Flow Cytometric Detection of Malignant Blasts in Cerebrospinal Fluid: A Biomarker of Central Nervous System Involvement in Childhood Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. CNS Involvement in Childhood ALL
3. Current Biomarkers of CNS Involvement
4. Central Methodological Concepts of CSF Flow Cytometry
Study | Number of Colors | Panel Selection | Antibody Panel(s) | CSF Stabilization | Sample Volume | Criteria for FCM+ | Comments |
---|---|---|---|---|---|---|---|
Sayed et al., 2009 [38] | 2–3 | Predetermined panels based on immunophenotype. | CD45/CD14; CD4/CD8/CD3; cyTDT/CD10/CD19; kappa/lambda/CD19; CD34/CD19; CD33/CD19 | No stabilization. Samples processed within 2 h. | >1 mL | Not reported. | FCM could not be performed for samples with less than one cell/10 µL of CSF. |
Martinez-Laperche et al., 2013 [39] | 6 | Predetermined panels based on immunophenotype. | B-lineage: CD22/CD34/7AAD/CD10/CD19/CD45; T-lineage: CD7/CD8/ 7AAD/CD4/CD3/CD45 | Collection in Transfix tubes. | 1–8 mL | >0.1% blasts with same immunophenotype as leukemic blasts in BM or blood at diagnosis. | Minimum of 50 viable events for sample to be considered evaluable. |
Ranta et al., 2015 [41] | 3–8 | Predetermined panels based on immunophenotype. | Various panels including the following markers: CD14, GPA, CD45, CD19, CD33, CD3, CD10, CD34, Tdt, CD7, cytCD3, CD61, kappa, lambda, CD20, CD38, CD117, CD4, CD8, CD5, CD22, CD99, HLA-DR, CD2, CD1a | Samples processed immediately or stabilized with Transfix and analyzed the next morning. | 50–100 µL per antibody combination. | Not reported. | Minimum of 50 viable events for sample to be considered evaluable. |
Cancela et al., 2017 [35] | 4 | Predetermined panels based on immunophenotype. | Mature T-cells: CD3/CD8/ CD45/CD4; B-lineage: CD10/CD34/CD45/ CD19; T-lineage: CD1a or CDRαb/ CD7/CD45/CD3 | No stabilization. Samples processed within 8 h. | ~3 mL | Minimum 10 blasts with same immunophenotype as leukemic blasts in BM or blood at diagnosis. | |
Gabelli et al., 2019 [37] | 8 | Not reported. | Not reported. | No stabilization. Samples processed within 24 h. | Not reported. | Cluster of events with same immunophenotype as leukemic blasts in BM or blood at diagnosis. | |
Popov et al., 2019 [36] | 4–6 | Predetermined panels based on immunophenotype. | B-lineage: CD19/CD10/CD34/ CD45; T-lineage: CD7/CD3/ CD5/CD2/CD99/CD45 | Not reported. | ≥1 mL | Minimum 30 phenotypically aberrant cells. | |
Thastrup et al., 2020 [33] | 6–7 | Predetermined panels based on immunophenotype. | B-lineage: CD3/CD10/CD19/CD20/CD34/CD38/CD45; T-lineage: CD3/CD4/CD7/CD8/CD45/CD56. | Collection in Transfix tubes. | Not reported. | Minimum 10 phenotypically aberrant cells. | |
Torkashvand et al., 2020 [40] | Not reported. | Predetermined panels based on immunophenotype. | Panels not reported. Individual markers include: CD2, CD3, CD7, CD5, CD10, CD19, CD20, CD22, HLA-DR, CD45 and CD34. | Collection in fixative medium with EDTA anticoagulant. Transported at 4 °C and processed within 2 h. | ~1.5 mL | Not reported. | |
