FOXA3 Polymorphisms Are Associated with Metabolic Parameters in Individuals with Subclinical Atherosclerosis and Healthy Controls—The GEA Mexican Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genetic Analysis
2.3. Statistical Analysis
2.4. Functional Analysis
3. Results
3.1. Demographic, Clinical, and Biochemical Characteristics
3.2. Association of the FOXA3 Polymorphisms with SA, Metabolic Parameters, and Cardiovascular Risk Factors
3.3. Association of the rs10410870 Polymorphism with AVC
3.4. Haplotype Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Global Burden of Coronary Heart Disease. Available online: https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1 (accessed on 14 March 2022).
- Kowara, M.; Cudnoch-Jedrzejewska, A. Pathophysiology of Atherosclerotic Plaque Development-Contemporary Experience and New Directions in Research. Int. J. Mol. Sci. 2021, 22, 3513. [Google Scholar] [CrossRef] [PubMed]
- Mushenkova, N.V.; Nikiforov, N.G.; Melnichenko, A.A.; Kalmykov, V.; Shakhpazyan, N.K.; Orekhova, V.A.; Orekhov, A.N. Functional Phenotypes of Intraplaque Macrophages and Their Distinct Roles in Atherosclerosis Development and Atheroinflammation. Biomedicines 2022, 10, 452. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Y.; Jadhav, K.; Zhu, Y.; Yin, L.; Zhang, Y. Hepatic Forkhead Box Protein A3 Regulates ApoA-I (Apolipoprotein A-I) Expression, Cholesterol Efflux, and Atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1574–1587. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.R.; Kaestner, K.H. The Foxa family of transcription factors in development and metabolism. Cell. Mol. Life Sci. 2006, 63, 2317–2328. [Google Scholar] [CrossRef]
- Xu, L.; Panel, V.; Ma, X.; Du, C.; Hugendubler, L.; Gavrilova, O.; Liu, A.; McLaughlin, T.; Kaestner, K.H.; Mueller, E. The winged helix transcription factor Foxa3 regulates adipocyte differentiation and depot-selective fat tissue expansion. Mol. Cell. Biol. 2013, 33, 3392–3399. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Xu, L.; Gavrilova, O.; Mueller, E. Role of forkhead box protein A3 in age-associated metabolic decline. Proc. Natl. Acad. Sci. USA 2014, 111, 14289–14294. [Google Scholar] [CrossRef] [Green Version]
- Allander, S.V.; Durham, S.K.; Scheimann, A.O.; Wasserman, R.M.; Suwanichkul, A.; Powell, D.R. Hepatic nuclear factor 3 and high mobility group I/Y proteins bind the insulin response element of the insulin-like growth factor-binding protein-1 promoter. Endocrinology 1997, 138, 4291–4300. [Google Scholar] [CrossRef]
- Nitsch, D.; Boshart, M.; Schutz, G. Activation of the tyrosine aminotransferase gene is dependent on synergy between liver-specific and hormone-responsive elements. Proc. Natl. Acad. Sci. USA 1993, 90, 5479–5483. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.M.; Noisin, E.L.; Suwanichkul, A.; Yamasaki, T.; Lucas, P.C.; Wang, J.C.; Powell, D.R.; Granner, D.K. Hepatic nuclear factor 3- and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes. Mol. Cell. Biol. 1995, 15, 1747–1758. [Google Scholar] [CrossRef] [Green Version]
