Maternal Chronic Ethanol Exposure Decreases Stress Responses in Zebrafish Offspring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Chronic Ethanol Exposure
2.3. Breeding
2.4. Hormonal Responses of Larvae of Ethanol-Treated and Control Females to a Stressor
2.5. Behaviour of Ethanol-Treated and Control Females and Their Adult Female Offspring
2.6. Statistical Analysis
3. Results
3.1. Chronic Ethanol Exposure
3.2. Hormone Responses of Larvae of Ethanol-Treated and Control Females to a Stressor
3.3. Behaviour of Ethanol-Treated and Control Females and Their Adult Female Offspring
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethical Statement
References
- Jones, K.L.; Smith, D.W. Recognition of the fetal alcohol syndrome in early infancy. Lancet 1973, 2, 999–1001. [Google Scholar] [CrossRef]
- Painter, A.; Williams, A.D.; Burd, L. Fetal alcohol spectrum disorders—Implications for child neurology, part 1: Prenatal exposure and dosimetry. J. Child Neurol. 2012, 27, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Ungerer, M.; Knezovich, J.; Ramsay, M. In utero alcohol exposure, epigenetics changes and their consequences. Alcohol Res. 2013, 35, 37–46. [Google Scholar] [PubMed]
- May, P.A.; Gossage, J.P.; Kalberg, W.O.; Robinson, L.K.; Buckley, D.; Manning, M.; Hoyme, H.E. Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev. Disabil. Res. Rev. 2009, 15, 176–192. [Google Scholar] [CrossRef] [PubMed]
- British Medical Association. Fetal Alcohol Spectrum Disorders; British Medical Association: London, UK, 2007; pp. 1–70. [Google Scholar]
- Caputo, C.; Wood, E.; Jabbour, L. Impact of fetal alcohol exposure on body systems: A systematic review. Birth Defects Res. C 2016, 108, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Facciol, A.; Tsang, B.; Gerlai, R. Alcohol exposure during embryonic development: An opportunity to conduct systematic developmental time course analyses in zebrafish. Neurosci. Biobehav. Rev. 2019, 98, 185–193. [Google Scholar] [CrossRef]
- Eichler, A.; Grunitz, J.; Grimm, J.; Walz, L.; Raabe, E.; Goecke, T.W.; Beckmann, M.W.; Kratz, O.; Heinrich, H.; Moll, G.H.; et al. Did you drink alcohol during pregnancy? Inaccuracy and discontinuity of women’s self-reports: On the way to establish meconium ethyl glucuronide (EtG) as a biomarker for alcohol consumption during pregnancy. Alcohol 2016, 54, 39–44. [Google Scholar] [CrossRef]
- Marquardt, K.; Brigman, J.L. The impact of prenatal alcohol exposure on social, cognitive and behavioural domains: Insights from rodent models. Alcohol 2016, 51, 1–15. [Google Scholar] [CrossRef]
- Gareri, J.; Brien, J.; Reynolds, J.; Koren, G. Potential role of the placenta in fetal alcohol spectrum disorder. Paediatr. Drugs 2009, 11, 26–29. [Google Scholar] [CrossRef]
- Lomanowska, A.M.; Melo, A.I. Deconstructing the function of maternal stimulation in offspring development: Insights from the artificial rearing model in rats. Horm. Behav. 2016, 77, 224–236. [Google Scholar] [CrossRef]
- Barbazuk, W.B.; Korf, I.; Kadavi, C.; Heyen, J.; Tate, S.; Wun, E.; Bedell, J.A.; McPherson, J.D.; Johnson, S.L. The syntenic relationship of the zebrafish and human genomes. Genome Res. 2000, 10, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Reimers, M.J.; Hahn, M.E.; Tanguay, R.L. Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics. J. Biol. Chem. 2004, 279, 38303–38312. [Google Scholar] [CrossRef] [PubMed]
- Tropepe, V.; Sive, H.L. Can zebrafish be used as a model to study neurodevelopmental causes of autism? Genes Brain Behav. 2003, 2, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.J.; Day, N.; Streissguth, A.P. Effect of prenatal alcohol exposure on social behaviour in humans and other species. Neurotoxicol. Teratol. 2000, 22, 143–149. [Google Scholar] [CrossRef]
