978. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, E.; Funel, N.; Peters, G.J.; Peters, G.J.; Del Chiaro, M.; Erozenci, L.A.; Vasile, E.; Leon, L.G.; Pollina, L.E.; Groen, A.; et al. MicroRNA-21 in pancreatic cancer: Correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010, 70, 4528–4538. [Google Scholar] [CrossRef] [Green Version]
- Mortoglou, M.; Miralles, F.; Arisan, E.D.; Dart, A.; Jurcevic, S.; Lange, S.; Uysal-Onganer, P. microRNA-21 Regulates Stemness in Pancreatic Ductal Adenocarcinoma Cells. Int. J. Mol. Sci. 2022, 23, 1275. [Google Scholar] [CrossRef]
- Zhu, Y.; Gu, J.; Li, Y.; Peng, C.; Shi, M.; Wang, X.; Wei, G.; Ge, O.; Wang, D.; Zhang, B.; et al. MiR-17-5p enhances pancreatic cancer proliferation by altering cell cycle profiles via disruption of RBL2/E2F4-repressing complexes. Cancer Lett. 2018, 412, 59–68. [Google Scholar] [CrossRef]
- Liu, H.; Xu, X.-F.; Zhao, Y.; Tang, M.-C.; Zhou, Y.-Q.; Lu, J.; Gao, F.-H. MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumor Biol. 2014, 35, 12157–12163. [Google Scholar] [CrossRef]
- Yates, L.; Norbury, C.J.; Gilbert, R. The Long and Short of MicroRNA. Cell 2013, 153, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grässer, F.A.; Lenhof, H.-P.; et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019, 47, 3353–3364. [Google Scholar] [CrossRef] [Green Version]
- Friedman, R.C.; Farh, K.K.-H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, X.; Cobb, G.; Anderson, T. microRNAs as oncogenes and tumor suppressors. Dev. Biol. 2007, 302, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, Z.; Chen, F.; Hu, T.; Peng, W.; Gu, Q.; Sun, Y. The Diverse Oncogenic and Tumor Suppressor Roles of microRNA-105 in Cancer. Front. Oncol. 2019, 9, 518. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, Y.G. MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions. World J. Gastrointest. Oncol. 2016, 8, 18–29. [Google Scholar] [CrossRef]
- Gablo, N.A.; Prochazka, V.; Kala, Z.; Slaby, O.; Kiss, I. Cell-free microRNAs as Non-invasive Diagnostic and Prognostic Biomarkers in Pancreatic Cancer. Curr. Genom. 2020, 20, 569–580. [Google Scholar] [CrossRef]
- Volinia, S.; Calin, G.A.; Liu, C.G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawat, M.; Kadian, K.; Gupta, Y.; Kumar, A.; Chain, P.S.; Kovbasnjuk, O.; Parasher, G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes 2019, 10, 752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; Helm, J.; Coppola, D.; Kim, D.; Malafa, M.; Kim, S.J. MicroRNAs in pancreatic ductal adenocarcinoma. World J. Gastroenterol. 2011, 17, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Dykes, I.M.; Emanueli, C. Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genom. Proteom. Bioinform. 2017, 15, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Nandwani, A.; Rathore, S.; Datta, M. LncRNAs in cancer: Regulatory and therapeutic implications. Cancer Lett. 2020, 501, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Huang, S. Role of non-coding RNA in pancreatic cancer (Review). Oncol. Lett. 2019, 18, 3963–3973. [Google Scholar] [CrossRef] [Green Version]
- Uszczynska-Ratajczak, B.; Lagarde, J.; Frankish, A.; Guigó, R.; Johnson, R. Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet. 2018, 19, 535–548. [Google Scholar] [CrossRef]
- Gao, N.; Li, Y.; Li, J.; Gao, Z.; Yang, Z.; Li, Y.; Liu, H.; Fan, T. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Front. Oncol. 2020, 10, 2903. [Google Scholar] [CrossRef]
- Chandra Gupta, S.; Nandan Tripathi, Y. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int. J. Cancer 2017, 140, 1955–1967. [Google Scholar] [CrossRef]
- Kunovsky, L.; Tesarikova, P.; Kala, Z.; Kroupa, R.; Kysela, P.; Dolina, J.; Trna, J. The Use of Biomarkers in Early Diagnostics of Pancreatic Cancer. Can. J. Gastroenterol. Hepatol. 2018, 2018, 5389820. [Google Scholar] [CrossRef]
- Seimiya, T.; Otsuka, M.; Iwata, T.; Tanaka, E.; Sekiba, K.; Shibata, C.; Moriyama, M.; Nakagawa, R.; Maruyama, R.; Koike, K. Aberrant expression of a novel circular RNA in pancreatic cancer. J. Hum. Genet. 2020, 66, 181–191. [Google Scholar] [CrossRef]