De Haas et al., 2021 [7] | 6 | Predetermined panels based on immunophenotype. | B-lineage: CD58/CD19/CD45/CD10/CD22/CD34 or TdT/CD19/CD45/CD10/CD38/CD20; T-lineage: CD2/CD16+56/CD45/CD7/CD5/mCD3 or CD99/CD16+56/CD45/CD7/CyCD3/mCD3 | No stabilization. Local analysis performed within a few hours. Samples for centralized analysis diluted 1:1 in sterile medium and processed within 24 h. | Not reported. | Cluster of events with same immuno-phenotype as leukemic blasts in BM or blood at diagnosis. Minimum of five positive cells in at least one tube. | FCM at both local immunophenotyping laboratory and central reference laboratory. |
5. Frequency of CSF Involvement by CSF Flow Cytometry
6. Prognostic Significance of CSF Flow Cytometry
7. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Toft, N.; Birgens, H.; Abrahamsson, J.; Griškevic Ius, L.; Hallböök, H.; Heyman, M.; Klausen, T.W.; Jónsson, Ó.; Palk, K.; Pruunsild, K.; et al. Results of NOPHO ALL2008 Treatment for Patients Aged 1-45 Years with Acute Lymphoblastic Leukemia. Leukemia 2018, 32, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.H.; Robison, L.L.; Look, A.T. Acute Lymphoblastic Leukaemia. Lancet 2008, 371, 1030–1043. [Google Scholar] [CrossRef]
- Schultz, K.R.; Pullen, D.J.; Sather, H.N.; Shuster, J.J.; Devidas, M.; Borowitz, M.J.; Carroll, A.J.; Heerema, N.A.; Rubnitz, J.E.; Loh, M.L.; et al. Risk- and Response-Based Classification of Childhood B-Precursor Acute Lymphoblastic Leukemia: A Combined Analysis of Prognostic Markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 2007, 109, 926–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winick, N.; Devidas, M.; Chen, S.; Maloney, K.; Larsen, E.; Mattano, L.; Borowitz, M.J.; Carroll, A.; Gastier-Foster, J.M.; Heerema, N.A.; et al. Impact of Initial CSF Findings on Outcome among Patients with National Cancer Institute Standard- and High-Risk B-Cell Acute Lymphoblastic Leukemia: A Report from the Children’s Oncology Group. J. Clin. Oncol. 2017, 35, 2527–2534. [Google Scholar] [CrossRef]
- Crespo-Solis, E.; López-Karpovitch, X.; Higuera, J.; Vega-Ramos, B. Diagnosis of Acute Leukemia in Cerebrospinal Fluid (CSF-Acute Leukemia). Curr. Oncol. Rep. 2012, 14, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C.; Glantz, M.; Groves, M.D.; Wilson, W.H. Diagnostic Tools for Neoplastic Meningitis: Detecting Disease, Identifying Patient Risk, and Determining Benefit of Treatment. Semin. Oncol. 2009, 36, S35–S45. [Google Scholar] [CrossRef] [Green Version]
- de Haas, V.; Pieters, R.; van der Sluijs-Gelling, A.J.; Zwaan, C.M.; de Groot-Kruseman, H.A.; Sonneveld, E.; Stigter, R.L.; van der Velden, V.H.J. Flowcytometric Evaluation of Cerebrospinal Fluid in Childhood ALL Identifies CNS Involvement Better Then Conventional Cytomorphology. Leukemia 2021, 35, 1773–1776. [Google Scholar] [CrossRef]
- Krull, K.R.; Hardy, K.K.; Kahalley, L.S.; Schuitema, I.; Kesler, S.R. Neurocognitive Outcomes and Interventions in Long-Term Survivors of Childhood Cancer. J. Clin. Oncol. 2018, 36, 2181–2189. [Google Scholar] [CrossRef] [Green Version]
- Follin, C.; Erfurth, E.M. Long-Term Effect of Cranial Radiotherapy on Pituitary-Hypothalamus Area in Childhood Acute Lymphoblastic Leukemia Survivors. Curr. Treat. Options Oncol. 2016, 17, 50. [Google Scholar] [CrossRef] [Green Version]
