Plasma of Argon Treatment of the Implant Surface, Systematic Review of In Vitro Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Information Sources and Search Strategy
2.3. Study Selection and Data Collection Process
2.4. Quality Assessment
3. Results
3.1. Search Results
3.2. Results of the In Vitro Studies
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindquist, L.W.; Carlsson, G.E.; Jemt, T. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin. Oral Implant. Res. 1996, 7, 329–336. [Google Scholar] [CrossRef]
- Jimbo, R.; Albrektsson, T. Long-term clinical success of minimally and moderately rough oral implants: A review of 71 studies with 5 years or more of follow-up. Implant Dent. 2015, 24, 62–69. [Google Scholar] [CrossRef]
- Madani, E.; Smeets, R.; Freiwald, E.; Sanj, M.S.; Jung, O.; Grubeanu, D.; Hanken, H.; Henningsen, A. Impact of different placement depths on the crestal bone level of immediate versus delayed placed platform-switched implants. J. Cranio-Maxillo-Facial Surg. Off. Publ. Eur. Assoc. Cranio-Maxillo-Facial Surg. 2018, 46, 1139–1146. [Google Scholar] [CrossRef]
- Gherlone, E.F.; D’Orto, B.; Nagni, M.; Capparè, P.; Vinci, R. Tilted Implants and Sinus Floor Elevation Techniques Compared in Posterior Edentulous Maxilla: A Retrospective Clinical Study over Four Years of Follow-Up. Appl. Sci. 2022, 12, 6729. [Google Scholar] [CrossRef]
- Albrektsson, T.; Brånemark, P.I.; Hansson, H.A.; Lindström, J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop. Scand. 1981, 52, 155–170. [Google Scholar] [CrossRef]
- Suárez-López Del Amo, F.; Lin, G.-H.; Monje, A.; Galindo-Moreno, P.; Wang, H.-L. Influence of Soft Tissue Thickness on Peri-Implant Marginal Bone Loss: A Systematic Review and Meta-Analysis. J. Periodontol. 2016, 87, 690–699. [Google Scholar] [CrossRef]
- Welander, M.; Abrahamsson, I.; Berglundh, T. The mucosal barrier at implant abutments of different materials. Clin. Oral Implant. Res. 2008, 19, 635–641. [Google Scholar] [CrossRef]
- Rompen, E.; Domken, O.; Degidi, M.; Pontes, A.E.F.; Piattelli, A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: A literature review. Clin. Oral Implant. Res. 2006, 17 (Suppl. S2), 55–67. [Google Scholar] [CrossRef] [PubMed]
- Wennerberg, A.; Albrektsson, T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implant. Res. 2009, 20 (Suppl. S4), 172–184. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.-S.; Sul, Y.-T.; Oh, S.-J.; Lee, H.-J.; Albrektsson, T. XPS, AES and SEM analysis of recent dental implants. Acta Biomater. 2009, 5, 2222–2229. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, C.; Nygren, H.; Ohlson, K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: Cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials 2004, 25, 4759–4766. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, A.; Smeets, R.; Heuberger, R.; Jung, O.T.; Hanken, H.; Heiland, M.; Cacaci, C.; Precht, C. Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non-thermal plasma. Eur. J. Oral Sci. 2018, 126, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Genova, T.; Wang, H.-L.; Carossa, S.; Mussano, F. Plasma of Argon Increases Cell Attachment and Bacterial Decontamination on Different Implant Surfaces. Int. J. Oral Maxillofac. Implant. 2017, 32, 1315–1323. [Google Scholar] [CrossRef]