- Miller, N.Y.; Gerlai, R. Shoaling in zebrafish: What we don’t know. Rev. Neurosci. 2011, 22, 17–25. [Google Scholar] [CrossRef]
- Lovely, C.B.; Fernandes, Y.; Eberhart, J.K. Fishing for Fetal Alcohol Spectrum Disorders: Zebrafish as a Model for Ethanol Teratogenesis. Zebrafish 2016, 13, 391–398. [Google Scholar] [CrossRef]
- Seguin, D.; Gerlai, R. Fetal alcohol spectrum disorders: Zebrafish in the analysis of the milder and more prevalent form of the disease. Behav. Brain Res. 2018, 352, 125–132. [Google Scholar] [CrossRef]
- Pinheiro-da-Silva, J.; Luchiari, A.C. Embryonic ethanol exposure on zebrafish early development. Brain Behav. 2021, 11, e02062. [Google Scholar] [CrossRef]
- Fernandes, Y.; Gerlai, R. Long-Term Behavioral Changes in Response to Early Developmental Exposure to Ethanol in Zebrafish. Alcohol Clin. Exp. Res. 2009, 33, 601–609. [Google Scholar] [CrossRef]
- Parker, M.O.; Annan, L.V.; Kanellopoulos, A.H.; Brock, A.J.; Combe, F.J.; Baiamonte, M.; Tei, M.; Brennan, C.H. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 55, 94–100. [Google Scholar] [CrossRef]
- Fernandes, Y.; Rampersad, M.; Gerlai, R. Impairment of social behaviour persists two years after embryonic alcohol exposure in zebrafish: A model of fetal alcohol spectrum disorders. Behav. Brain Res. 2015, 292, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Baiamonte, M.; Parker, M.O.; Vinson, G.P.; Brennan, C.H. Sustained effects of developmental exposure to ethanol on zebrafish anxiety-like behaviour. PLoS ONE 2016, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, L.J.G.; Ritter, F.; Kreutz, R.M.; Quevedo, R.M.; Bolognesi da Silva, L.; Bedin, A.C.; Finco, J.; Cericato, L. Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture 2007, 272, 774–778. [Google Scholar] [CrossRef]
- Vijayan, M.M.; Aluru, N.; Leatherland, J.F. Stress response and the role of cortisol. In Fish Diseases and Disorders Volume 2: Non-Infectious Disorders, 2nd ed.; Leatherland, J.F., Woo, P., Eds.; CABI: Wallingford, UK, 2010; pp. 182–201. [Google Scholar]
- Baiamonte, M.; Brennan, C.H.; Vinson, G.P. Sustained action of developmental ethanol exposure on the cortisol response to stress in zebrafish larvae and adults. PLoS ONE 2015, 1, 13. [Google Scholar] [CrossRef]
- Govorko, D.; Bekdash, R.A.; Changqing, Z.; Sarkar, D.K. Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations. Biol. Psychiatry 2012, 72, 378–388. [Google Scholar] [CrossRef]
- Abbott, C.W.; Rohac, D.J.; Bottom, R.T.; Patadia, S.; Huffman, K.J. Prenatal ethanol exposure and neocortical development: A transgenerational model of FASD. Cereb. Cortex 2018, 28, 2908–2921. [Google Scholar] [CrossRef]
- Chastain, L.G.; Sarkar, D.K. Alcohol effects on the epigenome in the germline: Role in the inheritance of alcohol-related pathology. Alcohol 2017, 60, 53–66. [Google Scholar] [CrossRef]
- Beaver, L.M.; Nkrumah-Elie, Y.M.; Truong, L.; Barton, C.L.; Knecht, A.L.; Gonnerman, G.D.; Wong, C.P.; Tanguay, R.L.; Ho, E. Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. J. Nutr. Biochem. 2017, 43, 78–87. [Google Scholar] [CrossRef]
- Evans, J.P.; Limbery, R.A.; Wiid, K.S.; Rahman, M.M.; Gasparini, C. Sperm as moderators of environmentally induced paternal effects in a livebearing fish. Biol. Lett. 2017, 13, 20170087. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zhong, H.X.; Wang, C.G.; Gao, D.X.; Zhou, Y.L.; Zuo, Z.H. Maternal exposure to the water soluble fraction of crude oil, lead and their mixture induced austism-like behavioural deficits in zebrafish (Danio rerio) larvae. Ecotoxicol. Environ. Saf. 2016, 134, 23–30. [Google Scholar] [CrossRef]