- Adler-Wailes, D.C.; Alberobello, A.T.; Ma, X.; Hugendubler, L.; Stern, E.A.; Mou, Z.; Han, J.C.; Kim, P.W.; Sumner, A.E.; Yanovski, J.A.; et al. Analysis of variants and mutations in the human winged helix FOXA3 gene and associations with metabolic traits. Int. J. Obes. 2015, 39, 888–892. [Google Scholar] [CrossRef] [Green Version]
- Kvist, H.; Chowdhury, B.; Grangård, U.; Tylén, U.; Sjöström, L. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: Predictive equations. Am. J. Clin. Nutr. 1988, 48, 1351. [Google Scholar] [CrossRef] [PubMed]
- Longo, R.; Ricci, C.; Masutti, F.; Vidimari, R.; Crocé, L.S.; Bercich, L.; Tiribelli, C.; Dalla Palma, L. Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Investig. Radiol. 1993, 28, 297–302. [Google Scholar] [CrossRef]
- Mautner, G.C.; Mautner, S.L.; Froehlich, J.; Feuerstein, I.M.; Proschan, M.A.; Roberts, W.C.; Doppman, J.L. Coronary artery calcification: Assessment with electron beam CT and histomorphometric correlation. Radiology 1994, 192, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Posadas-Sánchez, R.; Ocampo-Arcos, W.A.; López-Uribe, A.R.; González-Salazar, M.C.; Cardoso-Saldaña, G.; Mendoza-Pérez, E. Asociación del ácido úrico con factores de riesgo cardiovascular y aterosclerosis subclínica en adultos mexicanos. Rev. Mex. Endocrinol. Metabol. Nutr. 2014, 1, 14. [Google Scholar]
- Posadas-Sánchez, R.; López-Uribe, A.R.; Posadas-Romero, C.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Ocampo-Arcos, W.A.; Fragoso, J.M.; Cardoso-Saldalña, G.; Vargas-Alarcón, G. Association of the I148M/PNPLA3 (rs738409) polymorphism with premature coronary artery disease, fatty liver, and insulin resistance in type 2 diabetic patients and healthy controls. The GEA study. Immunobiology 2017, 222, 960–966. [Google Scholar] [CrossRef]
- Medina-Urrutia, A.; Posadas-Romero, C.; Posadas-Sánchez, R.; Jorge-Galarza, E.; Villarreal-Molina, T.; González-Salazar, M.C.; Cardoso-Saldaña, G.; Vargas-Alarcón, G.; Torres-Tamayo, M.; Juárez-Rojas, J.G. Role of adiponectin and free fatty acids on the association between abdominal visceral fat and insulin resistance. Cardiovasc. Diabetol. 2015, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Acuña-Valerio, J.; Rodas-Díaz, M.A.; Macias-Garrido, E.; Posadas-Sánchez, R.; Juárez-Rojas, J.G.; Medina-Urrutia, A.X.; Cardoso-Saldaña, G.C.; Joge-Galarza, E.; Torres-Tamayo, M.; Vargas-Alarcón, G.; et al. Prevalencia y asociación de la calcificación valvular aórtica con factores de riesgo y aterosclerosis coronaria en población mexicana [Aortic valve calcification prevalence and association with coronary risk factors and atherosclerosis in Mexican population]. Arch. Cardiol. Mex. 2017, 87, 108–115. [Google Scholar]
- Ma, X.; Xu, L.; Mueller, E. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue. Proc. Natl. Acad. Sci. USA 2016, 113, 3377–3382. [Google Scholar] [CrossRef] [Green Version]