- Rong, Z.; Xu, J.; Shi, S.; Tan, Z.; Meng, Q.; Hua, J.; Liu, J.; Zhang, B.; Wang, W.; Yu, X.; et al. Circular RNA in pancreatic cancer: A novel avenue for the roles of diagnosis and treatment. Theranostics 2021, 11, 2755–2769. [Google Scholar] [CrossRef]
- Guo, B.; Li, D.; Du, L.; Zhu, X. piRNAs: Biogenesis and their potential roles in cancer. Cancer Metastasis Rev. 2020, 39, 567–575. [Google Scholar] [CrossRef]
- Kisiel, J.B.; Yab, T.C.; Ms, W.R.T.; Chari, S.T.; Petersen, G.M.; Ms, D.W.M.; Ahlquist, D.A. Stool DNA testing for the detection of pancreatic cancer. Cancer 2011, 118, 2623–2631. [Google Scholar] [CrossRef] [Green Version]
- Chari, S.T.; Kelly, K.; Hollingsworth, M.A.; Thayer, S.P.; Ahlquist, D.A.; Andersen, D.K.; Batra, S.K.; Brentnall, T.A.; Canto, M.; Cleeter, D.F.; et al. Early Detection of Sporadic Pancreatic Cancer. Pancreas 2015, 44, 693–712. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Xu, J.-W.; Cheng, Y.-G.; Gao, J.-Y.; Hu, S.-Y.; Wang, L.; Zhan, H.X. Early detection of pancreatic cancer: Where are we now and where are we going? Int. J. Cancer 2017, 141, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Caldas, C.; Hahn, S.; Hruban, R.H.; Redston, M.S.; Yeo, C.J.; Kern, S.E. Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res. 1994, 54, 3568–3573. [Google Scholar]
- Berndt, C.; Haubold, K.; Wenger, F.; Brux, B.; Müller, J.; Bendzko, P.; Hillebrand, T.; Köttgen, E.; Zanow, J. K-ras mutations in stools and tissue samples from patients with malignant and nonmalignant pancreatic diseases. Clin. Chem. 1998, 44, 2103–2107. [Google Scholar] [CrossRef]
- Wenger, F.A.; Zieren, J.; Peter, F.J.; Jacobi, C.A.; Müller, J.M. K-ras mutations in tissue and stool samples from patients with pancreatic cancer and chronic pancreatitis. Langenbeck’s Arch. Surg. 1999, 384, 181–186. [Google Scholar] [CrossRef]
- Pezzilli, R.; Barassi, A.; D’Eril, G.M.; Fantini, L.; Pallotti, F.; Tomassetti, P.; Corinaldesi, R. The Search of the Stool and Blood K-ras Mutations in Patients With Pancreatic Mass. Pancreas 2006, 33, 199–200. [Google Scholar] [CrossRef]
- Lu, X.; Xu, T.; Qian, J.; Wen, X.; Wu, N. Detecting K-ras and p53 gene mutation from stool and pancreatic juice for diagnosis of early pancreatic cancer. Chin. Med. J. 2002, 115, 1632–1636. [Google Scholar]
- Wu, X.; Lu, X.H.; Xu, T.; Qian, J.M.; Zhao, P.; Guo, X.Z.; Yang, X.O.; Jiang, W.J. Evaluation of the diagnostic value of serum tumor markers, and fecal k-ras and p53 gene mutations for pancreatic cancer. Chin. J. Dig. Dis. 2006, 7, 170–174. [Google Scholar] [CrossRef]
- Hwang, C.; Kumar, S.; Yab, T.C.; Taylor, W.R.; Kisiel, J.B.; Lucas, A.L.; Chabot, J.A.; Ahlquist, D.A.; Frucht, H. Noninvasive Detection of Intraductal Papillary Mucinous Neoplasms (IPMN) and Early Stage Cancer of the Pancreas With Stool DNA Testing. Gastroenterology 2011, 140, S-678. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Chen, F.; Zhong, Z.; Qi, L. Detection of K-ras gene mutations in feces by magnetic nanoprobe in patients with pancreatic cancer: A preliminary study. Exp. Ther. Med. 2017, 15, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Haug, U.; Hillebrand, T.; Bendzko, P.; Löw, M.; Rothenbacher, D.; Stegmaier, C.; Brenner, H. Mutant-Enriched PCR and Allele-Specific Hybridization Reaction to Detect K-ras Mutations in Stool DNA: High Prevalence in a Large Sample of Older Adults. Clin. Chem. 2007, 53, 787–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, J.; Liu, X.; Qi, Y.; Niu, F.; Niu, Z.; Geng, W.; Zou, Z.; Huang, R.; Wang, J.; Zou, H. BMP3 suppresses colon tumorigenesis via ActRIIB/SMAD2-dependent and TAK1/JNK signaling pathways. J. Exp. Clin. Cancer Res. 2019, 38, 428. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-R. Role ofBMP3in progression of gastric carcinoma in Chinese people. World J. Gastroenterol. 2010, 16, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
