Biotechnological Approaches to Optimize the Production of Amaryllidaceae Alkaloids
Abstract
:1. Current Challenges in the Production of Amaryllidaceae Alkaloids
2. In Vitro Techniques to Produce Amaryllidaceae Alkaloids
Species | Culture Condition (Tissue Type) | Amaryllidaceae Alkaloid | Yield and Type of Condition | Elicitor and Yield | Ref. |
---|---|---|---|---|---|
Narcissus confuses | Liquid-shaken culture (shoot clumps) | Galanthamine | ut. 2–2.5 mg / culture | MJ (3.8 X) | [52] |
N. pseudonarcissus cv. carlton | Callus | Galanthamine | ut. 7.88 μg/g FW | MJ (5.6 X) Chitosan (3 X) | [53] |
Lycoris longituba | Liquid medium (seedling) | Galanthamine | ut. n.a. | MJ (2.71 X) | [54] |
Lycorine | ut. n.a. | MJ (2.01 X) | |||
Lycoramine | ut.n.a. | MJ (2.85 X) | |||
Seedling (culture in tray) | Galanthamine | white light n.a. | Blue light (2.45 X) | [55] | |
Lycorine | white light n.a. | Blue light (1.74 X) | |||
Lycoramine | white light n.a. | Blue light (1.92 X) | |||
Lycoris chinensis | seedling | Galanthamine | ut. n.a. | MJ (1.49 X) YE (1.62 X) SNP (1.72 X) | [56] |
Lycorine | ut. n.a. | MJ (1.37 X) YE (1.38 X) | |||
Leucojum aestivum | In vitro plants | Galanthamine | ut. n.a. | Melatonin (58.6 X) | [57] |
Lycorine | ut. n.a. | Melatonin (1.5 X) | |||
Liquid shoot culture | Galanthamine | ut. n.a. | JA (1.36 X) | [58] | |
Lycorine | ut. n.a. | JA (1.40–1.67 X) MJ (1.3 X) | |||
Norgalanthamine | ut. n.a. | JA (2 X) MJ (2 X) | |||
temporary immersion system (bulblets, leaves) | Galanthamine | ut. 372.2–1719.6 μg/g DW | MJ (468.6–2202.5 μg/g DW) | [59] | |
L. aestivum L. | RITA Bioreactor | Galanthamine | ut. n.a. | MJ (0.1 mg /g DW) ACC (0.10 mg/ g DW) | [60] |
Lycorine | ut. 0.2–0.25 mg /g DW | MJ (0.6 mg /g DW) SA (1 mg /g DW) Ethephon (0.46 mg /g DW) | |||
L. aestivum Gravety Giant | RITA Bioreactor | Galanthamine | ut. 0.08–0.1 mg/g DW | MJ (0.4 mg/g 5 X DW) SA (8 X) ACC (0.60 mg/g) | [60] |
Lycorine | ut. 0.15–0.62 mg/g DW | MJ (1.15 mg/g DW 1.85 X) SA (5 X) ACC (0.54mg/g DW, 3.6 X) |
2.1. Physical Parameters
2.2. Chemical Factors
3. Genetic Engineering of Heterologous Host for Alternative Production of AAs
3.1. Molecular Understanding of Amaryllidaceae Alkaloids Biosynthesis
3.2. Synthetic Biology for AA Biosynthesis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martin, S.F. The amaryllidaceae alkaloids. In The Alkaloids: Chemistry and Pharmacology; Elsevier: Cambridge, MA, USA, 1987; Volume 30, pp. 251–376. [Google Scholar]
- Berkov, S.; Osorio, E.; Viladomat, F.; Bastida, J. Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. Alkaloids Chem. Biol. 2020, 83, 113–185. [Google Scholar] [CrossRef]
- He, M.; Qu, C.; Gao, O.; Hu, X.; Hong, X. Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Adv. 2015, 5, 16562–16574. [Google Scholar] [CrossRef]
- Desgagné-Penix, I. Biosynthesis of alkaloids in Amaryllidaceae plants: A review. Phytochem. Rev. 2020, 20, 409–431. [Google Scholar] [CrossRef]
- Ka, S.; Koirala, M.; Merindol, N.; Desgagne-Penix, I. Biosynthesis and Biological Activities of Newly Discovered Amaryllidaceae Alkaloids. Molecules 2020, 25. [Google Scholar] [CrossRef]
- Houghton, P.J.; Ren, Y.; Howes, M.J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006, 23, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Kalola, U.K.; Nguyen, H. Galantamine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Razay, G.; Wilcock, G.K. Galantamine in Alzheimer’s disease. Expert Rev. Neurother. 2008, 8, 9–17. [Google Scholar] [CrossRef]