- Pui, C.H.; Howard, S.C. Current Management and Challenges of Malignant Disease in the CNS in Paediatric Leukaemia. Lancet Oncol. 2008, 9, 257–268. [Google Scholar] [CrossRef]
- Krishnan, S.; Wade, R.; Moorman, A.V.; Mitchell, C.; Kinsey, S.E.; Eden, T.O.B.; Parker, C.; Vora, A.; Richards, S.; Saha, V. Temporal Changes in the Incidence and Pattern of Central Nervous System Relapses in Children with Acute Lymphoblastic Leukaemia Treated on Four Consecutive Medical Research Council Trials, 1985–2001. Leukemia 2010, 24, 450–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, R.A.; Johnson, W.W. The Central Nervous System in Childhood Leukemia: I. The Arachnoid. Cancer 1973, 31, 520–533. [Google Scholar] [CrossRef]
- Lenk, L.; Alsadeq, A.; Schewe, D.M. Involvement of the Central Nervous System in Acute Lymphoblastic Leukemia: Opinions on Molecular Mechanisms and Clinical Implications Based on Recent Data. Cancer Metastasis Rev. 2020, 39, 173–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeer, J.L.; Schmiegelow, K. Management of CNS Disease in Pediatric Acute Lymphoblastic Leukemia. Curr. Hematol. Malig. Rep. 2022, 17, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bürger, B.; Zimmermann, M.; Mann, G.; Kühl, J.; Löning, L.; Riehm, H.; Reiter, A.; Schrappe, M. Diagnostic Cerebrospinal Fluid Examination in Children with Acute Lymphoblastic Leukemia: Significance of Low Leukocyte Counts with Blasts or Traumatic Lumbar Puncture. J. Clin. Oncol. 2003, 21, 184–188. [Google Scholar] [CrossRef]
- Levinsen, M.; Taskinen, M.; Abrahamsson, J.; Forestier, E.; Frandsen, T.L.; Harila-Saari, A.; Heyman, M.; Jonsson, O.G.; Lähteenmäki, P.M.; Lausen, B.; et al. Clinical Features and Early Treatment Response of Central Nervous System Involvement in Childhood Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 2014, 61, 1416–1421. [Google Scholar] [CrossRef]
- Iyer, N.S.; Balsamo, L.M.; Bracken, M.B.; Kadan-Lottick, N.S. Chemotherapy-Only Treatment Effects on Long-Term Neurocognitive Functioning in Childhood ALL Survivors: A Review and Meta-Analysis. Blood 2015, 126, 346–353. [Google Scholar] [CrossRef]
- Rahimi, J.; Woehrer, A. Overview of Cerebrospinal Fluid Cytology. Handb. Clin. Neurol. 2018, 145, 563–571. [Google Scholar] [CrossRef]
- Glantz, M.J.; Cole, B.F.; Glantz, L.K.; Cobb, J.; Mills, P.; Lekos, A.; Walters, B.C.; Recht, L.D. Cerebrospinal Fluid Cytology in Patients with Cancer: Minimizing False- Negative Results. Cancer 1998, 82, 733–739. [Google Scholar] [CrossRef]
- Kim, D.; Alperstein, S.A.; Siddiqui, M.T. Standardizing a Volume Benchmark for Cerebrospinal Fluids for Optimal Diagnostic Accuracy. Diagn. Cytopathol. 2021, 49, 258–266. [Google Scholar] [CrossRef]
- Steele, R.W.; Marmer, D.J.; O’Brien, M.D.; Tyson, S.T. Leukocyte Survival in Cerebrospinal Fluid. J. Clin. Microbiol. 1986, 23, 965–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dux, R.; Kindler-Röhrborn, A.; Annas, M.; Faustmann, P.; Lennartz, K.; Zimmermann, C.W. A Standardized Protocol for Flow Cytometric Analysis of Cells Isolated from Cerebrospinal Fluid. J. Neurol. Sci. 1994, 121, 74–78. [Google Scholar] [CrossRef]