- Link, A.; Becker, V.; Goel, A.; Wex, T.; Malfertheiner, P. Feasibility of Fecal MicroRNAs as Novel Biomarkers for Pancreatic Cancer. PLoS ONE 2012, 7, e42933. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-S.; Ren, Y.; Gao, J.; Liu, J.-Q.; Wang, X.-W.; Gu, J.-J.; Huang, H.-J.; Gong, Y.-F. Differential signature of fecal microRNAs in patients with pancreatic cancer. Mol. Med. Rep. 2012, 6, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-Y.; Sun, Y.-W.; Liu, D.-J.; Zhang, J.-F.; Li, J.; Hua, R. MicroRNAs in stool samples as potential screening biomarkers for pancreatic ductal adenocarcinoma cancer. Am. J. Cancer Res. 2014, 4, 663–673. [Google Scholar]
- Wang, Y.; Yang, G.; You, L.; Yang, J.; Feng, M.; Qiu, J.; Zhao, F.; Liu, Y.; Cao, Z.; Zheng, L.; et al. Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Mol. Cancer 2019, 18, 173. [Google Scholar] [CrossRef] [Green Version]
- Matson, V.; Chervin, C.S.; Gajewski, T.F. Cancer and the Microbiome—Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology 2021, 160, 600–613. [Google Scholar] [CrossRef]
- Stasiewicz, M.; Kwaśniewski, M.; Karpiński, T. Microbial Associations with Pancreatic Cancer: A New Frontier in Biomarkers. Cancers 2021, 13, 3784. [Google Scholar] [CrossRef]
- Lu, H.; Ren, Z.; Li, A.; Li, J.; Xu, S.; Zhang, H.; Jiang, J.; Yang, J.; Luo, Q.; Zhou, K.; et al. Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls. J. Oral Microbiol. 2019, 11, 1563409. [Google Scholar] [CrossRef]
- Farrell, J.J.; Zhang, L.; Zhou, H.; Chia, D.; Elashoff, D.; Akin, D.; Paster, B.J.; Joshipura, K.; Wong, D.T.W. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 2012, 61, 582–588. [Google Scholar] [CrossRef]
- del Castillo, E.; Meier, R.; Chung, M.; Koestler, D.C.; Chen, T.; Paster, B.J.; Charpentier, K.P.; Kelsey, K.T.; Izard, J.; Michaud, D.S. The Microbiomes of Pancreatic and Duodenum Tissue Overlap and Are Highly Subject Specific but Differ between Pancreatic Cancer and Noncancer Subjects. Cancer Epidemiol. Biomark. Prev. 2018, 28, 370–383. [Google Scholar] [CrossRef] [Green Version]
- Mitsuhashi, K.; Nosho, K.; Sukawa, Y.; Matsunaga, Y.; Ito, M.; Kurihara, H.; Kanno, S.; Igarashi, H.; Naito, T.; Adachi, Y.; et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget 2015, 6, 7209–7220. [Google Scholar] [CrossRef] [Green Version]
- Aykut, B.; Pushalkar, S.; Chen, R.; Li, Q.; Abengozar, R.; Kim, J.I.; Shadaloey, S.A.; Wu, D.; Preiss, P.; Verma, N.; et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 2019, 574, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.M.; Jobin, C. Microbiota in pancreatic health and disease: The next frontier in microbiome research. Nat. Rev. Gastroenterol. Hepatol. 2019, 17, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, T.; Liang, D.; Mei, Y.; Zou, W.; Guo, S. The Landscape of Microbial Composition and Associated Factors in Pancreatic Ductal Adenocarcinoma Using RNA-Seq Data. Front. Oncol. 2021, 11, 651350. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhang, D.; Li, Z.; Jiang, H.; Li, J.; Ren, R.; Gao, X.; Li, J.; Wang, X.; Wang, W.; et al. The fecal microbiota of patients with pancreatic ductal adenocarcinoma and autoimmune pancreatitis characterized by metagenomic sequencing. J. Transl. Med. 2021, 19, 215. [Google Scholar] [CrossRef]
- Wu, J.; Guo, Y.; Liu, W. Helicobacter pylori infection and pancreatic cancer risk: A meta-analysis. J. Cancer Res. Ther. 2016, 12, 229. [Google Scholar] [CrossRef]
- Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambirinis, C.P.; Kurz, E.; Mishra, A.; Mohan, N.; Aykut, B.; Usyk, M.; Torres, L.E.; et al. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov. 2018, 8, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Jiang, J.; Xie, H.; Li, A.; Lü, H.; Xu, S.; Zhou, L.; Zhang, H.; Cui, G.; Chen, X.; et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget 2017, 8, 95176–95191. [Google Scholar] [CrossRef] [Green Version]
- Michaud, D.S. Role of bacterial infections in pancreatic cancer. Carcinogenesis 2013, 34, 2193–2197. [Google Scholar] [CrossRef]