- Tsvetkova, D.; Obreshkova, D.; Zheleva-Dimitrova, D.; Saso, L. Antioxidant activity of galantamine and some of its derivatives. Curr. Med. Chem. 2013, 20, 4595–4608. [Google Scholar] [CrossRef]
- Santos, G.S.; Sinoti, S.B.P.; de Almeida, F.T.C.; Silveira, D.; Simeoni, L.A.; Gomes-Copeland, K.K.P. Use of galantamine in the treatment of Alzheimer’s disease and strategies to optimize its biosynthesis using the in vitro culture technique. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 143, 13–29. [Google Scholar] [CrossRef]
- Trost, B.M.; Tang, W. An efficient enantioselective synthesis of (−)-galanthamine. Angew. Chem. Int. Ed. Engl. 2002, 41, 2795–2797. [Google Scholar] [CrossRef]
- Marco-Contelles, J.; do Carmo Carreiras, M.; Rodriguez, C.; Villarroya, M.; Garcia, A.G. Synthesis and pharmacology of galantamine. Chem. Rev. 2006, 106, 116–133. [Google Scholar] [CrossRef]
- Takos, A.M.; Rook, F. Towards a molecular understanding of the biosynthesis of amaryllidaceae alkaloids in support of their expanding medical use. Int. J. Mol. Sci. 2013, 14, 11713–11741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, M.; Liang, L.; Xiao, X.; Feng, P.; Ye, M.; Liu, J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed. Pharmacother. 2018, 107, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Ka, S.; Merindol, N.; Sow, A.A.; Singh, A.; Landelouci, K.; Plourde, M.B.; Pépin, G.; Masi, M.; Di Lecce, R.; Evidente, A.; et al. Amaryllidaceae alkaloid cherylline inhibits the replication of dengue and Zika viruses. Antimicrob. Agents Chemother. 2021, 65, e0039821. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Qu, D.; Zhang, K.M.; Cang, X.X.; Kou, Z.N.; Xiao, W.; Zhu, J.B. Phytochemical and biological investigations of Amaryllidaceae alkaloids: A review. J. Asian Nat. Prod. Res. 2017, 19, 53–100. [Google Scholar] [CrossRef] [PubMed]
- Nonn, M.; Binder, A.; Volk, B.; Kiss, L. Stereo- and regiocontrolled synthesis of highly functionalized cyclopentanes with multiple chiral centers. Synth. Commun. 2020, 50, 1199–1209. [Google Scholar] [CrossRef]
- Marco-Contelles, J.; Rodríguez, C.; García, A.G. Chemical synthesis of galantamine, an acetylcholinesterase inhibitor for treatment of Alzheimer’s disease. Expert Opin. Ther. Pat. 2005, 15, 575–587. [Google Scholar] [CrossRef]
- Lebrun, S.; Couture, A.; Deniau, E.; Grandclaudon, P. A new synthesis of (+)- and (−)-cherylline. Org. Biomol. Chem. 2003, 1, 1701–1706. [Google Scholar] [CrossRef]
- Miller, I.R.; McLean, N.J.; Moustafa, G.A.I.; Ajavakom, V.; Kemp, S.C.; Bellingham, R.K.; Camp, N.P.; Brown, R.C.D. Transition-Metal-Mediated Chemo- and Stereoselective Total Synthesis of (−)-Galanthamine. J. Org. Chem. 2022, 87, 1325–1334. [Google Scholar] [CrossRef]
- Satcharoen, V.; McLean, N.J.; Kemp, S.C.; Camp, N.P.; Brown, R.C. Stereocontrolled synthesis of (−)-galanthamine. Org. Lett. 2007, 9, 1867–1869. [Google Scholar] [CrossRef]
- Manolov, S.; Nikolova, S.; Ghate, M.; Ivanov, I. A brief review of Cherylline synthesis. Indian J. Chem. Sect. B 2015, 54B, 1301–1320. [Google Scholar]
- Shin, H.S.; Jung, Y.G.; Cho, H.K.; Park, Y.G.; Cho, C.G. Total synthesis of (+/−)-lycorine from the endo-cycloadduct of 3,5-dibromo-2-pyrone and (E)-beta-borylstyrene. Org. Lett. 2014, 16, 5718–5720. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Yamashita, M.; Sumiyoshi, T.; Nishimura, K.; Tomioka, K. Total synthesis of (-)-lycorine and (-)-2-epi-lycorine by asymmetric conjugate addition cascade. Org. Lett. 2009, 11, 1631–1633. [Google Scholar] [CrossRef] [PubMed]