- Suresh, S.; Abozaid, A.; Tsang, B.; Gerlai, R. Exposure of parents to alcohol alters behavior of offspring in zebrafish. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110143. [Google Scholar] [CrossRef] [PubMed]
- Dlugos, C.A.; Brown, S.J.; Rabid, R.A. Gender differences in ethanol-induced behavioural sensitivity in zebrafish. Alcohol 2011, 45, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.L.; Oreschak, K.; Rhinehart, Z.; Robison, B.D. Anxiolytic effects of fluoxetine and nicotine exposure on exploratory behaviour in zebrafish. PeerJ 2016, 4, e2352. [Google Scholar] [CrossRef] [PubMed]
- Alcohol-Alert. Craving research: Implications for treatment in alcohol alert. In National Institute on Alcohol Abuse and Alcoholism; U.S. Department of Health and Human Services: Rockville, MD, USA, 2001. [Google Scholar]
- Mathur, P.; Guo, S. Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish. Behav. Brain Res. 2011, 219, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Echevarria, D.J.; Toms, C.N.; Jouandot, D.J. Alcohol-induced behavior change in zebrafish models. Rev. Neurosci. 2001, 22, 85–93. [Google Scholar] [CrossRef]
- Pfeiffer, W. The distribution of fright reaction and alarm substance cells in fishes. Copeia 1977, 4, 653–665. [Google Scholar] [CrossRef]
- Speedie, N.; Gerlai, R. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav. Brain Res. 2008, 188, 168–177. [Google Scholar] [CrossRef]
- Cachat, J.; Stewart, A.; Grossman, L.; Gaikwad, S.; Kadri, F.; Chung, K.M.; Wu, N.; Wong, K.; Roy, S.; Suciu, C.; et al. Measuring behavioural and endocrine responses to novelty stress in adult zebrafish. Nat. Protoc. 2010, 5, 1786–1799. [Google Scholar] [CrossRef]
- Mathuru, A.S.; Kibat, C.; Cheong, W.F.; Shui, G.; Wenk, M.R.; Friedrich, R.W.; Jesuthasan, S. Chrondroitin fragments are odorants that trigger fear behaviour in fish. Curr. Biol. 2012, 22, 538–544. [Google Scholar] [CrossRef]
- Jesuthasan, S.; Mathuru, A. The alarm response in zebrafish: Innate fear in a vertebrate genetic model. J. Neurogenet. 2008, 22, 211–228. [Google Scholar] [CrossRef]
- Eachus, H.; Bright, C.; Cunliffe, V.T.; Placzek, M.; Wood, J.D.; Watt, P.J. Disrupted-in-Schizophrenia-1 is essential for normal hypothalamic-pituitary-interrenal (HPI) axis function. Hum. Mol. Genet. 2017, 26, 1992–2005. [Google Scholar] [CrossRef] [PubMed]
- Ord, J.; Heath, P.R.; Fazeli, A.; Watt, P.J. Paternal effects in a wild-type zebrafish implicate a role of sperm-derived small RNAs. Mol. Ecol. 2020, 29, 2722–2735. [Google Scholar] [CrossRef]
- Yeh, C.M.; Glöck, M.; Ryu, S. An optimized whole-body cortisol quantification method for assessing stress levels in larval zebrafish. PLoS ONE 2013, 8, e79406. [Google Scholar] [CrossRef] [PubMed]
- Tran, S.; Nowicki, M.; Fulcher, N.; Chatterjee, D.; Gerlai, R. Interaction between handling induced stress and anxiolytic effects of ethanol in zebrafish: A behavioral and neurochemical analysis. Behav. Brain Res. 2016, 298, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Egan, R.J.; Bergner, C.L.; Hart, P.C.; Cachat, J.M.; Canavello, P.R.; Elegante, M.F.; Elkhayat, S.I.; Bartels, B.K.; Tien, A.K.; Tien, D.H.; et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 2009, 205, 38–44. [Google Scholar] [CrossRef]
- Nema, S.; Hasan, W.; Bhargava, A.; Bhargava, Y. A novel method for automated tracking and quantification of adult zebrafish behaviour during anxiety. J. Neurosci. Methods 2016, 271, 65–75. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 30 April 2017).