- Öğrendik, M. Periodontal Pathogens in the Etiology of Pancreatic Cancer. Gastrointest. Tumors 2016, 3, 125–127. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.M.; Gharaibeh, R.Z.; Gauthier, J.; Beveridge, M.; Pope, J.L.; Guijarro, M.V.; Yu, Q.; He, Z.; Ohland, C.; Newsome, R.; et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis 2018, 39, 1068–1078. [Google Scholar] [CrossRef]
- Daniluk, J.; Liu, Y.; Deng, D.; Chu, J.; Huang, H.; Gaiser, S.; Cruz-Monserrate, Z.; Wang, H.; Ji, B.; Logsdon, C.D. An NF-κB pathway–mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J. Clin. Investig. 2012, 122, 1519–1528. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Daniluk, J.; Liu, Y.; Chu, J.; Li, Z.; Ji, B.; Logsdon, C.D. Oncogenic K-Ras requires activation for enhanced activity. Oncogene 2013, 33, 532–535. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Zhang, Y.; Guo, S.; Mei, Z.; Liao, H.; Dong, H.; Wu, K.; Ye, H.; Zhang, Y.; Zhu, Y.; et al. Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun. Biol. 2021, 4, 1019. [Google Scholar] [CrossRef]
- Fric, P.; Škrha, J.; Šedo, A.; Busek, P.; Laclav, M.; Bunganič, B.; Zavoral, M. Precursors of pancreatic cancer. Eur. J. Gastroenterol. Hepatol. 2017, 29, e13–e18. [Google Scholar] [CrossRef]
- Perales, S.; Torres, C.; Jimenez-Luna, C.; Prados, J.; Martinez-Galan, J.; Sanchez-Manas, J.M.; Caba, O. Liquid biopsy approach to pancreatic cancer. World J. Gastrointest. Oncol. 2021, 13, 1263–1287. [Google Scholar] [CrossRef]
- Heredia-Soto, V.; Rodríguez-Salas, N.; Feliu, J. Liquid Biopsy in Pancreatic Cancer: Are We Ready to Apply It in the Clinical Practice? Cancers 2021, 13, 1986. [Google Scholar] [CrossRef]
- Azizian, A.; Rühlmann, F.; Krause, T.; Bernhardt, M.; Jo, P.; König, A.; Kleiß, M.; Leha, A.; Ghadimi, M.; Gaedcke, J. CA19–9 for detecting recurrence of pancreatic cancer. Sci. Rep. 2020, 10, 1332. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, D.P.; Sandanayake, N.S.; Jenkinson, C.; Gentry-Maharaj, A.; Apostolidou, S.; Fourkala, E.-O.; Camuzeaux, S.; Blyuss, O.; Gunu, R.; Dawnay, A.; et al. Serum CA19–9 Is Significantly Upregulated up to 2 Years before Diagnosis with Pancreatic Cancer: Implications for Early Disease Detection. Clin. Cancer Res. 2014, 21, 622–631. [Google Scholar] [CrossRef] [Green Version]
- A Ahlquist, D. Molecular stool screening for colorectal cancer. BMJ 2000, 321, 254–255. [Google Scholar] [CrossRef]
- Strauss, B.B.; Yab, T.C.; O’Connor, H.M.; Taylor, W.R.; Mahoney, D.W.; Simonson, J.A.; Christensen, J.; Chari, S.T.; Ahlquist, D.A. Fecal Recovery of Ingested Cellular DNA: Implications for Noninvasive Detection of Upper Gastrointestinal Neoplasms. Am. J. Dig. Dis. 2015, 61, 117–125. [Google Scholar] [CrossRef]
- Wu, W.-K.; Chen, C.-C.; Panyod, S.; Chen, R.-A.; Wu, M.-S.; Sheen, L.-Y.; Chang, S.-C. Optimization of fecal sample processing for microbiome study—The journey from bathroom to bench. J. Formos. Med. Assoc. 2018, 118, 545–555. [Google Scholar] [CrossRef]
- Johnson, D.H.; Kisiel, J.B.; Burger, K.N.; Mahoney, D.W.; Devens, M.E.; Ahlquist, D.A.; Sweetser, S. Multitarget stool DNA test: Clinical performance and impact on yield and quality of colonoscopy for colorectal cancer screening. Gastrointest. Endosc. 2016, 85, 657–665.e1. [Google Scholar] [CrossRef] [Green Version]
- Tepus, M.; Yau, T.O. Non-Invasive Colorectal Cancer Screening: An Overview. Gastrointest. Tumors 2020, 7, 62–73. [Google Scholar] [CrossRef]
- Kartal, E.; Schmidt, T.S.B.; Molina-Montes, E.; Rodríguez-Perales, S.; Wirbel, J.; Maistrenko, O.M.; Akanni, W.A.; Alhamwe, B.A.; Alves, R.J.; Carrato, A.; et al. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 2022. [Google Scholar] [CrossRef]
Numerical Aberrations and Commonly Altered Oncogenic Driver Genes in PDAC 1 | |||||
---|---|---|---|---|---|
Chr. nr. | Gains [22,23,24,25,26] | Common Amplified Oncogenic Drivers [26,28] | Losses [22,23,24,25,26] | Common Deleted Oncogenic Drivers [26,28] | Common Break Points [23] |
1 | 1q+, amp(1q) (33%) | 1p− | ARID1A, 1p36.11 (6%) | 1q, 1p32, 1q10 | |
2 | +2 | ||||
3 | 3q+ | 3p− | PBRM1, 3p21.1 (4%) | ||
4 | −4 (25–38%), 4p-, 4q− | ||||
5 | 5p+ | ||||
6 | 6p | −6 (25–38%), 6−, −6p (41%), −6q (51%) | 6p21 | ||