- Brossi, A.; Grethe, G.; Teitel, S.; Wildman, W.C.; Bailey, D.T. Cherylline, a 4-phenyl-1,2,3,4-tetrahydroisoquinoline alkaloid. J. Org. Chem. 2002, 35, 1100–1104. [Google Scholar] [CrossRef]
- Torras-Claveria, L.; Berkov, S.; Codina, C.; Viladomat, F.; Bastida, J. Metabolomic analysis of bioactive Amaryllidaceae alkaloids of ornamental varieties of Narcissus by GC–MS combined with k-means cluster analysis. Ind. Crops Prod. 2014, 56, 211–222. [Google Scholar] [CrossRef]
- Ncube, B.; Nair, J.J.; Rárová, L.; Strnad, M.; Finnie, J.F.; Van Staden, J. Seasonal pharmacological properties and alkaloid content in Cyrtanthus contractus N.E. Br. S. Afr. J. Botany 2015, 97, 69–76. [Google Scholar] [CrossRef]
- Santos, A.; Fidalgo, F.; Santos, I.; Salema, R. In vitrobulb formation ofNarcissus asturiensis, a threatened species of theAmaryllidaceae. J. Hortic. Sci. Biotechnol. 2015, 77, 149–152. [Google Scholar] [CrossRef]
- Pavlov, A.; Berkov, S.; Courot, E.; Gocheva, T.; Tuneva, D.; Pandova, B.; Georgiev, M.; Georgiev, V.; Yanev, S.; Burrus, M.; et al. Galanthamine production by Leucojum aestivum in vitro systems. Process Biochem. 2007, 42, 734–739. [Google Scholar] [CrossRef]
- Diop, M.; Hehn, A.; Ptak, A.; Chrétien, F.; Doerper, S.; Gontier, E.; Bourgaud, F.; Henry, M.; Chapleur, Y.; Laurain-Mattar, D. Hairy root and tissue cultures of Leucojum aestivum L.—relationships to galanthamine content. Phytochem. Rev. 2007, 6, 137–141. [Google Scholar] [CrossRef]
- Berkov, S.; Pavlov, A.; Georgiev, V.; Bastida, J.; Burrus, M.; Ilieva, M.; Codina, C. Alkaloid synthesis and accumulation in Leucojum aestivum in vitro cultures. Nat. Prod. Commun. 2009, 4, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, V.; Berkov, S.; Georgiev, M.; Burrus, M.; Codina, C.; Bastida, J.; Ilieva, M.; Pavlov, A. Optimized nutrient medium for galanthamine production in Leucojum aestivum L. in vitro shoot system. Z. Naturforsch C J. Biosci. 2009, 64, 219–224. [Google Scholar] [CrossRef]
- Laurain-Mattar, D.; Ptak, A. Amaryllidaceae Alkaloid Accumulation by Plant In Vitro Systems. In Bioprocessing of Plant In Vitro Systems; Pavlov, A., Bley, T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 203–223. [Google Scholar] [CrossRef]
- Georgiev, V.; Ivanov, I.; Pavlov, A. Recent Progress in Amaryllidaceae Biotechnology. Molecules 2020, 25, 4670. [Google Scholar] [CrossRef]
- Kaur, H.; Chahal, S.; Jha, P.; Lekhak, M.M.; Shekhawat, M.S.; Naidoo, D.; Arencibia, A.D.; Ochatt, S.J.; Kumar, V. Harnessing plant biotechnology-based strategies for in vitro galanthamine (GAL) biosynthesis: A potent drug against Alzheimer’s disease. Plant Cell Tissue Organ Cult. (PCTOC) 2022, 149, 81–103. [Google Scholar] [CrossRef]
- Carbone, F.; Preuss, A.; De Vos, R.C.; D’Amico, E.; Perrotta, G.; Bovy, A.G.; Martens, S.; Rosati, C. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant Cell Environ. 2009, 32, 1117–1131. [Google Scholar] [CrossRef] [PubMed]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Singh, N.; Sharma, B. Toxicological Effects of Berberine and Sanguinarine. Front. Mol. Biosci. 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Gallego, A.M.; Rojas, L.F.; Parra, O.; Rodriguez, H.A.; Mazo Rivas, J.C.; Urrea, A.I.; Atehortua, L.; Fister, A.S.; Guiltinan, M.J.; Maximova, S.N.; et al. Transcriptomic analyses of cacao cell suspensions in light and dark provide target genes for controlled flavonoid production. Sci. Rep. 2018, 8, 13575. [Google Scholar] [CrossRef]
- Mann, J.; Mudd, S.H. In vitro alkaloid biosynthesis in the Amaryllidaceae; Norbelladine O-Methylpherase. J. Am. Chem. Soc. 1963, 85, 2025–2026. [Google Scholar] [CrossRef]