- Lee, J.H.; Ogawa, T. The biological aging of titanium implants. Implant Dent. 2012, 21, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Textor, M.; Sittig, C.; Frauchiger, V.; Tosatti, S.; Brunette, D.M. Properties and Biological Significance of Natural Oxide Films on Titanium and Its Alloys. In Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications; Brunette, D.M., Tengvall, P., Textor, M., Thomsen, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 171–230. ISBN 978-3-642-56486-4. [Google Scholar]
- Bumgardner, J.D.; Wiser, R.; Elder, S.H.; Jouett, R.; Yang, Y.; Ong, J.L. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. J. Biomater. Sci. Polym. Ed. 2003, 14, 1401–1409. [Google Scholar] [CrossRef]
- Canullo, L.; Götz, W. Peri-implant hard tissue response to glow-discharged abutments: Prospective study. Preliminary radiological results. Ann. Anat. 2012, 194, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Kasemo, B.; Lausmaa, J. Biomaterial and implant surfaces: On the role of cleanliness, contamination, and preparation procedures. J. Biomed. Mater. Res. 1988, 22, 145–158. [Google Scholar] [CrossRef]
- Sabetrasekh, R.; Tiainen, H.; Reseland, J.E.; Will, J.; Ellingsen, J.E.; Lyngstadaas, S.P.; Haugen, H.J. Impact of trace elements on biocompatibility of titanium scaffolds. Biomed. Mater. 2010, 5, 15003. [Google Scholar] [CrossRef]
- Hallab, N.J.; Bundy, K.J.; O’Connor, K.; Moses, R.L.; Jacobs, J.J. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001, 7, 55–71. [Google Scholar] [CrossRef]
- Lampin, M.; Warocquier-Clérout; Legris, C.; Degrange, M.; Sigot-Luizard, M.F. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J. Biomed. Mater. Res. 1997, 36, 99–108. [Google Scholar] [CrossRef]
- Aita, H.; Hori, N.; Takeuchi, M.; Suzuki, T.; Yamada, M.; Anpo, M.; Ogawa, T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009, 30, 1015–1025. [Google Scholar] [CrossRef]
- Duske, K.; Koban, I.; Kindel, E.; Schröder, K.; Nebe, B.; Holtfreter, B.; Jablonowski, L.; Weltmann, K.D.; Kocher, T. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J. Clin. Periodontol. 2012, 39, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Hori, N.; Ueno, T.; Suzuki, T.; Yamada, M.; Att, W.; Okada, S.; Ohno, A.; Aita, H.; Kimoto, K.; Ogawa, T. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity. Int. J. Oral Maxillofac. Implant. 2010, 25, 49–62. [Google Scholar]
- Suzuki, T.; Hori, N.; Att, W.; Kubo, K.; Iwasa, F.; Ueno, T.; Maeda, H.; Ogawa, T. Ultraviolet treatment overcomes time-related degrading bioactivity of titanium. Tissue Eng. Part A 2009, 15, 3679–3688. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, Y.; Zhou, L.; Guo, Z.; Rong, M.; Liu, X.; Lai, C.; Ding, X. The effects of different wavelength UV photofunctionalization on micro-arc oxidized titanium. PLoS ONE 2013, 8, e68086. [Google Scholar] [CrossRef] [PubMed]
- Swart, K.M.; Keller, J.C.; Wightman, J.P.; Draughn, R.A.; Stanford, C.M.; Michaels, C.M. Short-term plasma-cleaning treatments enhance in vitro osteoblast attachment to titanium. J. Oral Implantol. 1992, 18, 130–137. [Google Scholar]
- Canullo, L.; Genova, T.; Tallarico, M.; Gautier, G.; Mussano, F.; Botticelli, D. Plasma of Argon Affects the Earliest Biological Response of Different Implant Surfaces: An In Vitro Comparative Study. J. Dent. Res. 2016, 95, 566–573. [Google Scholar] [CrossRef]
- Canullo, L.; Cassinelli, C.; Götz, W.; Tarnow, D. Plasma of argon accelerates murine fibroblast adhesion in early stages of titanium disk colonization. Int. J. Oral Maxillofac. Implant. 2013, 28, 957–962. [Google Scholar] [CrossRef]