7 | +7 (25–38%), 7p+, 7q+ | BRAF, 7q34 (3%) | MLL3, 7q36.1 (4%) | 7p22 | |
8 | 8p+, 8q+ | FGFR1, 8p11.23 (5%), MYC, 8q24.2 (5%) | 8p−, −8p (28%) | 8q10 | |
9 | −9 (25–38%), 9p−, 9−, −9p (48%) | CDKN2A, 9p21.3 (30%) | |||
10 | PTEN, 10q23.31 | ||||
11 | +11, 11q+ | 11q− | ATM, 11q22.3 (5%) | ||
12 | 12p+, 12q+ | KRAS, 12p12.1 (93%), MDM2, 12q15 (2%) | −12 (25–38%) | ||
13 | −13, 13q− | BRCA2, 13q13.1 (4%) | 13q10 | ||
14 | 14q10 | ||||
15 | 15q+ | 15q− | |||
16 | PALB2, 16p12.2 (1%) | ||||
17 | 17q+ | ERBB2, 17q12 | −17 (25–38%), 17p−, 17−, −17p (64%), −17q (31%) | TP53, 17p13.1 (72%), BRCA1, 17q21.31 (1%) | 17p11, 17q10 |
18 | 18q+ | GATA6, 18q11.2 (9%) | −18 (60%), 18q−, 18−, −18p (32%), −18q (71%), CEP18− | SMAD4, 18q21.1 (32%) | |
19 | 19q+ | AKT2, 19q13 (6%) | 19p− | MLL4, 19q13.12 (4%) | 19q13 |
20 | +20 (25–38%), 20q+ | GNAS, 20q13 (8%) | 20p− | ||
21 | −21 (25–38%), 21q−, 21− | ||||
22 | −22 (25–38%), 22− | ||||
X | −X (25–38%) | ||||
Y | −Y (25–38%) | ||||
Structural aberrations in PDAC [27] | |||||
Interchromosomal | 14.8% | ||||
Intrachromosomal | 85.2% | ||||
Inversions | 14.7% | ||||
Deletions | 12.5% | ||||
Fold-back inversions | 5.2% | ||||
Amplified inversions | 3.1% | ||||
Tandem duplications | 1.6% | ||||
Duplications | 1.1% | ||||
Other | 52.8% |
Gene Nature | Meth. Status 1 | Gene Names and Categories | ||
---|---|---|---|---|
Cancer Genes [52] 2 | ||||
Tumor suppressor | + | UCHL1 (100%), MDF-1 * (96%), SPARC/ON (94%), PENK * (93%), RPRM (91%), mi-R9-1 * (89%), ADAMTS ** (88–90%), CCND (86%), SIP1 (73%), BNC1 (65–78%), PCDH10 (61%), SOCS-1 (57%), APC, RAR-β (56%), CDKN2A (33%), ATP4A, BMP3, BRCA1, CADM1, Cyclin D2, DNAJC15, FOSB, GSG1, KLF6, KLF10, miR-506, MLH1, PARP6, RASSF1A, ZPF82, ZNF415 | ||
− | SERPINB5 (87%), CLDN4 (85%), LCN2 * (85%), SFN (85%), MUC4 2 (80%), TFF2 (65%), PSCA ** (30%), MAP4K4 **, SULT1E1 | |||
+/− | CDKN1C (78%), FOXE1 (64%) | |||
Oncogene | + | mi-R9-1 * (89%), ADAMTS ** (87.5–90%), KRAS (33%) | ||
− | MUC4** (80%), S100P *** (57%), S100A4 (50%), PSCA ** (30%), IGF2BP3, MAP4K4 **, MSLN | |||
Epigenetic regulatory genes [41] | ||||
Writers | Readers | Erasers/editors | ||
DNA methylation | + | DNMT3A | MBD1, ZMYM4 | IDH2, MGMT |
− | DNMT1 | CHD2 | APOBEC1, TET3 | |
+/− | DNMT3B | CHD7, ZBTB38, ZMYM6 | ||
Histone methylation | + | EHMT2, KMT2D, MECOM, PRDM8, PRDM12, PRDM13, PRDM14, SETBP1, SETD7, SETMAR, SMYD2, WHSC1L1 | DNMT3A | KDM3A, KDM6B |
− | EZH2, PRDM2, PRDM11, PRDM15, WHSC1 | ATXN7, CHD2, DHX30, EHMT2, GATAD2A, ZMYM8 | KDM2A, KDM2B, KDM3B, KDM4B | |
+/− | EHMT1, KMT2C, PRDM1, PRDM4, PRDM6, PRDM7, PRDM16, SETD3, SMYD3 | CBX5, CHD7, EHMT1, UHRF1 | ||
Histone acetylation | + | KAT2A | BRD4 | HDAC11 |
− | GTF3C1, NCOA2, NCOA7 | ATXN7, BRD1, BRD3, DHX30, GATAD2A, ZMYM8 | HDAC5, HDAC9, SIRT6, SIRT7 | |
+/− | CREBBP, KAT6B, NCOA1 | HDAC4 | ||
Arginine methylation | + | PRMT6 | ||
+/− | PRMT8 | |||
Chromatin remodeler | + | SMARCA2 | ||
− | CHD2, DPF3, SMARCD3, TTF2 | |||
+/− | ARID1B, CHD7, CHD8 | |||
Histone protein | + | HIST3H2BB, HIST2H2BF, HIST1H2BI, HIST1H3B, HIST1H3E, HIST1H3F, HIST1H3G, HIST1H4F | ||
− | H1F0, H1FOO, HIST1H1E, HIST1H2AG, HIST1H2APS1, HIST1H2BA, HIST1H2BC, HIST1H2BN, HIST1H3C, HIST1H3H, HIST1H4H | |||
+/− | HIST3H2A | |||
Developmental and signaling genes [41] | ||||
Homeobox-containing genes | + | HHEX, HOPX, HOXA, HOXC HOXD, IRX2, IRX4 (68%), MSX, PPRX, SHOX2, SOX15, ZEB1 | ||
− | TGIF1, TGIF2, ZEB1 | |||
+/− | HOXB, PAX | |||
Pancreatic development | + | FOXA1, GATA3, HLX, ISL1, MEIS2, NEUROG3, NKX2-2, NKX6- 1, PAX6 | ||
− | HNF4A | |||
+/− | HNF1B, MMP2, MMP9, MNX1, NKX6-2, ONECUT1, SOX9 | |||
Pancreatic signaling | + | EGF, FGF10 | ||
− | HGFAC | |||
+/− | NOTCH1 | |||
Other differentially methylated genes [41] | ||||
Genes associated with patient survival patient survival | n.a. | ATP4A, FOSB, GSG1, KLF6 |
Upregulated miRNAs (Oncogenic Function) | Target Genes/Pathways | Biological Functions in PC |
---|---|---|
miR-10a | HOXA1 | 🠙 invasion |
miR-15b | SMURF2 | 🠙 EMT |
miR-17-5p | E2F4, RBL2/E2F4-complex | 🠙 proliferation |