- Trujillo-Chacon, L.M.; Pastene-Navarrete, E.R.; Bustamante, L.; Baeza, M.; Alarcon-Enos, J.E.; Cespedes-Acuna, C.L. In vitro micropropagation and alkaloids analysis by GC-MS of Chilean Amaryllidaceae plants: Rhodophiala pratensis. Phytochem. Anal. 2020, 31, 46–56. [Google Scholar] [CrossRef]
- Juan-Vicedo, J.; Pavlov, A.; Ríos, S.; Casas, J.L. In vitro culture and micropropagation of the Baetic-Moroccan endemic plant Lapiedra martinezii Lag. (Amaryllidaceae). In Vitro Cell. Dev. Biol. Plant 2019, 55, 725–732. [Google Scholar] [CrossRef]
- Colque, R.; Viladomat, F.; Bastida, J.; Codina, C. Micropropagation of the rare Eucrosia stricklandii (Amaryllidaceae) by twin-scaling and shake liquid culture. J. Hortic. Sci. Biotechnol. 2015, 77, 739–743. [Google Scholar] [CrossRef]
- Ren, Z.; Lin, Y.; Lv, X.; Zhang, J.; Zhang, D.; Gao, C.; Wu, Y.; Xia, Y. Clonal bulblet regeneration and endophytic communities profiling of Lycoris sprengeri, an economically valuable bulbous plant of pharmaceutical and ornamental value. Sci. Hortic. 2021, 279, 109856. [Google Scholar] [CrossRef]
- Hotchandani, T.; de Villers, J.; Desgagne-Penix, I. Developmental Regulation of the Expression of Amaryllidaceae Alkaloid Biosynthetic Genes in Narcissus papyraceus. Genes 2019, 10, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ka, S.; Masi, M.; Merindol, N.; Di Lecce, R.; Plourde, M.B.; Seck, M.; Gorecki, M.; Pescitelli, G.; Desgagne-Penix, I.; Evidente, A. Gigantelline, gigantellinine and gigancrinine, cherylline- and crinine-type alkaloids isolated from Crinum jagus with anti-acetylcholinesterase activity. Phytochemistry 2020, 175, 112390. [Google Scholar] [CrossRef] [PubMed]
- Fennell, C.W.; Elgorashi, E.E.; van Staden, J. Alkaloid production in Crinum moorei cultures. J. Nat. Prod. 2003, 66, 1524–1526. [Google Scholar] [CrossRef] [PubMed]
- Berkov, S.; Georgieva, L.; Sidjimova, B.; Nikolova, M.; Stanilova, M.; Bastida, J. In vitro propagation and biosynthesis of Sceletium-type alkaloids in Narcissus pallidulus andNarcissus cv. Hawera. S. Afr. J. Botany 2021, 136, 190–194. [Google Scholar] [CrossRef]
- Sellés, M.; Bergoñón, S.; Viladomat, F.; Bastida, J.; Codina, C. Effect of sucrose on growth and galanthamine production in shoot-clump cultures of Narcissus confusus in liquid-shake medium. Plant Cell Tissue Organ Cult. 1997, 49, 129–136. [Google Scholar] [CrossRef]
- Ferdausi, A.; Chang, X.; Hall, A.; Jones, M. Galanthamine production in tissue culture and metabolomic study on Amaryllidaceae alkaloids in Narcissus pseudonarcissus cv. Carlton. Ind. Crops Prod. 2020, 144, 112058. [Google Scholar] [CrossRef]
- Tarakemeh, A.; Azizi, M.; Rowshan, V.; Salehi, H.; Spina, R.; Dupire, F.; Arouie, H.; Laurain-Mattar, D. Screening of Amaryllidaceae alkaloids in bulbs and tissue cultures of Narcissus papyraceus and four varieties of N. tazetta. J. Pharm. Biomed. Anal. 2019, 172, 230–237. [Google Scholar] [CrossRef]
- Colque, R.; Viladomat, F.; Bastida, J.; Codina, C. Improved production of galanthamine and related alkaloids by methyl jasmonate in Narcissus confusus shoot-clumps. Planta Med. 2004, 70, 1180–1188. [Google Scholar] [CrossRef]
- Ferdausi, A.; Chang, X.; Jones, M. Enhancement of galanthamine production through elicitation and NMR-based metabolite profiling in Narcissus pseudonarcissus cv. Carlton in vitro callus cultures. In Vitro Cell. Dev. Biol.-Plant 2021, 57, 435–446. [Google Scholar] [CrossRef]