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalised linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Oliveira, T.A.; Koakoski, G.; da Motta, A.C.; Piato, A.L.; Barreto, R.E.; Volpato, G.L.; Barcellos, L.J.G. Death-associated odors induce stress in zebrafish. Horm. Behav. 2014, 65, 340–344. [Google Scholar] [CrossRef]
- Oliveira, T.A.; Koakoski, G.; Kruetz, L.C.; Ferreira, D.; da Rosa JG, S.; de Abreu, M.S.; Giacomini AC, V.; Oliveira, R.P.; Fagundes, M.; Piato, A.L.; et al. Alcohol impairs predation risk response and communication in zebrafish. PLoS ONE 2013, 8, e75780. [Google Scholar] [CrossRef]
- Mead, E.A.; Sarkar, D.K. Fetal alcohol spectrum disorders and their transmission through genetic and epigenetic mechanisms. Front. Genet. 2014, 5, 154. [Google Scholar] [CrossRef]
- Rompala, G.R.; Finegersh, A.; Homanics, G.E. Paternal preconception alcohol exposure blunts hypothalamic-pituitary-adrenal axis responsivity and stress-induced excessive fluid intake in male mice. Alcohol 2016, 53, 19–25. [Google Scholar] [CrossRef]
- Faught, E.; Best, C.; Vijayan, M.M. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish. R. Soc. Open Sci. 2016, 3, 160032. [Google Scholar] [CrossRef] [PubMed]
- Nesan, D.; Vijayan, M.M. Maternal cortisol mediates hypothalamus-pituitary-interrenal axis development in zebrafish. Sci. Rep. 2016, 6, 22582. [Google Scholar] [CrossRef]
- Nesan, D.; Vijayan, M.M. Role of glucocorticoid in developmental programming: Evidence from zebrafish. Gen. Comp. Endocrinol. 2013, 181, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Best, C.; Kurrasch, D.M.; Vijayan, M.M. Maternal cortisol stimulates neurogenesis and affects larval behaviour in zebrafish. Sci. Rep. 2017, 7, 40905. [Google Scholar] [CrossRef] [PubMed]
- Hartig, E.I.; Zhu, S.; King, B.L.; Coffman, J.A. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation. Biol. Open 2016, 5, 1134–1141. [Google Scholar] [CrossRef]
- Tran, S.; Chatterjee, D.; Gerlai, R. An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio). Behav. Brain Res. 2015, 276, 161–170. [Google Scholar] [CrossRef]
- Rathbun, W.; Druse, M.J. Dopamine, serotonin and acid metabolites in brain regions from the developing offspring of ethanol treated rats. J. Neurochem. 1985, 44, 57–62. [Google Scholar] [CrossRef]
- Maier, S.E.; Chen WJ, A.; West, J.R. Prenatal binge-like alcohol exposure alters neurochemical profiles in fetal rat brain. Pharmacol. Biochem. Behav. 1996, 55, 521–529. [Google Scholar] [CrossRef]
- Buske, C.; Gerlai, R. Maturation of shoaling behaviour is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish. Dev. Psychobiol. 2012, 54, 28–35. [Google Scholar] [CrossRef]
- Eachus, H.; Choi, M.-K.; Ryu, S. The effects of early stress on the brain and behaviour: Insights from zebrafish models. Front. Cell Dev. Biol. 2021, 9, 657591. [Google Scholar] [CrossRef] [PubMed]
- Faught, E.; Vijayan, M.M. Maternal stress and fish reproduction: The role of cortisol revisted. Fish Fish. 2018, 19, 1016–1030. [Google Scholar] [CrossRef]
- Gerlai, R.; Lee, V.; Blaser, R. Effects of acute and chronic ethanol exposure on the behaviour of adult zebrafish (Danio rerio). Pharmacol. Biochem. Behav. 2006, 85, 752–761. [Google Scholar] [CrossRef]
- Gerlai, R.; Chetterjee, D.; Pereira, T.; Sawashima, T.; Krishnannair, R. Acute and chronic alcohol dose: Population differences in behaviour and neurochemistry of zebrafish. Genes Brain Behav. 2009, 8, 586–599. [Google Scholar] [CrossRef]
- Tran, S.; Gerlai, R. Time-course of behavioural changes induced by ethanol in zebrafish (Danio rerio). Behav. Brain Res. 2013, 252, 204–213. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitson, J.E.; Ord, J.; Watt, P.J. Maternal Chronic Ethanol Exposure Decreases Stress Responses in Zebrafish Offspring. Biomolecules 2022, 12, 1143. https://doi.org/10.3390/biom12081143
Kitson JE, Ord J, Watt PJ. Maternal Chronic Ethanol Exposure Decreases Stress Responses in Zebrafish Offspring. Biomolecules. 2022; 12(8):1143. https://doi.org/10.3390/biom12081143
Chicago/Turabian StyleKitson, Juliet E., James Ord, and Penelope J. Watt. 2022. "Maternal Chronic Ethanol Exposure Decreases Stress Responses in Zebrafish Offspring" Biomolecules 12, no. 8: 1143. https://doi.org/10.3390/biom12081143
APA StyleKitson, J. E., Ord, J., & Watt, P. J. (2022). Maternal Chronic Ethanol Exposure Decreases Stress Responses in Zebrafish Offspring. Biomolecules, 12(8), 1143. https://doi.org/10.3390/biom12081143