- Chutia, H.; Lynrah, K.G. Association of Serum Magnesium Deficiency with Insulin Resistance in Type 2 Diabetes Mellitus. J. Lab. Physicians. 2015, 7, 75–78. [Google Scholar] [CrossRef]
- Găman, M.A.; Dobrică, E.C.; Cozma, M.A.; Antonie, N.I.; Stănescu, A.M.A.; Găman, A.M.; Diaconu, C.C. Crosstalk of Magnesium and Serum Lipids in Dyslipidemia and Associated Disorders: A Systematic Review. Nutrients 2021, 13, 1411. [Google Scholar] [CrossRef]
- Dominguez, L.; Veronese, N.; Barbagallo, M. Magnesium and Hypertension in Old Age. Nutrients 2020, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Piuri, G.; Zocchi, M.; Della Porta, M.; Ficara, V.; Manoni, M.; Zuccotti, G.V.; Pinotti, L.; Maier, J.A.; Cazzola, R. Magnesium in Obesity, Metabolic Syndrome, and Type 2 Diabetes. Nutrients 2021, 13, 320. [Google Scholar] [CrossRef] [PubMed]
- Tesauro, M.; Mauriello, A.; Rovella, V.; Annicchiarico-Petruzzelli, M.; Cardillo, C.; Melino, G.; Di Daniele, N. Arterial ageing: From endothelial dysfunction to vascular calcification. J. Intern. Med. 2017, 281, 471–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, A.J.; Woollard, K.J.; Hoang, A.; Mukhamedova, N.; Stirzaker, R.A.; McCormick, S.P.; Remaley, A.T.; Sviridov, D.; Chin-Dusting, J. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 2071–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, R.; Pietsch, D.; Panterodt, T.; Brand, K. Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell. Signal. 2012, 24, 1287–1296. [Google Scholar] [CrossRef] [Green Version]
- Gorgoni, B.; Maritano, D.; Marthyn, P.; Righi, M.; Poli, V. C/EBP beta gene inactivation causes both impaired and enhanced gene expression and inverse regulation of IL-12 p40 and p35 mRNAs in macrophages. J. Immunol. 2002, 168, 4055–4062. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.M.; Janssen, R.C.; Choudhury, M.; Baquero, K.C.; Aikens, R.M.; de la Houssaye, B.A.; Friedman, J.E. CCAAT/enhancer-binding protein β (C/EBPβ) expression regulates dietary-induced inflammation in macrophages and adipose tissue in mice. J. Biol. Chem. 2012, 287, 34349–34360. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.R. Haematopoietic-expressed C/EBPβ: A novel transcriptional regulator of hepatic liver metabolism and macrophage foam cells during atherosclerosis? Atherosclerosis 2016, 250, 183–185. [Google Scholar] [CrossRef] [Green Version]
- Schroeder-Gloeckler, J.M.; Rahman, S.M.; Janssen, R.C.; Qiao, L.; Shao, J.; Roper, M.; Fischer, S.J.; Lowe, E.; Orlicky, D.J.; McManaman, J.L.; et al. CCAAT/enhancer-binding protein beta deletion reduces adiposity, hepatic steatosis, and diabetes in Lepr(db/db) mice. J. Biol. Chem. 2007, 282, 15717–15729. [Google Scholar] [CrossRef] [Green Version]
- Bustin, M.; Reeves, R. High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function. Prog. Nucleic Acids Res. Mol. Biol. 1996, 54, 35–100. [Google Scholar]
- Wood, L.D.; Farmer, A.A.; Richmond, A. HMGI(Y) and Sp1 in addition to NF-kappa B regulate transcription of the MGSA/GRO alpha gene. Nucleic Acids Res. 1995, 23, 4210–4219. [Google Scholar] [CrossRef] [PubMed]