- Li, Q.; Xu, J.; Zheng, Y.; Zhang, Y.; Cai, Y. Transcriptomic and Metabolomic Analyses Reveals That Exogenous Methyl Jasmonate Regulates Galanthamine Biosynthesis in Lycoris longituba Seedlings. Front. Plant Sci. 2021, 12, 713795. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, J.; Yang, L.; Sun, Y.; Zhou, X.; Zheng, Y.; Zhang, Y.; Cai, Y. LED Light Quality Affect Growth, Alkaloids Contents, and Expressions of Amaryllidaceae Alkaloids Biosynthetic Pathway Genes in Lycoris longituba. J. Plant Growth Regul. 2021, 41, 257–270. [Google Scholar] [CrossRef]
- Mu, H.M.; Wang, R.; Li, X.D.; Jiang, Y.M.; Wang, C.Y.; Quan, J.P.; Peng, F.; Xia, B. Effect of abiotic and biotic elicitors on growth and alkaloid accumulation of Lycoris chinensis seedlings. Z. Nat. C J. Biosci. 2009, 64, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Ptak, A.; Simlat, M.; Morańska, E.; Skrzypek, E.; Warchoł, M.; Tarakemeh, A.; Laurain-Mattar, D. Exogenous melatonin stimulated Amaryllidaceae alkaloid biosynthesis in in vitro cultures of Leucojum aestivum L. Ind. Crops Prod. 2019, 138, 111458. [Google Scholar] [CrossRef]
- Ivanov, I.; Georgiev, V.; Pavlov, A. Elicitation of galanthamine biosynthesis by Leucojum aestivum liquid shoot cultures. J. Plant Physiol. 2013, 170, 1122–1129. [Google Scholar] [CrossRef]
- Schumann, A.; Torras-Claveria, L.; Berkov, S.; Claus, D.; Gerth, A.; Bastida, J.; Codina, C. Elicitation of galanthamine production by Leucojum aestivum shoots grown in temporary immersion system. Biotechnol. Prog. 2013, 29, 311–318. [Google Scholar] [CrossRef]
- Ptak, A.; Morańska, E.; Saliba, S.; Zieliński, A.; Simlat, M.; Laurain-Mattar, D. Elicitation of galanthamine and lycorine biosynthesis by Leucojum aestivum L. and L. aestivum ‘Gravety Giant’plants cultured in bioreactor RITA®. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 128, 335–345. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Z.; Wang, S.; Li, J.; Li, Y.; Chen, W.K.; Wang, R. Fungal endophytes promote the accumulation of Amaryllidaceae alkaloids in Lycoris radiata. Environ. Microbiol. 2020, 22, 1421–1434. [Google Scholar] [CrossRef]
- Bergoñón, S.; Codina, C.; Bastida, J.; Viladomat, F.; Melé, E. Galanthamine production in “shoot-clump” cultures of Narcissus confusus in liquid-shake medium. Plant Cell Tissue Organ Cult. 1996, 45, 191–199. [Google Scholar] [CrossRef]
- Ivanov, I.; Georgiev, V.; Georgiev, M.; Ilieva, M.; Pavlov, A. Galanthamine and related alkaloids production by Leucojum aestivum L. shoot culture using a temporary immersion technology. Appl. Biochem. Biotechnol. 2011, 163, 268–277. [Google Scholar] [CrossRef]
- Georgiev, V.; Ivanov, I.; Berkov, S.; Ilieva, M.; Georgiev, M.; Gocheva, T.; Pavlov, A. Galanthamine production by Leucojum aestivum L. shoot culture in a modified bubble column bioreactor with internal sections. Eng. Life Sci. 2012, 12, 534–543. [Google Scholar] [CrossRef]
- Ivanov, I.; Georgiev, V.; Berkov, S.; Pavlov, A. Alkaloid patterns in Leucojum aestivum shoot culture cultivated at temporary immersion conditions. J. Plant Physiol. 2012, 169, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Rahimi Khonakdari, M.; Rezadoost, H.; Heydari, R.; Mirjalili, M.H. Effect of photoperiod and plant growth regulators on in vitro mass bulblet proliferation of Narcissus tazzeta L. (Amaryllidaceae), a potential source of galantamine. Plant Cell Tissue Organ Cult 2020, 142, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fridborg, G.; Pedersen, M.K.; Landström, L.; Eriksson, T.R. The Effect of Activated Charcoal on Tissue Cultures: Adsorption of Metabolites Inhibiting Morphogenesis. Physiol. Plantarum 1978, 43, 104–106. [Google Scholar] [CrossRef]