- Garcia, B.; Camacho, F.; Peñarrocha, D.; Tallarico, M.; Perez, S.; Canullo, L. Influence of plasma cleaning procedure on the interaction between soft tissue and abutments: A randomized controlled histologic study. Clin. Oral Implant. Res. 2017, 28, 1269–1277. [Google Scholar] [CrossRef]
- Canullo, L.; Peñarrocha, D.; Clementini, M.; Iannello, G.; Micarelli, C. Impact of plasma of argon cleaning treatment on implant abutments in patients with a history of periodontal disease and thin biotype: Radiographic results at 24-month follow-up of a RCT. Clin. Oral Implant. Res. 2015, 26, 8–14. [Google Scholar] [CrossRef]
- Canullo, L.; Penarrocha-Oltra, D.; Marchionni, S.; Bagán, L.; Peñarrocha-Diago, M.-A.; Micarelli, C. Soft tissue cell adhesion to titanium abutments after different cleaning procedures: Preliminary results of a randomized clinical trial. Med. Oral Patol. Oral Cir. Bucal 2014, 19, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, L.C.; Antonio, A.G. Systematic reviews in dental research. A guideline. J. Clin. Pediatr. Dent. 2012, 37, 117–124. [Google Scholar] [CrossRef]
- Krithikadatta, J.; Gopikrishna, V.; Datta, M. CRIS Guidelines (Checklist for Reporting In-vitro Studies): A concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. J. Conserv. Dent. 2014, 17, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.; Tam, D.N.H.; Elshafay, A.; Dang, T.; Hirayama, K.; Huy, N.T. Quality assessment tools used in systematic reviews of in vitro studies: A systematic review. BMC Med. Res. Methodol. 2021, 21, 101. [Google Scholar] [CrossRef]
- Canullo, L.; Genova, T.; Gross Trujillo, E.; Pradies, G.; Petrillo, S.; Muzzi, M.; Carossa, S.; Mussano, F. Fibroblast interaction with different abutment surfaces: In vitro study. Int. J. Mol. Sci. 2020, 21, 1919. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Zhao, H.; Liu, Y.; Liu, J.; Bai, N. Bioactive Effects of Low-Temperature Argon-Oxygen Plasma on a Titanium Implant Surface. ACS Omega 2020, 5, 3996–4003. [Google Scholar] [CrossRef]
- Guo, L.; Smeets, R.; Kluwe, L.; Hartjen, P.; Barbeck, M.; Cacaci, C.; Gosau, M.; Henningsen, A. Cytocompatibility of Titanium, Zirconia and Modified PEEK after Surface Treatment Using UV Light or Non-Thermal Plasma. Int. J. Mol. Sci. 2019, 20, 5596. [Google Scholar] [CrossRef] [PubMed]
- González-Blanco, C.; Rizo-Gorrita, M.; Luna-Oliva, I.; Serrera-Figallo, M.-Á.; Torres-Lagares, D.; Gutiérrez-Pérez, J.-L. Human Osteoblast Cell Behaviour on Titanium Discs Treated with Argon Plasma. Materials 2019, 12, 1735. [Google Scholar] [CrossRef]
- Pistilli, R.; Genova, T.; Canullo, L.; Faga, M.G.; Terlizzi, M.E.; Gribaudo, G.; Mussano, F. Effect of Bioactivation on Traditional Surfaces and Zirconium Nitride: Adhesion and Proliferation of Preosteoblastic Cells and Bacteria. Int. J. Oral Maxillofac. Implant. 2018, 33, 1247–1254. [Google Scholar] [CrossRef]
- Henningsen, A.; Smeets, R.; Hartjen, P.; Heinrich, O.; Heuberger, R.; Heiland, M.; Precht, C.; Cacaci, C. Photofunctionalization and non-thermal plasma activation of titanium surfaces. Clin. Oral Investig. 2018, 22, 1045–1054. [Google Scholar] [CrossRef]
- Canullo, L.; Genova, T.; Mandracci, P.; Mussano, F.; Abundo, R.; Fiorellini, J.P. Morphometric Changes Induced by Cold Argon Plasma Treatment on Osteoblasts Grown on Different Dental Implant Surfaces. Int. J. Periodont. Restor. Dent. 2017, 37, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Stanford, C.M.; Keller, J.C.; Solursh, M. Bone cell expression on titanium surfaces is altered by sterilization treatments. J. Dent. Res. 1994, 73, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Michaels, C.M.; Keller, J.C.; Stanford, C.M. In vitro periodontal ligament fibroblast attachment to plasma-cleaned titanium surfaces. J. Oral Implantol. 1991, 17, 132–139. [Google Scholar] [PubMed]