miR-21 | Bcl-2, FasL, Fox01, PDCD4, PTEN, RECK, TPM1, TIMP3 | 🠙 chemoresistance, 🠙 invasion, 🠙 proliferation, 🠙 metastasis, 🠙 EMT, 🠛 apoptosis |
miR-23a | APAF1, FZD5, HNF1B, TMEM92 | 🠙 proliferation, 🠛 apoptosis |
miR-23b | JAK2, PI3K, PTEN, ATG12, AKT/NF-κB | 🠙 proliferation, 🠙 tumor growth, 🠙 migration, 🠙 invasion |
miR-24 | Bim, FZD5, HNF1B, TMEM92 | 🠙 cell growth, 🠙 EMT |
miR-27a | Sprouty2 | 🠙 proliferation, 🠙 migration, 🠙 colony formation |
miR-29a | Wnt/β-catenin | regulates transcription factors |
miR-92a | DUSP10 | 🠙 proliferation |
miR-155 | Foxo3a, KRAS, ROS, SEL1L, MLH1, SOCS1, TP53INP1 | 🠙 invasion, 🠙 migration, 🠙 proliferation, 🠙 tumor growth |
miR-181a | PTEN, MAP2K4, TNFAIP1 | 🠙 migration, 🠙 proliferation |
miR-181b | BCL-2, CYLD | 🠙 chemoresistance |
miR-196a | NFKBIA, ING5 | 🠙 migration, 🠙 proliferation |
miR-191 | USP10 | 🠙 proliferation |
miR-210 | Pancreatic stellate cells | 🠙 EMT, 🠙 invasion |
miR-214 | ING4 | 🠛 chemosensitivity |
miR-221 | p27kip1, PTEN, p57kip2, PUMA, TIMP2, TRPS1 | 🠙 invasion |
miR-222 | p57, MMP2, MMP9 | 🠙 invasion |
miR-223 | FBw7 | 🠙 EMT |
miR-320a | PDCD4 | 🠙 EMT, 🠛 apoptosis |
miR-365 | BAX, SHC1 | 🠛 apoptosis |
Downregulated miRNAs (tumor suppressive function) | Target Genes/Pathways | Biological Function in PC |
miR-26a | CCNE2, TP53 | 🠛 proliferation, 🠛 phosphorylation of TP53 |
miR-29c | ITGB1, MMP2, FRAT2, LRP6, FZD4, FZD5 | 🠛 cell growth, 🠛 migration, 🠛 invasion, 🠛 metastasis |
miR-30a | FOXD1 | 🠛 proliferation, 🠛 cell cycle, 🠙 apoptosis, 🠙 chemosensitivity |
miR-31 | BCL2 | 🠛 chemoresistance |
miR-33a | AKT, β-catenin, PIM-kinase | 🠛 proliferation |
miR-34a | BCL2, NOTCH1, NOTCH2 | 🠛 proliferation, 🠛 invasion, 🠙 apoptosis |
miR-96 | NUAK1 | 🠛 proliferation, 🠛 invasion, 🠛 migration |
miR-100 | FGFR3 | 🠙 chemosensitivity, 🠛 proliferation |
miR-101-3p | RRM1 | interferes with DNA synthesis |
miR-107 | CDK6 | 🠛 proliferation |
miR-130b | STAT3 | 🠛 proliferation, 🠛 invasion |
miR-141 | MAP4K4, TM4SF1, YAP1 | 🠛 proliferation, 🠛 colony formation, 🠛 migration, 🠛 invasion |
miR-143 | ARHGEF1, ARHGEF2, KRAS | 🠛 invasion, 🠛 migration, 🠛 metastasis |
miR-145 | KRAS, RREB1, ROR, MUC13 | 🠛 cell cycle, 🠛 proliferation, 🠛 invasion |
miR-146a | EGFR, IRAK1, MTA-2 | 🠛 invasion |
miR-148a | DNMT1, CCKBR, BCL-2, CDC25B | 🠛 proliferation, 🠛 metastasis, 🠛 cell growth |
miR-148b | AMPKα1, DNMT1 | 🠛 cell growth, arrests cell cycle, modifies methylation of tumor suppressors |
miR-150 | MYB, MUC4 | 🠛 proliferation, 🠛 invasion, 🠛 migration, 🠙 intercellular adhesion, 🠙 apoptosis |
miR-200c | MUC4, MUC6, E-cadherin | 🠛 invasion, 🠙 proliferation |
miR-211 | RRM2 | 🠛 invasion |
miR-216a | JAK2, Beclin-1 | 🠛 proliferation, 🠙 apoptosis, 🠙 radiosensitivity |
miR-217 | KRAS, SIRT1 | 🠛 cell growth, 🠛 colony formation, regulation of EMT |
miR-335 | OCT4 | 🠛 tumor development, 🠛 clonogenic expansion |
miR-365 | BAX, SHC1 | 🠙 chemorsistance |
miR-375 | PDK1 | 🠛 cell growth, 🠛 proliferation, 🠙 apoptosis |
let-7 | ZEB1/N-cadherin | 🠛 EMT, 🠛 invasion |
Upregulated lncRNAs (oncogenic function) | Target Genes/miRNAs/Pathways | Biological Function in PC |
H19 | HMGA2, E2F, let-7, miR-675, -194 | 🠙 proliferation, 🠙 tumor growth, 🠙 metastasis |
HOTAIR | EZH2, miR-34a | 🠙 proliferation, 🠙 chemoresistance |
HOTTIP | HOXA9, HOXA13, miR-137 | 🠙 cell growth, 🠙 invasion, 🠙 chemoresistance, modulates stem cells |
MALAT-1 | Sox-2, EZH2, miR-200c, -216a, -217, Hippo-YAP | 🠙 cell growth, 🠙 migration, 🠙 invasion, 🠙 metastasis |
PVT1 | p21, miR-20a-5p, -448, -519, HIF-1, YKT6, RAB7, VAMP3, ULK1 | 🠙 proliferation, 🠙 migration, 🠙 chemoresistance |
Downregulated lncRNAs (tumor suppressive function) | Target Genes/miRNAs/Pathways | Biological Function in PC |
GAS5 | CDK6, miR-32, -181c, -221/SOCS3 | 🠛 metastasis, 🠙 chemosensitivity, reverses EMT |
MEG | c-Met, PI3K/AKT | 🠛 proliferation, 🠛 migration, 🠛 invasion |
Upregulated circRNAs (oncogenic function) | Target genes/miRNAs/pathways | Biological function in PC |
ci-RS-7 | EGFR, STAT3; Sponges miR-7. | 🠙 proliferation, 🠙 invasion |
circEIF6 | SLC7A11, PI3K/AKT; Sponges miR-557. | 🠙 proliferation, 🠛 apoptosis |