- Dong, F.S.; Lv, M.Y.; Wang, J.P.; Shi, X.P.; Liang, X.X.; Liu, Y.W.; Yang, F.; Zhao, H.; Chai, J.F.; Zhou, S. Transcriptome analysis of activated charcoal-induced growth promotion of wheat seedlings in tissue culture. BMC Genet 2020, 21, 69. [Google Scholar] [CrossRef]
- Ptak, A.; Moranska, E.; Skrzypek, E.; Warchol, M.; Spina, R.; Laurain-Mattar, D.; Simlat, M. Carbohydrates stimulated Amaryllidaceae alkaloids biosynthesis in Leucojum aestivum L. plants cultured in RITA((R)) bioreactor. PeerJ 2020, 8, e8688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar, T.; Kevers, C.; Penel, C.; Greppin, H.; Reid, D.M.; Thorpe, T.A. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Dev. Biol.-Plant 1996, 32, 272–289. [Google Scholar] [CrossRef]
- El Tahchy, A.; Bordage, S.; Ptak, A.; Dupire, F.; Barre, E.; Guillou, C.; Henry, M.; Chapleur, Y.; Laurain-Mattar, D. Effects of sucrose and plant growth regulators on acetylcholinesterase inhibitory activity of alkaloids accumulated in shoot cultures of Amaryllidaceae. Plant Cell Tissue Organ Cult. (PCTOC) 2011, 106, 381–390. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, J.; Li, Y.; Wen, J.; Wang, R. Bacterial endophytes from Lycoris radiata promote the accumulation of Amaryllidaceae alkaloids. Microbiol. Res. 2020, 239, 126501. [Google Scholar] [CrossRef]
- Ptak, A.; Simlat, M.; Morańska, E.; Spina, R.; Dupire, F.; Kozaczka, S.; Laurain-Mattar, D. Potential of the Leucojum aestivum L. endophytic bacteria to promote Amaryllidaceae alkaloids biosynthesis. Acta Biol. Cracov 2019, 62, 30. [Google Scholar]
- Wang, R.; Xu, S.; Wang, N.; Xia, B.; Jiang, Y.; Wang, R. Transcriptome Analysis of Secondary Metabolism Pathway, Transcription Factors, and Transporters in Response to Methyl Jasmonate in Lycoris aurea. Front. Plant Sci. 2016, 7, 1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilgore, M.B.; Kutchan, T.M. The Amaryllidaceae alkaloids: Biosynthesis and methods for enzyme discovery. Phytochem. Rev. Proc. Phytochem. Soc. Eur. 2016, 15, 317–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Desgagne-Penix, I. Transcriptome and metabolome profiling of Narcissus pseudonarcissus ‘King Alfred’ reveal components of Amaryllidaceae alkaloid metabolism. Sci. Rep. 2017, 7, 17356. [Google Scholar] [CrossRef] [PubMed]
- Tousignant, L.; Diaz-Garza, A.M.; Majhi, B.B.; Gelinas, S.E.; Singh, A.; Desgagne-Penix, I. Transcriptome analysis of Leucojum aestivum and identification of genes involved in norbelladine biosynthesis. Planta 2022, 255, 30. [Google Scholar] [CrossRef] [PubMed]
- Kilgore, M.B.; Augustin, M.M.; Starks, C.M.; O’Neil-Johnson, M.; May, G.D.; Crow, J.A.; Kutchan, T.M. Cloning and Characterization of a Norbelladine 4′-O-Methyltransferase Involved in the Biosynthesis of the Alzheimer’s Drug Galanthamine in Narcissus sp. aff. pseudonarcissus. PLoS ONE 2014, 9, e103223. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Yeo, H.J.; Park, Y.E.; Baek, S.A.; Kim, J.K.; Park, S.U. Transcriptome Analysis and Metabolic Profiling of Lycoris Radiata. Biology 2019, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, W.; Liu, Z.; Zhang, G.; Luo, Y. Molecular cloning and functional characterization of tyrosine decarboxylases from galanthamine-producing Lycoris radiata. Acta Physiol. Plantarum 2021, 43, 84. [Google Scholar] [CrossRef]
- Li, Q.; Xu, J.; Yang, L.; Zhou, X.; Cai, Y.; Zhang, Y. Transcriptome Analysis of Different Tissues Reveals Key Genes Associated With Galanthamine Biosynthesis in Lycoris longituba. Front. Plant Sci. 2020, 11, 519752. [Google Scholar] [CrossRef]