- Susin, C.; Fiorini, T.; Lee, J.; De Stefano, J.A.; Dickinson, D.P.; Wikesjö, U.M.E. Wound healing following surgical and regenerative periodontal therapy. Periodontol. 2000 2015, 68, 83–98. [Google Scholar] [CrossRef]
- Naujokat, H.; Harder, S.; Schulz, L.Y.; Wiltfang, J.; Flörke, C.; Açil, Y. Surface conditioning with cold argon plasma and its effect on the osseointegration of dental implants in miniature pigs. J. Cranio-Maxillo-Facial Surg. 2019, 47, 484–490. [Google Scholar] [CrossRef]
- Canullo, L.; Tallarico, M.; Botticelli, D.; Alccayhuaman, K.A.A.; Martins Neto, E.C.; Xavier, S.P. Hard and soft tissue changes around implants activated using plasma of argon: A histomorphometric study in dog. Clin. Oral Implant. Res. 2018, 29, 389–395. [Google Scholar] [CrossRef]
- Hung, Y.-W.; Chen, H.-L.; Lee, L.-T.; Tung, K.-C.; Bau, D.-T.; Wong, Y.-K. Effects of non-thermal plasma on sandblasted titanium dental implants in beagle dogs. J. Chin. Med. Assoc. 2018, 81, 920–925. [Google Scholar] [CrossRef]
- Sanz-Martín, I.; Sanz-Sánchez, I.; Carrillo de Albornoz, A.; Figuero, E.; Sanz, M. Effects of modified abutment characteristics on peri-implant soft tissue health: A systematic review and meta-analysis. Clin. Oral Implant. Res. 2018, 29, 118–129. [Google Scholar] [CrossRef]
- Annunziata, M.; Canullo, L.; Donnarumma, G.; Caputo, P.; Nastri, L.; Guida, L. Bacterial inactivation/sterilization by argon plasma treatment on contaminated titanium implant surfaces: In vitro study. Med. Oral Patol. Oral Cir. Bucal 2016, 21, e118–e121. [Google Scholar] [CrossRef]
- Dunn, A.G.; Coiera, E.; Mandl, K.D.; Bourgeois, F.T. Conflict of interest disclosure in biomedical research: A review of current practices, biases, and the role of public registries in improving transparency. Res. Integr. Peer Rev. 2016, 1, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Database | Pubmed | Scopus | Web of Science | Embase | Cochrane Library |
---|---|---|---|---|---|
Electronic search | (((“plasma”[MeSH Terms] OR “plasma”[All Fields]) OR “plasmas”[All Fields]) OR “plasma s”[All Fields]) AND ((“argon”[MeSH Terms] OR “argon”[All Fields]) OR “argons”[All Fields]) AND “dent*”[All Fields] | TITLE-ABS-KEY (plasma AND argon AND dental) | TOPIC: (plasma AND argon) AND TOPIC: (dental) Timespan: All years. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC. | (‘plasma argon’ OR ((‘plasma’/exp OR plasma) AND (‘argon’/exp OR argon))) AND (‘dental’/exp OR dental) | plasma argon dental |
Results | 181 | 167 | 120 | 191 | 2 |
Title | Object of the Study | D.1 * | D.2 † | D.3 ‡ | D.4 § | D.5 || | Total |
---|---|---|---|---|---|---|---|
Canullo 2020 | Human dermal Fibroblast | Y | Y | Y | Y | N | 4/5 |
Wang 2020 | Murine Osteoblasts | N | N | N | N | N | 0/5 |
Guo 2019 | Murine fibroblast | N | N | N | Y | N | 0/5 |
González-Blanco 2019 | Murine Osteoblasts | N | N | N | Y | N | 1/5 |
Pistilli 2018 | Murine Osteoblasts | Y | Y | N | Y | N | 3/5 |
Canullo 2017 | Murine Osteoblasts/bacteria | Y | Y | Y | Y | N | 4/5 |
Henningsen 2018 | Murine Osteoblasts | N | N | N | Y | N | 1/5 |
Canullo 2017 | Murine Osteoblasts | Y | Y | N | Y | N | 3/5 |
Garcia 2016 | Human soft tissue | N | N | N | Y | Y | 2/5 |
Canullo 2016 | Murine Osteoblasts | Y | Y | Y | Y | N | 4/5 |
Canullo 2014 | Human soft tissue | N | N | Y | Y | Y | 3/5 |