- De Graaf, M.T.; Van Den Broek, P.D.M.; Kraan, J.; Luitwieler, R.L.; Van Den Bent, M.J.; Boonstra, J.G.; Schmitz, P.I.M.; Gratama, J.W.; Sillevis Smitt, P.A.E. Addition of Serum-Containing Medium to Cerebrospinal Fluid Prevents Cellular Loss over Time. J. Neurol. 2011, 258, 1507–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ransohoff, R.M.; Engelhardt, B. The Anatomical and Cellular Basis of Immune Surveillance in the Central Nervous System. Nat. Rev. Immunol. 2012, 12, 623–635. [Google Scholar] [CrossRef]
- Schinstine, M.; Filie, A.C.; Wilson, W.; Stetler-Stevenson, M.; Abati, A. Detection of Malignant Hematopoietic Cells in Cerebral Spinal Fluid Previously Diagnosed as Atypical or Suspicious. Cancer 2006, 108, 157–162. [Google Scholar] [CrossRef]
- Wu, J.M.; Georgy, M.F.; Burroughs, F.H.; Weir, E.G.; Rosenthal, D.L.; Ali, S.Z. Lymphoma, Leukemia, and Pleiocytosis in Cerebrospinal Fluid: Is Accurate Cytopathologic Diagnosis Possible Based on Morphology Alone? Diagn. Cytopathol. 2009, 37, 820–824. [Google Scholar] [CrossRef]
- Perske, C.; Nagel, I.; Nagel, H.; Strik, H. CSF Cytology--the Ongoing Dilemma to Distinguish Neoplastic and Inflammatory Lymphocytes. Diagn. Cytopathol. 2011, 39, 621–626. [Google Scholar] [CrossRef]
- Te Loo, D.M.W.M.; Kamps, W.A.; Van Der Does-Van Den Berg, A.; Van Wering, E.R.; De Graaf, S.S.N. Prognostic Significance of Blasts in the Cerebrospinal Fluid without Pleiocytosis or a Traumatic Lumbar Puncture in Children with Acute Lymphoblastic Leukemia: Experience of the Dutch Childhood Oncology Group. J. Clin. Oncol. 2006, 24, 2332–2336. [Google Scholar] [CrossRef]
- Vora, A.; Andreano, A.; Pui, C.H.; Hunger, S.P.; Schrappe, M.; Moericke, A.; Biondi, A.; Escherich, G.; Silverman, L.B.; Goulden, N.; et al. Influence of Cranial Radiotherapy on Outcome in Children With Acute Lymphoblastic Leukemia Treated With Contemporary Therapy. J. Clin. Oncol. 2016, 34, 919–926. [Google Scholar] [CrossRef]
- DiGiuseppe, J.A.; Wood, B.L. Applications of Flow Cytometric Immunophenotyping in the Diagnosis and Posttreatment Monitoring of B and T Lymphoblastic Leukemia/Lymphoma. Cytometry B. Clin. Cytom. 2019, 96, 256–265. [Google Scholar] [CrossRef]
- Subirá, D.; Castañón, S.; Aceituno, E.; Hernández, J.; Jiménez-Garófano, C.; Jiménez, A.; Jiménez, A.M.; Román, A.; Orfao, A. Flow Cytometric Analysis of Cerebrospinal Fluid Samples and Its Usefulness in Routine Clinical Practice. Am. J. Clin. Pathol. 2002, 117, 952–958. [Google Scholar] [CrossRef]
- Levinsen, M.; Marquart, H.V.; Groth-Pedersen, L.; Abrahamsson, J.; Albertsen, B.K.; Andersen, M.K.; Frandsen, T.L.; Harila-Saari, A.; Pronk, C.; Ulvmoen, A.; et al. Leukemic Blasts Are Present at Low Levels in Spinal Fluid in One-Third of Childhood Acute Lymphoblastic Leukemia Cases. Pediatr. Blood Cancer 2016, 63, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Thastrup, M.; Marquart, H.V.; Levinsen, M.; Grell, K.; Abrahamsson, J.; Albertsen, B.K.; Frandsen, T.L.; Harila-Saari, A.; Lähteenmäki, P.M.; Niinimäki, R.; et al. Flow Cytometric Detection of Leukemic Blasts in Cerebrospinal Fluid Predicts Risk of Relapse in Childhood Acute Lymphoblastic Leukemia: A