circFOXK2 | ANK1, GDNF, PAX6, NUF2, PDXK; Sponges miR-942. | 🠙 proliferation, 🠙 migration, 🠙 invasion |
circBFAR | MET/PI3K/Akt.; Sponges miR-34b-5p. | 🠙 proliferation, 🠙 motility |
circ-ASHL2 | Notch 1; Sponges miR-34a. | 🠙 proliferation, 🠙 invasion, 🠙 angiogenesis |
circHOT1 | E2F3; Sponges miR-125a, -330, -26b and -382. | 🠙 proliferation, 🠙 migration, 🠙 invasion |
circRNA_100782 | IL6, STAT3; Sponges miR-124 | 🠙 proliferation, 🠙 tumor growth |
hsa_circ_0071036 | Bcl-2, caspase-3; Sponges miR-489 | 🠙 proliferation, 🠙 invasion, 🠙 tumor growth |
hsa_circ_0007534 | Sponges miR-625 and -892b. | 🠛 apoptosis |
Downregulated circRNAs (tumor suppressive function) | Target Genes/miRNAs/Pathways | Biological Function in PC |
circNFIB1 | PIK3R1, VEGF-C; Sponges miR-486-5p | 🠛 lymph node metastasis |
hsa_circ_001587 | SLC4A4, MMP-2, MMP-9, MCM2, VEGF; Sponges miR-223. | 🠛 proliferation, 🠛 migration, 🠛 invasion, 🠛 angiogenesis |
Reference | Study Population | Controls | Methods | DNA-/RNA-Based Markers | Detection Rate in Stool/ST and SF | Detection Rate in TT/PT/PJ | Other Markers | Main Findings/Authors’ Conclusions |
---|---|---|---|---|---|---|---|---|
Caldas et al., 1994 [95] | 11 PDAC, 3 CCA, 3 CP, 1 PTu | n.a. | Plaque hybr. assay | KRAS codon 12 in stool and tissue | In 55% of PDAC, in 67% of CCA, in 33% of CP. | TT/PT: in 100% of PDAC, 67% of CCA, 65% of duct lesions. | n.a. | KRAS mutations from PC cells and from abnormal duct epithelium can be detected in stool; potential use for screening of PDAC and precursor lesions. |
Berndt et al., 1998 [96] | 42 PDAC, 1 CAC, 1 CA, 7 PAC, 1 NEC, 2 PI, 7 CP | 6 HC | Mut.-enr. PCR and rev. dot-plot hybr. in microplates | KRAS in stool and tissue | In 40% of PDAC, in 100% of CAC, in 33% of CP; ST 42.3%, SP 66.7%. | TT/PT: in 91% of PDAC, 71% of PAC, 67% of CP. | Serum CA 19–9 and CEA | Diagnostic ST of KRAS in stool is only 40%, which is similar to CEA but much lower than CA 19–9. Establishment of marker combinations for stool testing is necessary. |
Wenger et al., 1999 [97] | 36 PDAC, 7 PAC, 1 CAC, 2 PI, 5 CP | 10 HC | Allele-specific capture probes, mut.-enr. PCR | KRAS in stool and tissue | In 20% of PDAC, in 100% of CAC, in 40% of CP. | TT/PT: in 78% of PDAC, 100% of CAC, 14% of PAC, 20% of CP. | Serum CA 19–9 and CEA | Mut. KRAS analysis in tissue did not distinguish between benign and malignant pancreatic disease. Only 20–40% of PC cases can be traced back from stool samples. Stool analysis could still be useful to detect more cases and increase survival. |
Pezzilli et al., 2006 [98] | PDAC, CAC, PET, CP, pseudocysts, benign congenital pancreatic mass | n.a. | PCR amplification | KRAS codon 12 in stool and blood | No detection | No detection | n.a. | KRAS mutation analysis in blood and stool is not useful for differentiating benign and malignant pancreatic masses. Further studies are needed to find simple and useful genetic markers for the detection of pancreatic malignancy. |
Lu et al., 2002 [99] | 201 PC or BPD | 60 HC | PCR-RFLP, PCR-SSCP | KRAS and TP53 in stool and PJ | Mut. KRAS in 88% of PC, 51.1% of BPD, 19.6% of HC; mut. TP53 in 37.1% of PC and 19.1% of CP. | PJ: mut. KRAS in 87.8% and 23.5%, mut. TP53 in 47.4% and 12.5% of PC and BPD. | n.a. | KRAS mutation analysis in pancreatic juice might be used in PC diagnosis. Combined KRAS and TP53 mutation analysis in stool can improve PC screening. |
Wu et al., 2006 [100] | 31 PC for fecal analysis, 48 PC for serum analysis | 85 controls with benign digestive disorders | PCR-RFLP, PCR-SSCP | KRAS and TP53 in stool | Mut. KRAS in 77.4% of PC and 18.2% of controls; mutated TP53 in 25.8% of PC and 4.71% of controls. | n.a. |
Serum CA 19–9, CA 242, CA 50, CEA | Fecal KRAS and TP53 mutations do not differ between tumor subgroups, which indicates an early role in tumorigenesis. The diagnostic value of CA 19–9 and CA 242 could be improved by combination with fecal KRAS analysis. |