- Whitley, M.Z.; Thanos, D.; Read, M.A.; Maniatis, T.; Collins, T. A striking similarity in the organization of the E-selectin and beta interferon gene promoters. Mol. Cell. Biol. 1994, 14, 6464–6475. [Google Scholar] [PubMed] [Green Version]
- Babeu, J.P.; Boudreau, F. Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory networks. World J. Gastroenterol. 2014, 20, 22–30. [Google Scholar] [CrossRef] [PubMed]
Total Population | Healthy Controls | SA Individuals | p | |
---|---|---|---|---|
n | 1456 | 1070 | 386 | |
Age (years) | 53 ± 9 | 51 ± 9 | 59 ± 8 | <0.001 |
Sex (Male%) | 41.2 | 75.6 | <0.001 | |
Body mass index (kg/m2) | 28.0 (25.6–31.0) | 27.8 (25.4–30.9) | 28.1 (25.9–31.0) | 0.060 |
Total cholesterol (mg/dL) | 191 (167–214) | 190 (166–211) | 198 (169–220) | 0.008 |
LDL-cholesterol (mg/dL) | 118 (97–138) | 116 (95–134) | 124 (102–145) | <0.001 |
HDL-cholesterol (mg/dL) | 44 (36–54) | 45 (36–55) | 43 (36–50) | 0.015 |
Non-HDL-cholesterol (mg/dL) | 144 (122–168) | 142 (121–164) | 153 (128–175) | <0.001 |
LDL estimated size | 1.21 (1.08–1.38) | 1.21 (1.08–1.38) | 1.20 (1.09–1.37) | 0.972 |
Magnesium concentration (mg/dL) | 2.07 ± 0.17 | 2.08 ± 0.17 | 2.05 ± 0.18 | 0.002 |
Interleukin-10 concentration (pg/mL) | 0.45 (0.24–1.03) | 0.45 (0.24–1.03) | 0.46 (0.24–1.05) | 0.899 |
Insulin resistance of adipose tissue | 9.7 (6.2–14.4) | 9.3 (6.1–14.3) | 10.4 (6.7–14.5) | 0.053 |
Aspartate amino transferase (UI/L) | 25 (21–30) | 25 (21–30) | 25 (21–30) | 0.494 |
Total cholesterol > 200 mg/dL (%) | 39.6 | 36.7 | 47.7 | <0.001 |
Non-HDL-cholesterol > 160 mg/dL (%) | 32.1 | 28.5 | 42.0 | <0.001 |
LDL pattern B (%) | 47.2 | 47.1 | 47.3 | 1.000 |
Insulin resistance of adipose tissue (%) | 50.4 | 47.9 | 57.7 | 0.001 |
Elevated aspartate amino transferase (%) | 35.5 | 36.6 | 32.4 | 0.153 |
Low interleukin-10 concentration (%) | 31.2 | 31.6 | 30.1 | 0.641 |
Magnesium deficiency (%) | 5.9 | 5.2 | 8.2 | 0.040 |
Current smoking (%) | 22.5 | 23.0 | 21.2 | 0.523 |
Aortic valve calcification (%) * | 19.5 | 10.8 | 43.5 | <0.001 |
FOXA3 frequency (%) | ||||
rs10412574 | ||||
CC | 32.1 | 31.9 | 32.6 | 0.858 |
CT | 47.8 | 47.7 | 48.2 | |
TT | 20.1 | 20.5 | 19.2 | |
C | 56.0 | 55.7 | 56.7 | 0.884 |
T | 44.0 | 44.3 | 43.3 | |
rs10410870 | ||||
AA | 46.4 | 46.3 | 46.9 | 0.056 |
AG | 44.5 | 43.6 | 46.9 | |
GG | 9.1 | 10.1 | 6.2 | |
A | 68.7 | 68.0 | 70.3 | 0.512 |
G | 31.3 | 32.0 | 29.7 |
Genotype Frequency | MAF | Model | OR [95% CI] | p | |||
---|---|---|---|---|---|---|---|
Total cholesterol > 200mg/dL | |||||||
rs10410870 | AA | AG | GG | ||||
No (n = 202) | 0.431 | 0.520 | 0.050 | 0.309 | Heterozygote | 0.633 (0.421–0.954) | 0.029 |
Yes (n = 184) | 0.511 | 0.413 | 0.076 | Codominant 1 | 0.645 (0.423–0.984) | 0.042 | |
Non-HDL-C > 160 mg/dL | |||||||
rs10410870 | AA | AG | GG | ||||
No (n = 224) | 0.415 | 0.522 | 0.063 | 0.324 | Additive | 0.670 (0.473–0.947) | 0.023 |