Nordic Society of Pediatric Hematology and Oncology Study. Leukemia 2020, 34, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Theunissen, P.; Mejstrikova, E.; Sedek, L.; Van Der Sluijs-Gelling, A.J.; Gaipa, G.; Bartels, M.; Sobral da Costa, E.; Kotrová, M.; Novakova, M.; Sonneveld, E.; et al. Standardized Flow Cytometry for Highly Sensitive MRD Measurements in B-Cell Acute Lymphoblastic Leukemia. Blood 2017, 129, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Cancela, C.S.P.; Murao, M.; Assumpção, J.G.; Souza, M.E.D.L.; de Macedo, A.V.; Viana, M.B.; De Oliveira, B.M. Immunophenotyping of the Cerebrospinal Fluid as a Prognostic Factor at Diagnosis of Acute Lymphoblastic Leukemia in Children and Adolescents. Pediatr. Hematol. Oncol. 2017, 34, 53–65. [Google Scholar] [CrossRef]
- Popov, A.; Henze, G.; Verzhbitskaya, T.; Roumiantseva, J.; Lagoyko, S.; Khlebnikova, O.; Streneva, O.; Bidanov, O.; Tsaur, G.; Inaba, H.; et al. Absolute Count of Leukemic Blasts in Cerebrospinal Fluid as Detected by Flow Cytometry Is a Relevant Prognostic Factor in Children with Acute Lymphoblastic Leukemia. J. Cancer Res. Clin. Oncol. 2019, 145, 1331–1339. [Google Scholar] [CrossRef]
- Gabelli, M.; Disarò, S.; Scarparo, P.; Francescato, S.; Zangrando, A.; Valsecchi, M.G.; Putti, M.C.; Basso, G.; Buldini, B. Cerebrospinal Fluid Analysis by 8-Color Flow Cytometry in Children with Acute Lymphoblastic Leukemia. Leuk. Lymphoma 2019, 60, 2825–2828. [Google Scholar] [CrossRef]
- Sayed, D.; Badrawy, H.; Ali, A.M.; Shaker, S. Immunophenotyping and Immunoglobulin Heavy Chain Gene Rearrangement Analysis in Cerebrospinal Fluid of Pediatric Patients with Acute Lymphoblastic Leukemia. Leuk. Res. 2009, 33, 655–661. [Google Scholar] [CrossRef]
- Martínez-Laperche, C.; Gómez-García, A.M.; Lassaletta, Á.; Moscardó, C.; Vivanco, J.L.; Molina, J.; Fuster, J.L.; Couselo, J.M.; De Toledo, J.S.; Bureo, E.; et al. Detection of Occult Cerebrospinal Fluid Involvement during Maintenance Therapy Identifies a Group of Children with Acute Lymphoblastic Leukemia at High Risk for Relapse. Am. J. Hematol. 2013, 88, 359–364. [Google Scholar] [CrossRef]
- Torkashvand, M.; Goudarzipour, K.; Allahbakhshian Farsani, M.; Amiri, V.; Mohammadi, M.H.; Hashemieh, M.; Eshghi, P. Quantitative Evaluation of Cerebrospinal Fluid (CSF) Samples in Pediatric Patients with Low-Risk ALL Using Multiparameter Flow Cytometry. Int. J. Lab. Hematol. 2020, 42, e152–e154. [Google Scholar] [CrossRef]
- Ranta, S.; Nilsson, F.; Harila-Saari, A.; Saft, L.; Tani, E.; Söderhäll, S.; Porwit, A.; Hultdin, M.; Noren-Nyström, U.; Heyman, M. Detection of Central Nervous System Involvement in Childhood Acute Lymphoblastic Leukemia by Cytomorphology and Flow Cytometry of the Cerebrospinal Fluid. Pediatr. Blood Cancer 2015, 62, 951–956. [Google Scholar] [CrossRef] [PubMed]