Canullo 2013 | Murine Fibroblastic cells | N | N | Y | N | N | 1/5 |
Duske 2012 | Human Osteoblastic cells | N | N | Y | N | N | 1/5 |
Stanford 1994 | Murine Osteoblastic cells | N | N | Y | N | N | 1/5 |
Michaels 1991 | Murine Periodontal ligament fibroblast | N | N | Y | N | N | 1/5 |
Swart 1992 | Murine Osteoblastic cells | N | N | Y | N | N | 1/5 |
First Author-Year | Study Type | Sample | Plasma System | Time of Exposure | Cell Type | Study Controls | Parameters Assessed | Evaluation Time | Outcome |
---|---|---|---|---|---|---|---|---|---|
Canullo 2020 [37] | In vitro | Grade 5 titanium discs with four different topographies (MAC, UTM, UTM-Y, XA) | Plasma reactor (Plasma R, Diener Electronic GmbH, Ebhausen, Germany) at 8 W and atmospheric pressure | 6′ | Normal Human Dermal Fibroblasts | UV treatment, no treatment | Cell culture, Cell morphology, Adhesion Test, Wettability, SEM | 20′, 24 h, 72 h | Data showed potential biological benefits of treating implant abutment surfaces with the PoA in relation to early-stage cell adhesion. |
Wang 2020 [38] | In vitro | Titanium grade 4 titanium disk | Atmospheric Pressure Plasma System model AS400 + PFW10, manufactured by Plasma Treat GmbH (Steinhagen, Germany) | 90″ | Osteoblast rat cells | No treatment | Surface Morphology, Surface Hydrophilicity, Surface Chemistry, Adhesion and Spreading, OCN Assay | 12 h for the osteoblast morphology, 24 h for actin (spreading behavior and cytoskeletal arrangement), 7 and 14 days for OCN | Osteoblast cells’ adhesion, proliferation, and mineralization were all significantly improved. The low-temperature PoA treatment could be a potentially effective approach to activate titanium-based dental implants for improved performance. |
Guo 2019 [39] | In vitro | Titanium grade 4 discs, tetragonal zirconia polycrystal discs and PEEK discs | NTP reactor (generator frequency 100 kHz, input power 24 W, system pressure 1 mbar, gas flow rate 1.25 sccm, and gas purity >99.5% Diener Electronic GmbH, Ebhausen, Germany). | 12′ | L929 murine fibroblast cells and human gingiva fibroblast cells | UV treatment, no treatment | Cell culture, Cell Attachment and Morphology, Viability Assay, Cytotoxicity Assay | 2 h, 24 h, 48 h | Oxygen plasma treatment may improve the attachment, proliferation and viability of soft tissue cells. PoA treatment showed only minor effects on the cytocompatibility of soft tissue cells. |
González-Blanco 2019 [40] | In vitro | Grade 4 and 5 SLA titanium discs | V15-G plasma reactor produced by Plasma Finish (PINK GmbH Thermosysteme, Wertheim, Germany), placed into an ISO 7 clean room (Lesatec, Opera Milan, Italy), pressure 20 Pa. | 15′ | Osteoblast MG-63 cell line | No treatment | Cell Culture, Cell Viability Analysis, Morphological Analysis and Mitochondrial Energy Balance | 6 h, 24 h, 48 h | The use of argon plasma as an intervention for decontaminating the surfaces of titanium implants may lead to an improvement in the growth, cell size, spreading and mitochondrial activity of the MG-63 cells that cover them. |
Pistilli 2018 [41] | In vitro | Grade 4 titanium discs | Plasma reactor (Plasma R, Sweden & Martina), 10 W, 1 bar | 12′ | Murine preosteoblasts (MC3T3-E1) | No treatment | SEM, Surface roughness analysis, Cell Adhesion (CA), Protein Adsorption (PA), Bacterial Biofilm Evaluation (BE) | 20 min for CA, 30 min for PA, 24 h for BE) | PoA treatment significantly increased the protein adsorption level. Rough implant surfaces benefited the most from the PoA treatment. |