Hwang et al., 2011 [101] | 14 PC, 6 IPMN | 20 HC | Hybrid capture enrichment of KRAS; QuARTS | KRAS in stool | 62% ST for PC and 83% for IPMN (at 90% SP cutoff). | n.a. | n.a. | Pancreatic neoplasia can be detected by stool screening, but further studies using genetic and epigenetic alterations complementary to KRAS are needed. |
Wang et al., 2018 [102] | 88 PC, 35 CP, 19 BPD | 3 HC | Magnetic nanoparticle trace capture probe and PCR | KRAS in stool and tumor tissue | Mut. KRAS in 81.8% of PC and 18.5% of BPD, 0% of HC; ST and SF for detecting PC: 81.8% and 81.5%. | n.a. | Serum CA 19–9 | ST and SF of fecal mut. KRAS for detection of PC was slightly higher than that of serum CA 19–9. By combining both markers, sensitivity could be increased to 97.9% while specificity stayed the same. |
Haug et al., 2007 [103] | 875 unselected older adults | n.a. | Mut.-enr. PCR and allele-specific hybr. reaction | KRAS codons 12 and 13 in stool | 8% overall prevalence of mut. KRAS. | n.a. | n.a. | Tentative association between decreased fecal pancreatic elastase 1 and mut. KRAS in stool, but no KRAS mutations detected in cases that later developed CRC. This assay could be used for early detection of PC, but not for CRC screening. |
Kisiel et al., 2012 [92] | 58 PDAC | 65 HC | Sequence specific gene capture (stool), MSP (tissue and stool); QuARTS | Mut. KRAS and meth. BMP3, NDRG4, EYA4, UCHL1, MDFI, Vimentin, CNTNAP2, SFRP2, TFPI2 in stool and tissue | Meth. BMP3 detected 51%, mut. KRAS detected 50% and combination of both detected 67% of PDAC. | n.a. | n.a. | PC can be detected from stool assay of methylated gene markers; BPM3 performed well alone; combining it with mut. KRAS increased detection rate for PDAC. |
Link et al., 2012 [106] | 15 PC, 15 CP | 15 HC | Taq-Man miRNA assay | miR-21, -143, -155, -196a, -210, -216a, -375 | Lower expression of miR-216a, -196a, -143 and -155 in PC compared to HC. | n.a. | n.a. | Differentially expressed miRNAs can be detected in stool of PC patients. This may be used as biomarker for PC screening. |
Ren et al., 2012 [107] | 29 PC, 22 CP | 13 HC | Taq-Man miRNA assay | miR-16, -21, -155, -181a, -181b, -196a and -210 | mi-RNAs discriminated PC from HC; miR-181b at a ST and SF of 84.6% and 51.7%; miR-210 at a ST and SF of 84.6% and 65.5%. | n.a. | n.a. | Fecal miRNAs may be used as novel biomarkers for PC screening. |
Yang et al., 2014 [108] | 30 PDAC, 10 CP | 15 HC | miRNA expr. analysis with qRT-PCR | miR-21, -155, -196a, -216 and -217 | Sign. higher expr. of miR-21 and -155 and lower expr. of miR-216 in PC compared to HC; ST of miR-21 and -155: 93.33%; ST and SF of miR-21, -155 and -216: 83.33% and 83.33%. | TT/PT/PJ: sign. higher expr. of miR-21 and -155; sign. lower expr. of miR-216 in PDAC compared to CP. | n.a. | MiRNA stool sampling and analysis is highly reproducible. Consistency in expression levels of miR-21, -155 and -216 in matched PC tissue, PJ, and stool samples. Combination of two or three miRNA markers yields enough ST and SF for their possible use as biomarkers for PC screening. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sammallahti, H.; Sarhadi, V.K.; Kokkola, A.; Ghanbari, R.; Rezasoltani, S.; Asadzadeh Aghdaei, H.; Puolakkainen, P.; Knuutila, S. Oncogenomic Changes in Pancreatic Cancer and Their Detection in Stool. Biomolecules 2022, 12, 652. https://doi.org/10.3390/biom12050652
Sammallahti H, Sarhadi VK, Kokkola A, Ghanbari R, Rezasoltani S, Asadzadeh Aghdaei H, Puolakkainen P, Knuutila S. Oncogenomic Changes in Pancreatic Cancer and Their Detection in Stool. Biomolecules. 2022; 12(5):652. https://doi.org/10.3390/biom12050652
Chicago/Turabian StyleSammallahti, Heidelinde, Virinder Kaur Sarhadi, Arto Kokkola, Reza Ghanbari, Sama Rezasoltani, Hamid Asadzadeh Aghdaei, Pauli Puolakkainen, and Sakari Knuutila. 2022. "Oncogenomic Changes in Pancreatic Cancer and Their Detection in Stool" Biomolecules 12, no. 5: 652. https://doi.org/10.3390/biom12050652
APA StyleSammallahti, H., Sarhadi, V. K., Kokkola, A., Ghanbari, R., Rezasoltani, S., Asadzadeh Aghdaei, H., Puolakkainen, P., & Knuutila, S. (2022). Oncogenomic Changes in Pancreatic Cancer and Their Detection in Stool. Biomolecules, 12(5), 652. https://doi.org/10.3390/biom12050652