Cysteine Oxidation Promotes Dimerization/Oligomerization of Circadian Protein Period 2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of S-nitroso-L-cysteine
2.2. Cell Cultures and Transfections
2.3. Polyethylene Glycol (PEG)-Switch Assay
2.4. Biotin-Switch Assay
2.5. Characterization of the Cysteine Oxidation Reaction
2.6. Western Blot
3. Results
3.1. Cysteine Oxidation in PER2 and CRY2
3.2. Time and Dose Response of PER2 to CysNO
3.3. Characterization of the Cysteine Oxidation Reaction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buhr, E.D.; Takahashi, J.S. Molecular components of the Mammalian circadian clock. Handb. Exp. Pharmacol. 2013, 217, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Landskron, J.; Chen, K.F.; Wolf, E.; Stanewsky, R. A role for the PERIOD: PERIOD homodimer in the Drosophila circadian clock. PLoS Biol. 2009, 7, e3. [Google Scholar] [CrossRef] [PubMed]
- Yagita, K.; Yamaguchi, S.; Tamanini, F.; van Der Horst, G.T.; Hoeijmakers, J.H.; Yasui, A.; Loros, J.J.; Dunlap, J.C.; Okamura, H. Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes Dev. 2000, 14, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Kucera, N.; Schmalen, I.; Hennig, S.; Ollinger, R.; Strauss, H.M.; Grudziecki, A.; Wieczorek, C.; Kramer, A.; Wolf, E. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl. Acad. Sci. USA 2012, 109, 3311–3316. [Google Scholar] [CrossRef] [Green Version]
- Narasimamurthy, R.; Hunt, S.R.; Lu, Y.; Fustin, J.M.; Okamura, H.; Partch, C.L.; Forger, D.B.; Kim, J.K.; Virshup, D.M. CK1delta/epsilon protein kinase primes the PER2 circadian phosphoswitch. Proc. Natl. Acad. Sci. USA 2018, 115, 5986–5991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghuram, S.; Stayrook, K.R.; Huang, P.; Rogers, P.M.; Nosie, A.K.; McClure, D.B.; Burris, L.L.; Khorasanizadeh, S.; Burris, T.P.; Rastinejad, F. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat. Struct. Mol. Biol. 2007, 14, 1207–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmalen, I.; Reischl, S.; Wallach, T.; Klemz, R.; Grudziecki, A.; Prabu, J.R.; Benda, C.; Kramer, A.; Wolf, E. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 2014, 157, 1203–1215. [Google Scholar] [CrossRef] [Green Version]
- Pei, J.F.; Li, X.K.; Li, W.Q.; Gao, Q.; Zhang, Y.; Wang, X.M.; Fu, J.Q.; Cui, S.S.; Qu, J.H.; Zhao, X.; et al. Diurnal oscillations of endogenous H2O2 sustained by p66(Shc) regulate circadian clocks. Nat. Cell Biol. 2019, 21, 1553–1564. [Google Scholar] [CrossRef]
- Chiesa, J.J.; Baidanoff, F.M.; Golombek, D.A. Don’t just say no: Differential pathways and pharmacological responses to diverse nitric oxide donors. Biochem. Pharmacol. 2018, 156, 1–9. [Google Scholar] [CrossRef]
- Beta, R.A.A.; Arsenopoulou, Z.V.; Kanoura, A.; Dalkidis, D.; Avraamidou, R.; Balatsos, N.A.A. Core clock regulators in dexamethasone-treated HEK 293T cells at 4 h intervals. BMC Res. Notes 2022, 28, 23. [Google Scholar] [CrossRef]
- Desvergne, A.; Ugarte, N.; Radjei, S.; Gareil, M.; Petropoulos, I.; Friguet, B. Circadian modulation of proteasome activity and accumulation of oxidized protein in human embryonic kidney HEK 293 cells and primary dermal fibroblasts. Free Radic. Biol. Med. 2016, 94, 195–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickramaratne, A.C.; Li, L.; Hopkins, J.B.; Joachimiak, L.A.; Green, C.B. The Disordered Amino Terminus of the Circadian Enzyme Nocturnin Modulates Its NADP(H) Phosphatase Activity by Changing Protein Dynamics. Biochemistry 2022, 10, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Palmerini, C.A.; Arienti, G.; Palombari, R. Determination of S-nitrosohemoglobin using a solid-state amperometric sensor. Nitric. Oxide 2000, 4, 546–549. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, U.; Sun, Z.S.; Eichele, G.; Lee, C.C. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 1997, 91, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Burgoyne, J.R.; Oviosu, O.; Eaton, P. The PEG-switch assay: A fast semi-quantitative method to determine protein reversible cysteine oxidation. J. Pharmacol. Toxicol. Methods 2013, 68, 297–301. [Google Scholar] [CrossRef]
- Jaffrey, S.R.; Erdjument-Bromage, H.; Ferris, C.D.; Tempst, P.; Snyder, S.H. Protein S-nitrosylation: A physiological signal for neuronal nitric oxide. Nat. Cell Biol. 2001, 3, 193–197. [Google Scholar] [CrossRef]