Canullo 2017 [14] | In vitro | Grade 4 titanium discs with different surface modifications (MAC, TPS and ZRT) | APDBD treatment (8 W at atmospheric pressure) using a nonthermal dielectric barrier discharge (Plasma Beam Mini, Diener Electronic). | 2′ | Preosteoblastic murine cell line MC3T3-E1 | No treatment | Contact angle, Bacterial Adhesion, Protein Adsorption (PA), Cell culture, Cell Adhesion Assay (CA), Cell Morphology (CM), Viability Assay (VA) | 30′ for PA; 12′ for CA; 30′ and 8 h for CM; 24 h, 48 h, 72 h for VA | Argon atmospheric pressure dielectric barrier discharge showed the ability to enhance osteoblast attachment and spreading as well as bacterial decontamination. |
Henningsen 2018 [42] | In vitro | Sandblasted and acid-etched grade 4 titanium discs | Yocto III NTP plasma reactor (Diener Electronic GmbH, Ebhausen, Germany). 24 W -0.5 mbar | 12′ | Murine osteoblast-like cells MC3T3-E1 | UV treatment, no treatment | SEM, Surface Roughness Measurements, Wettability, Cell Culture, Cell Attachment and Morphology (CAM), Cell Proliferation (CP), Cytotoxicity, XPS Analysis, Viability | 2 h, 24 h, 72 h for CAM; 52 h for Viability; 24 h, 48 h, 72 h for CP and Cytotoxicity | NTP and UV treatments result in an optimized cell environment on titanium disks compared to the non-treated control without conducting any topographical or roughness changes under laboratory conditions. |
Canullo 2017 [43] | In vitro | Grade 4 titanium discs with different surface modifications (MAC, TPS and ZRT) | Plasma reactor (Plasma R, Sweden & Martina), 10 W, 1 bar | 12′ | Preosteoblastic murine cell line MC3T3-E1 | No treatment | FESEM, Contact Angle, Cell Culture, Cell Morphology | 2 h, 8 h, 24 h for cell morphology | Morphologic changes in adherent osteoblasts could be detected, supporting the efficacy of cold PoA treatment, for all the implant surfaces evaluated. |
Garcia 2017 [30] | In vivo | Titanium abutment, 30 patients | Plasma reactor (Diener Electronic GmbH, Jettingen, Germany), 75 W, −10 Mpa | 12′ | Fibroblast | No treatment | Abutment Surface Analysis, Histological Analysis | 2 weeks after a second surgery | PoA may promote cell adhesion and positively influence collagen fiber orientation. |
Canullo 2016 [28] | In vitro | Grade 4 titanium disks with different surface modifications (MAC, TPS and ZRT) | Plasma reactor (Plasma R; Sweden & Martina), 10 W, 1 bar | 12′ | Preosteoblastic murine cell line MC3T3-E1 and human osteoblastic cell line MG-63 | UV treatment, no treatment | Topography and Surface Analyses, Protein Adsorption (PA), Cell culture, Cell Adhesion assay (CA) | 30′ for PA, 15′ for CA | The present study highlights the potential benefits of treating implant surfaces with PoA (12 min) or UV (3 h) |
Canullo 2014 [32] | In vivo | Titanium abutments, 18 patients | Plasma reactor (Diener Electronic GmbH, Jettingen, Germany), 75 W, −10 Mpa | 12′ | Fibroblast | No treatment, laboratory customization and cleaning by steam | Percentage of the Total Area Occupied by Cells, Presence or Absence of Cells, Aspect of the Adhered Cells and the Presence of Contaminants | One week after a second surgery | Results suggest a better adhesion of soft tissue cells to titanium abutments cleaned by PoA than to those inserted as they come from the industry or cleaned by steam after laboratory customization. |