- Singh, A.; Massicotte, M.A.; Garand, A.; Tousignant, L.; Ouellette, V.; Berube, G.; Desgagne-Penix, I. Cloning and characterization of norbelladine synthase catalyzing the first committed reaction in Amaryllidaceae alkaloid biosynthesis. BMC Plant Biol. 2018, 18, 338. [Google Scholar] [CrossRef]
- Kilgore, M.B.; Holland, C.K.; Jez, J.M.; Kutchan, T.M. Identification of a Noroxomaritidine Reductase with Amaryllidaceae Alkaloid Biosynthesis Related Activities. J. Biol. Chem. 2016, 291, 16740–16752. [Google Scholar] [CrossRef] [Green Version]
- Majhi, B.B.; Gélinas, S.-E.; Mérindol, N.; Desgagne-Penix, I. Characterization of norbelladine synthase and noroxomaritidine/norcraugsodine reductase reveals a novel catalytic route for the biosynthesis of Amaryllidaceae alkaloids including the Alzheimer’s drug galanthamine. Plant J. 2022; submitted. [Google Scholar]
- Kilgore, M.B.; Augustin, M.M.; May, G.D.; Crow, J.A.; Kutchan, T.M. CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para’ C-C Phenol Couple in the Amaryllidaceae Alkaloids. Front. Plant Sci. 2016, 7, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, A.; Ohki, H.; Inai, K.; Hashimoto, T. Molecular regulation of nicotine biosynthesis. Plant Biotechnol. 2005, 22, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Onoyovwe, A.; Hagel, J.M.; Chen, X.; Khan, M.F.; Schriemer, D.C.; Facchini, P.J. Morphine biosynthesis in opium poppy involves two cell types: Sieve elements and laticifers. Plant Cell 2013, 25, 4110–4122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Tahchy, A.; Ptak, A.; Boisbrun, M.; Barre, E.; Guillou, C.; Dupire, F.; Chretien, F.; Henry, M.; Chapleur, Y.; Laurain-Mattar, D. Kinetic study of the rearrangement of deuterium-labeled 4′-O-methylnorbelladine in Leucojum aestivum shoot cultures by mass spectrometry. Influence of precursor feeding on amaryllidaceae alkaloid accumulation. J. Nat. Prod. 2011, 74, 2356–2361. [Google Scholar] [CrossRef] [PubMed]
- Aleya, F.; Xianmin, C.; Anthony, H.; Meriel, J. Relative expression of putative genes involved in galanthamine and other Amaryllidaceae alkaloids biosynthesis in Narcissus field and in vitro tissues. Gene 2021, 774, 145424. [Google Scholar] [CrossRef]
- Sun, B.; Wang, P.; Wang, R.; Li, Y.; Xu, S. Molecular Cloning and Characterization of a meta/para-O-Methyltransferase from Lycoris aurea. Int. J. Mol. Sci. 2018, 19, 1911. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, S.; Thodey, K.; Trenchard, I.; Cravens, A.; Smolke, C.D. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc. Natl. Acad. Sci. USA 2018, 115, E3922–E3931. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.; Desgagne-Penix, I. Metabolic engineering for the production of plant isoquinoline alkaloids. Plant Biotechnol. J. 2016, 14, 1319–1328. [Google Scholar] [CrossRef] [Green Version]
- Facchini, P.J.; Bohlmann, J.; Covello, P.S.; De Luca, V.; Mahadevan, R.; Page, J.E.; Ro, D.K.; Sensen, C.W.; Storms, R.; Martin, V.J. Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol. 2012, 30, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Fossati, E.; Narcross, L.; Ekins, A.; Falgueyret, J.P.; Martin, V.J. Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae. PLoS ONE 2015, 10, e0124459. [Google Scholar] [CrossRef]