- De Jongste, A.H.; Kraan, J.; Van Den Broek, P.D.; Brooimans, R.A.; Bromberg, J.E.; Van Montfort, K.A.; Smitt, P.A.S.; Gratama, J.W. Use of TransFixTM Cerebrospinal Fluid Storage Tubes Prevents Cellular Loss and Enhances Flow Cytometric Detection of Malignant Hematological Cells after 18 Hours of Storage. Cytometry B. Clin. Cytom. 2014, 86, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, A.; Harrison, P.L.; Sandlund, J.T.; Rivera, G.K.; Ribeiro, R.C.; Rubnitz, J.E.; Razzouk, B.; Relling, M.V.; Evans, W.E.; Boyett, J.M.; et al. Traumatic Lumbar Puncture at Diagnosis Adversely Affects Outcome in Childhood Acute Lymphoblastic Leukemia. Blood 2000, 96, 3381–3384. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.-H.; Campana, D.; Pei, D.; Bowman, W.P.; Sandlund, J.T.; Kaste, S.C.; Ribeiro, R.C.; Rubnitz, J.E.; Raimondi, S.C.; Onciu, M.; et al. Treating Childhood Acute Lymphoblastic Leukemia without Cranial Irradiation. N. Engl. J. Med. 2009, 360, 2730–2741. [Google Scholar] [CrossRef] [Green Version]
- Loeb, K.R.; Cherian, S.; Becker, P.S.; Walter, R.B.; Pagel, J.M.; Abkowitz, J.L.; Appelbaum, F.R.; Wood, B.L.; Estey, E.H. Comparative Analysis of Flow Cytometry and Morphology for the Detection of Acute Myeloid Leukaemia Cells in Cerebrospinal Fluid. Br. J. Haematol. 2016, 172, 134–136. [Google Scholar] [CrossRef]
- Del Principe, M.I.; Buccisano, F.; Soddu, S.; Maurillo, L.; Cefalo, M.; Piciocchi, A.; Consalvo, M.I.; Paterno, G.; Sarlo, C.; De Bellis, E.; et al. Involvement of Central Nervous System in Adult Patients with Acute Myeloid Leukemia: Incidence and Impact on Outcome. Semin. Hematol. 2018, 55, 209–214. [Google Scholar] [CrossRef]
- Sancho, J.M.; Orfao, A.; Quijano, S.; García, O.; Panizo, C.; Pérez-Ceballos, E.; Deben, G.; Salar, A.; González-Barca, E.; Alonso, N.; et al. Clinical Significance of Occult Cerebrospinal Fluid Involvement Assessed by Flow Cytometry in Non-Hodgkin’s Lymphoma Patients at High Risk of Central Nervous System Disease in the Rituximab Era. Eur. J. Haematol. 2010, 85, 321–328. [Google Scholar] [CrossRef]
- Benevolo, G.; Stacchini, A.; Spina, M.; Ferreri, A.J.M.; Arras, M.; Bellio, L.; Botto, B.; Bulian, P.; Cantonetti, M.; Depaoli, L.; et al. Final Results of a Multicenter Trial Addressing Role of CSF Flow Cytometric Analysis in NHL Patients at High Risk for CNS Dissemination. Blood 2012, 120, 3222–3228. [Google Scholar] [CrossRef] [Green Version]
- Wilson, W.H.; Bromberg, J.E.C.; Stetler-Stevenson, M.; Steinberg, S.M.; Martin-Martin, L.; Muñiz, C.; Sancho, J.M.; Caballero, M.D.; Davidis, M.A.; Brooimans, R.A.; et al. Detection and Outcome of Occult Leptomeningeal Disease in Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma. Haematologica 2014, 99, 1228–1235. [Google Scholar] [CrossRef] [Green Version]
Study | Number of Patients | Number of Samples | Diagnosis | Relapse | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Initial LP | Follow-Up LPs | Initial LP | Follow-Up LPs | |||||||
FCM+ | CM+ | FCM+ | CM+ | FCM+ | CM+ | FCM+ | CM+ | |||
Sayed et al., 2009 * [38] | 45 | 45 samples collected at initial diagnosis | 46.6% (21/45) | 22.2% (10/45) | - | - | - | - | - | - |
Martinez-Laperche et al., 2013 [39] | 108 | 990 samples collected at diagnosis and during follow-up | 27.8% (30/108) | 2.8% (3/108) | 7.2% (63/882) | 0% (0/882) | - | - | - | - |
Ranta et al., 2015 [41] | 214 | 214 samples collected at diagnosis | 17.3% (37/214) | 9.8% (21/214) | - | - | - | - | - | - |