Yes (n = 162) | 0.543 | 0.395 | 0.062 | 0.259 | Dominant | 0.571 (0.377–0.865) | 0.008 |
Heterozygote | 0.584 (0.386–0.885) | 0.011 | |||||
Codominant 1 | 0.558 (0.363–0.856) | 0.008 | |||||
LDL pattern B | |||||||
rs10410870 | AA | AG | GG | ||||
No (n = 204) | 0.468 | 0.493 | 0.039 | 0.287 | Recessive | 2.527 (1.044–6.118) | 0.040 |
Yes (n = 182) | 0.467 | 0.445 | 0.088 | 0.310 | |||
Insulin resistance adipose tissue | |||||||
rs10412574 | CC | CT | TT | ||||
No (n = 163) | 0.318 | 0.433 | 0.248 | 0.463 | Recessive | 0.522 (0.306–0.890) | 0.017 |
Yes (n = 223) | 0.336 | 0.500 | 0.164 | 0.397 | Codominant 2 | 0.538 (0.293–0.987) | 0.045 |
rs10410870 | AA | AG | GG | ||||
No (n = 163) | 0.522 | 0.408 | 0.070 | 0.273 | Dominant | 1.624 (1.055–2.501) | 0.028 |
Yes (n = 223) | 0.430 | 0.514 | 0.056 | 0.300 | Heterozygote | 1.680 (1.090–2.589) | 0.019 |
Codominant 1 | 1.705 (1.092–2.664) | 0.019 | |||||
Aspartate aminotransferase ≥ p75 | |||||||
rs10412574 | CC | CT | TT | ||||
No (n = 261) | 0.360 | 0.475 | 0.165 | 0.402 | Dominant | 1.667 (1.033–2.691) | 0.036 |
Yes (n = 125) | 0.256 | 0.496 | 0.248 | 0.496 | Codominant 2 | 2.123 (1.145–3.937) | 0.017 |
Polymorphism | Genotype Frequency | MAF | Model | OR [95% CI] | p | ||
---|---|---|---|---|---|---|---|
Interleukin 10 < p25 | |||||||
rs10410870 | AA | AG | GG | ||||
No (n = 732) | 0.464 | 0.448 | 0.088 | 0.311 | Recessive | 1.612 (1.062–2.447) | 0.025 |
Yes (n = 338) | 0.444 | 0.422 | 0.134 | 0.399 | Codominant 2 | 1.590 (1.024–2.467) | 0.039 |
LDL pattern B | |||||||
rs10412574 | CC | CT | TT | ||||
No (n = 566) | 0.304 | 0.512 | 0.183 | 0.440 | Heterozygote | 0.720 (0.562–0.921) | 0.009 |
Yes (n = 504) | 0.335 | 0.435 | 0.230 | 0.447 | Codominant 1 | 0.751 (0.567–0.996) | 0.047 |
Magnesium deficiency | |||||||
rs10412574 | CC | CT | TT | ||||
No (n = 1014) | 0.321 | 0.468 | 0.210 | 0.444 | Heterozygote | 2.047 (1.153–3.633) | 0.014 |
Yes (n = 56) | 0.222 | 0.648 | 0.130 | 0.446 | |||
rs10410870 | AA | AG | GG | ||||
No (n = 1014) | 0.474 | 0.422 | 0.104 | 0.316 | Heterozygote | 1.836 (1.053–3.200) | 0.032 |
Yes (n = 56) | 0.370 | 0.574 | 0.056 | 0.339 | |||
AVC (%) * | |||||||
rs10410870 | AA | AG | GG | ||||
No (n = 755) | 0.462 | 0.440 | 0.098 | 0.318 | Additive | 1.464 (1.052–2.038) | 0.024 |
Yes (n = 91) | 0.407 | 0.418 | 0.176 | 0.385 | Recessive | 2.315 (1.254–4.276) | 0.007 |
Codominant 2 | 2.481 (1.277–4.819) | 0.007 |
Haplotypes | Subclinical Atherosclerosis | OR [95% CI] | p | ||
---|---|---|---|---|---|
Yes | No | ||||
H1 | TA | 0.427 | 0.436 | 0.964 (0.817–1.139) | 0.673 |
H2 | CG | 0.291 | 0.312 | 0.905 (0.755–1.083) | 0.278 |
H3 | CA | 0.276 | 0.245 | 1.175 (0.976–1.416) | 0.090 |
Coronary Risk Factors | |||||
Subclinical Atherosclerosis | |||||
Total cholesterol > 200 mg/dL | |||||
Yes | No | ||||
H1 | TA | 0.447 | 0.409 | 1.193 (0.896–1.588) | 0.226 |
H2 | CG | 0.279 | 0.303 | 0.895 (0.655–1.221) | 0.485 |
H3 | CA | 0.270 | 0.281 | 0.945 (0.689–1.296) | 0.728 |
Cholesterol non-HDL > 160 mg/dL | |||||