- Cao, M.; Gao, M.; Suástegui, M.; Mei, Y.; Shao, Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab. Eng. 2020, 58, 94–132. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Qian, B.; Cheng, L.; Xu, S.; Wang, R. De Novo Biosynthesis of p-Coumaric Acid in E. coli with a trans-Cinnamic Acid 4-Hydroxylase from the Amaryllidaceae Plant Lycoris aurea. Molecules 2018, 23, 3185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patnaik, R.; Zolandz, R.R.; Green, D.A.; Kraynie, D.F. L-tyrosine production by recombinant Escherichia coli: Fermentation optimization and recovery. Biotechnol. Bioeng. 2008, 99, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Slattery, S.S.; Diamond, A.; Wang, H.; Therrien, J.A.; Lant, J.T.; Jazey, T.; Lee, K.; Klassen, Z.; Desgagne-Penix, I.; Karas, B.J.; et al. An Expanded Plasmid-Based Genetic Toolbox Enables Cas9 Genome Editing and Stable Maintenance of Synthetic Pathways in Phaeodactylum tricornutum. ACS Synth. Biol. 2018, 7, 328–338. [Google Scholar] [CrossRef]
- Farhi, M.; Marhevka, E.; Ben-Ari, J.; Algamas-Dimantov, A.; Liang, Z.; Zeevi, V.; Edelbaum, O.; Spitzer-Rimon, B.; Abeliovich, H.; Schwartz, B.; et al. Generation of the potent anti-malarial drug artemisinin in tobacco. Nat. Biotechnol. 2011, 29, 1072–1074. [Google Scholar] [CrossRef] [PubMed]
- Kitney, R.; Freemont, P. Synthetic biology—The state of play. FEBS Lett. 2012, 586, 2029–2036. [Google Scholar] [CrossRef] [Green Version]
- Auslander, S.; Auslander, D.; Fussenegger, M. Synthetic Biology-The Synthesis of Biology. Angew. Chem. Int. Ed. Engl. 2017, 56, 6396–6419. [Google Scholar] [CrossRef]
- Matasci, N.; Hung, L.H.; Yan, Z.; Carpenter, E.J.; Wickett, N.J.; Mirarab, S.; Nguyen, N.; Warnow, T.; Ayyampalayam, S.; Barker, M.; et al. Data access for the 1000 Plants (1KP) project. Gigascience 2014, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Zhang, Y.; Chen, X.; Lee, E.J.; Barber, C.J.; Chakrabarty, R.; Desgagne-Penix, I.; Haslam, T.M.; Kim, Y.B.; Liu, E.; et al. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol. 2013, 166, 122–134. [Google Scholar] [CrossRef]
- Pyne, M.E.; Narcross, L.; Martin, V.J.J. Engineering Plant Secondary Metabolism in Microbial Systems. Plant Physiol. 2019, 179, 844–861. [Google Scholar] [CrossRef] [Green Version]
Target Metabolites | Species | Tissue Type | Maximum Yield | Ref. |
---|---|---|---|---|
Cherylline | Crinum moorei | Bulblets | 6.9 mg/100 g DW | [47] |
Haemanthamine | Rhodophiala pratensis | Callus | 6.9 µg/mg Ext | [41] |
Narcissus cv. Hawera | Plants | 25.5 μg/100 mg Ext | [48] | |
Powelline | Crinum moorei | Bulblets | 46.84 mg/100 g DW | [47] |
Tazettine | Rhodophiala pratensis | Callus | 2.68 µg/mg Ext | [41] |
Narcissus confuses | Shoot–clump culture | 0.043 % DW | [49] | |
Mesembrenone | Narcissus pallidulus | Plants | 337.6 μg/100 mg Ext | [48] |
N. cv. Hawera | Plants | 214.8 μg/100 mg Ext | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koirala, M.; Karimzadegan, V.; Liyanage, N.S.; Mérindol, N.; Desgagné-Penix, I. Biotechnological Approaches to Optimize the Production of Amaryllidaceae Alkaloids. Biomolecules 2022, 12, 893. https://doi.org/10.3390/biom12070893
Koirala M, Karimzadegan V, Liyanage NS, Mérindol N, Desgagné-Penix I. Biotechnological Approaches to Optimize the Production of Amaryllidaceae Alkaloids. Biomolecules. 2022; 12(7):893. https://doi.org/10.3390/biom12070893
Chicago/Turabian StyleKoirala, Manoj, Vahid Karimzadegan, Nuwan Sameera Liyanage, Natacha Mérindol, and Isabel Desgagné-Penix. 2022. "Biotechnological Approaches to Optimize the Production of Amaryllidaceae Alkaloids" Biomolecules 12, no. 7: 893. https://doi.org/10.3390/biom12070893
APA StyleKoirala, M., Karimzadegan, V., Liyanage, N. S., Mérindol, N., & Desgagné-Penix, I. (2022). Biotechnological Approaches to Optimize the Production of Amaryllidaceae Alkaloids. Biomolecules, 12(7), 893. https://doi.org/10.3390/biom12070893