Cancela et al., 2017 [35] | 67 | 72 samples collected at diagnosis and relapse | 16.3% (9/55) | 0% (0/55) | - | - | 11.7% (2/17) | 17.6% (3/17) | - | - |
Gabelli et al., 2019 [37] | 97 | 1050 samples collected at diagnosis or isolated BM relapse and during follow-up | 40.5% (29/84) | 8.3% (7/84) | 3.6% (31/855) | 0% (0/855) | 53.8% (7/13) | 0% (0/13) | 20.4% (20/98) | 3.1% (3/98) |
Popov et al., 2019 [36] | 155 | 155 samples collected at diagnosis | 37.4% (53/155) | 18.1% (28/155) | - | - | - | - | - | - |
Thastrup et al., 2020 ** [33] | 673 | 936 samples collected at diagnosis and during follow-up | 25.4% (171/673) | 13.4% (90/673) | 37.4% (64/171) | - | - | - | - | - |
Torkashvand et al., 2020 *** [40] | 30 | 30 samples collected at diagnosis | 16.7% (5/30) | 0% (0/30) | - | - | - | - | - | - |
De Haas et al., 2021 [7] | 255 | 255 samples collected at diagnosis | 22.7% (58/255) | 51.0% (130/255) | - | - | - | - | - | - |
Average % (Total number of samples) | 27.9% (413/1619) | 17.9% (289/1619) | 8.3% (158/1908) | 0% (0/1737) | 30.0% (9/30) | 8.8% (3/30) | 20.4% (20/98) | 3.1% (3/98) |
Study | Number of Patients | Median Follow-Up (Range) | Relapse | Survival | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Relapse Estimate | FCM+ | FCM− | p-Value | Survival Estimate | FCM+ | FCM− | p-Value | |||
Martinez-Laperche et al., 2013 [39] | 108 | Not reported. | 3 year CIR | 10.7% | 6.9% | 0.648 | 3 year OS | 96.6% | 96.7% | 0.82 |
Ranta et al., 2015 [41] | 214 | Not reported. | 5 year CIR | 29% | 7% | 0.028 | 5 year EFS | 73% * | 86% | 0.034 |
Cancela et al., 2017 [35] | 55 | 24.8 months (28 days–43 months) | - | - | - | - | 3 year OS | 35.6% | 75.4% | <0.0001 |
Popov et al., 2019 [36] | 155 | Not reported. | 7 year CIR | 25% | 13% | 0.017 | - | - | - | - |
Thastrup et al., 2020 [33] | 673 | 2.7 years (IQR 1.5–3.9) | 4 year CIR | 16.5% | 5.6% | < 0.001 | 4 year EFS | 80.4% | 92.7% | <0.001 |
De Haas et al., 2021 [7] | 255 | Not reported. | - | - | - | - | 5 year RFS | 87.9% ** | 100% ** | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thastrup, M.; Marquart, H.V.; Schmiegelow, K. Flow Cytometric Detection of Malignant Blasts in Cerebrospinal Fluid: A Biomarker of Central Nervous System Involvement in Childhood Acute Lymphoblastic Leukemia. Biomolecules 2022, 12, 813. https://doi.org/10.3390/biom12060813
Thastrup M, Marquart HV, Schmiegelow K. Flow Cytometric Detection of Malignant Blasts in Cerebrospinal Fluid: A Biomarker of Central Nervous System Involvement in Childhood Acute Lymphoblastic Leukemia. Biomolecules. 2022; 12(6):813. https://doi.org/10.3390/biom12060813
Chicago/Turabian StyleThastrup, Maria, Hanne Vibeke Marquart, and Kjeld Schmiegelow. 2022. "Flow Cytometric Detection of Malignant Blasts in Cerebrospinal Fluid: A Biomarker of Central Nervous System Involvement in Childhood Acute Lymphoblastic Leukemia" Biomolecules 12, no. 6: 813. https://doi.org/10.3390/biom12060813
APA StyleThastrup, M., Marquart, H. V., & Schmiegelow, K. (2022). Flow Cytometric Detection of Malignant Blasts in Cerebrospinal Fluid: A Biomarker of Central Nervous System Involvement in Childhood Acute Lymphoblastic Leukemia. Biomolecules, 12(6), 813. https://doi.org/10.3390/biom12060813