- Selvakumar, B.; Huganir, R.L.; Snyder, S.H. S-nitrosylation of stargazin regulates surface expression of AMPA-glutamate neurotransmitter receptors. Proc. Natl. Acad. Sci. USA 2009, 106, 16440–16445. [Google Scholar] [CrossRef] [Green Version]
- Broniowska, K.A.; Zhang, Y.; Hogg, N. Requirement of transmembrane transport for S-nitrosocysteine-dependent modification of intracellular thiols. J. Biol. Chem. 2006, 281, 33835–33841. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Whorton, A.R. Functional characterization of two S-nitroso-L-cysteine transporters, which mediate movement of NO equivalents into vascular cells. Am. J. Physiol. Cell Physiol. 2007, 292, C1263–C1271. [Google Scholar] [CrossRef] [Green Version]
- Ryuman, N.; Watanabe, N.; Arai, T. S-nitrosation of cellular proteins by NO donors in rat embryonic fibroblast 3Y1 cells: Factors affecting S-nitrosation. Oxidative Med. Cell Longev. 2011, 2011, 450317. [Google Scholar] [CrossRef] [Green Version]
- Putker, M.; O’Neill, J.S. Reciprocal Control of the Circadian Clock and Cellular Redox State—A Critical Appraisal. Mol. Cells 2016, 39, 6–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolhuter, K.; Whitwell, H.J.; Switzer, C.H.; Burgoyne, J.R.; Timms, J.F.; Eaton, P. Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation. Mol. Cell 2018, 69, 438–450.e435. [Google Scholar] [CrossRef] [PubMed]
- Cremers, C.M.; Jakob, U. Oxidant sensing by reversible disulfide bond formation. J. Biol. Chem. 2013, 288, 26489–26496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhshi, F.R.; Mao, M.; Shajahan, A.N.; Piegeler, T.; Chen, Z.; Chernaya, O.; Sharma, T.; Elliott, W.M.; Szulcek, R.; Bogaard, H.J.; et al. Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension. Pulm. Circ. 2013, 3, 816–830. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J.S.; Reddy, A.B. Circadian clocks in human red blood cells. Nature 2011, 469, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Rey, G.; Reddy, A.B. Interplay between cellular redox oscillations and circadian clocks. Diabetes Obes. Metab. 2015, 17 (Suppl. S1), 55–64. [Google Scholar] [CrossRef]
- Putker, M.; Crosby, P.; Feeney, K.A.; Hoyle, N.P.; Costa, A.S.H.; Gaude, E.; Frezza, C.; O’Neill, J.S. Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations. Antioxid. Redox Signal. 2018, 28, 507–520. [Google Scholar] [CrossRef]
- Plano, S.A.; Baidanoff, F.M.; Trebucq, L.L.; Suarez, S.A.; Doctorovich, F.; Golombek, D.A.; Chiesa, J.J. Redox and Antioxidant Modulation of Circadian Rhythms: Effects of Nitroxyl, N-Acetylcysteine and Glutathione. Molecules 2021, 26, 2514. [Google Scholar] [CrossRef]
- Wang, T.A.; Yu, Y.V.; Govindaiah, G.; Ye, X.; Artinian, L.; Coleman, T.P.; Sweedler, J.V.; Cox, C.L.; Gillette, M.U. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 2012, 337, 839–842. [Google Scholar] [CrossRef] [Green Version]
- Plano, S.A.; Baidanoff, F.M.; Suarez, S.A.; Doctorovich, F.; Golombek, D.A.; Chiesa, J.J. N-nitrosomelatonin enhances photic synchronization of mammalian circadian rhythms. J. Neurochem. 2014, 129, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, Y.; Li, L.; Su, X.D. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res. 2013, 23, 213–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutter, J.; Reick, M.; Wu, L.C.; McKnight, S.L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001, 293, 510–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baidanoff, F.M.; Trebucq, L.L.; Plano, S.A.; Eaton, P.; Golombek, D.A.; Chiesa, J.J. Cysteine Oxidation Promotes Dimerization/Oligomerization of Circadian Protein Period 2. Biomolecules 2022, 12, 892. https://doi.org/10.3390/biom12070892
Baidanoff FM, Trebucq LL, Plano SA, Eaton P, Golombek DA, Chiesa JJ. Cysteine Oxidation Promotes Dimerization/Oligomerization of Circadian Protein Period 2. Biomolecules. 2022; 12(7):892. https://doi.org/10.3390/biom12070892
Chicago/Turabian StyleBaidanoff, Fernando Martin, Laura Lucía Trebucq, Santiago Andrés Plano, Phillip Eaton, Diego Andrés Golombek, and Juan José Chiesa. 2022. "Cysteine Oxidation Promotes Dimerization/Oligomerization of Circadian Protein Period 2" Biomolecules 12, no. 7: 892. https://doi.org/10.3390/biom12070892
APA StyleBaidanoff, F. M., Trebucq, L. L., Plano, S. A., Eaton, P., Golombek, D. A., & Chiesa, J. J. (2022). Cysteine Oxidation Promotes Dimerization/Oligomerization of Circadian Protein Period 2. Biomolecules, 12(7), 892. https://doi.org/10.3390/biom12070892