Yes | No | ||||
H1 | TA | 0.462 | 0.402 | 1.276 (0.956–1.703) | 0.097 |
H2 | CG | 0.255 | 0.318 | 0.7391 (0.537–1.016) | 0.063 |
H3 | CA | 0.279 | 0.274 | 1.0276 (0.747–1.413) | 0.867 |
LDL pattern B | |||||
Yes | No | ||||
H1 | TA | 0.419 | 0.434 | 0.937 (0.703–1.247) | 0.655 |
H2 | CG | 0.306 | 0.279 | 1.137 (0.833–1.553) | 0.416 |
H3 | CA | 0.271 | 0.280 | 0.956 (0.697–1.313) | 0.785 |
Insulin resistance of adipose tissue | |||||
Yes | No | ||||
H1 | TA | 0.405 | 0.464 | 0.780 (0.581–1.075) | 0.098 |
H2 | CG | 0.304 | 0.273 | 1.156 (0.837–1.596) | 0.376 |
H3 | CA | 0.282 | 0.262 | 1.115 (0.803–1.548) | 0.515 |
Aspartate aminotransferase ≥ p75 | |||||
Yes | No | ||||
H1 | TA | 0.486 | 0.399 | 1.438 (1.062–1.949) | 0.018 |
H2 | CG | 0.250 | 0.311 | 0.748 (0.532–1.052) | 0.095 |
H3 | CA | 0.254 | 0.287 | 0.835 (0.593–1.177) | 0.304 |
Controls | |||||
Aortic Valve Calcification | |||||
Yes | No | ||||
H1 | TA | 0.366 | 0.438 | 0.746 (0.543–1.025) | 0.071 |
H2 | CG | 0.372 | 0.310 | 1.328 (0.964–1.828) | 0.081 |
H3 | CA | 0.249 | 0.244 | 1.019 (0.713–1.456) | 0.916 |
IL-10 < p25 | |||||
Yes | No | ||||
H1 | TA | 0.414 | 0.445 | 0.833 [0.730–1.064) | 0.198 |
H2 | CG | 0.339 | 0.306 | 1.162 [0.952–1.419) | 0.139 |
H3 | CA | 0.240 | 0.244 | 1.486 [0.845–1.300) | 0.667 |
LDL pattern B | |||||
Yes | No | ||||
H1 | TA | 0.444 | 0.430 | 1.060 (0.893–1.258) | 0.504 |
H2 | CG | 0.308 | 0.316 | 0.965 (0.803–1.160) | 0.711 |
H3 | CA | 0.245 | 0.245 | 0.999 (0.819–1.218) | 0.993 |
Magnesium deficiency | |||||
Yes | No | ||||
H1 | TA | 0.451 | 0.438 | 1.065 (0.722–1.572) | 0.749 |
H2 | CG | 0.340 | 0.308 | 1.170 (0.777–1.760) | 0.451 |
H3 | CA | 0.206 | 0.247 | 0.777 (0.482–1.257) | 0.306 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Alarcón, G.; Fragoso, J.M.; Ramírez-Bello, J.; Posadas-Sánchez, R. FOXA3 Polymorphisms Are Associated with Metabolic Parameters in Individuals with Subclinical Atherosclerosis and Healthy Controls—The GEA Mexican Study. Biomolecules 2022, 12, 601. https://doi.org/10.3390/biom12050601
Vargas-Alarcón G, Fragoso JM, Ramírez-Bello J, Posadas-Sánchez R. FOXA3 Polymorphisms Are Associated with Metabolic Parameters in Individuals with Subclinical Atherosclerosis and Healthy Controls—The GEA Mexican Study. Biomolecules. 2022; 12(5):601. https://doi.org/10.3390/biom12050601
Chicago/Turabian StyleVargas-Alarcón, Gilberto, José Manuel Fragoso, Julian Ramírez-Bello, and Rosalinda Posadas-Sánchez. 2022. "FOXA3 Polymorphisms Are Associated with Metabolic Parameters in Individuals with Subclinical Atherosclerosis and Healthy Controls—The GEA Mexican Study" Biomolecules 12, no. 5: 601. https://doi.org/10.3390/biom12050601
APA StyleVargas-Alarcón, G., Fragoso, J. M., Ramírez-Bello, J., & Posadas-Sánchez, R. (2022). FOXA3 Polymorphisms Are Associated with Metabolic Parameters in Individuals with Subclinical Atherosclerosis and Healthy Controls—The GEA Mexican Study. Biomolecules, 12(5), 601. https://doi.org/10.3390/biom12050601