Canullo 2013 [29] | In vitro | Machined grade 5 titanium disks | Plasma reactor (Colibri, Gambetti Company), 10 W, 1 bar | 6′ | Murine fibroblastic cells (L929) | No treatment | Cell Adhesion, Process of Adhesion and Colonization of the Surfaces | 2 h, 8 h, 48 h | PoA treatment on titanium disks immediately before exposure to a suspension of L929 murine fibroblastic cells significantly increased the speed of cellular adhesion compared to untreated control disks. |
Duske 2012 [23] | In vitro | Grade IV Titanium disks with different topographies | Atmospheric pressure plasma jet (INP Greifswald, Greifswald, Germany), with a frequency of applied voltage of 1.82 MHz with an input power of 2–3 W | 30″, 60″, 120″ | Human osteoblastic cells (MG-63, ATCC, CRL-1427) | Machined (M), sandblast-etched (SLA) and discs with a hydrophilic SLActive® surface (ACT) | Contact Angle Measurement, Cell Culture, Spreading, Metabolic Activity and SEM of Human Osteoblastic Cells (MG-63) | 30′, 60′ and 24 h | Results suggest that a PoA with a small oxygen admixture was effective for surface modifications resulting in favourable cell responses. |
Stanford 1994 [44] | In vitro | Commercially pure Titanium samples | Plasma discharge chamber (model PDC-32G Plasma Cleaner, Harrick Scientific Corporation, Ossining, NY), 100 W, 0.07 Mpa | 5′ | Rat calvarial osteoblast-like cells | UV light, autoclave, ethylene oxide gas | Cell culture, Osteocalcin RIA, Collagen Expression, Alkaline Phosphatase Enzyme Activity, Alizarin Red Calcium Assay | 4, 6, 8, 10, 12 days | Osteocalcin and alkaline phosphatase, but not collagen expression, were significantly affected by surface roughness when these surfaces were altered by PoA-cleaning. In general, PoA-cleaned cpTi surfaces demonstrated an inverse relationship between surface roughness and phenotypic markers for a bone-like response |
Michaels 1991 [45] | In vitro | Commercially pure Titanium disks | Harrick plasma-cleaning device (Harrick Scientific, Ossininf, NY 10562, USA) | 1′, 5′ | Rat periodontal ligament fibroblast-like cells | UV light, autoclave, ethylene oxide gas | Cell Attachment Assay, SEM Evaluation of Cellular Spreading | 15′, 30′, 60′, 120′ | PoA-cleaning for up to five min did not appear to enhance cell attachment, but it benefited spreading. |
Swart 1992 [27] | In vitro | Commercially pure Titanium disks | Harrick PDC-32G plasma cleaning device (Harrick Scientific Corp., Ossining, NY, USA), Ar 100 W, 0.15 atm | 1′, 5′, 10′ | Osteoblast like cells | No treatment | Cell Attachment Assays, SEM, X-ray Photoelectron Spectroscopy, Auger Electron Spectroscopy, Contact Angle | 15′, 30′, 60′, 120′ | Short-term PoA-cleaning treatments may produce a relatively contaminant-free, highly wettable surface that favors early in vitro osteoblast-like cellular attachment and morphological integration. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carossa, M.; Cavagnetto, D.; Mancini, F.; Mosca Balma, A.; Mussano, F. Plasma of Argon Treatment of the Implant Surface, Systematic Review of In Vitro Studies. Biomolecules 2022, 12, 1219. https://doi.org/10.3390/biom12091219
Carossa M, Cavagnetto D, Mancini F, Mosca Balma A, Mussano F. Plasma of Argon Treatment of the Implant Surface, Systematic Review of In Vitro Studies. Biomolecules. 2022; 12(9):1219. https://doi.org/10.3390/biom12091219
Chicago/Turabian StyleCarossa, Massimo, Davide Cavagnetto, Francesca Mancini, Alessandro Mosca Balma, and Federico Mussano. 2022. "Plasma of Argon Treatment of the Implant Surface, Systematic Review of In Vitro Studies" Biomolecules 12, no. 9: 1219. https://doi.org/10.3390/biom12091219
APA StyleCarossa, M., Cavagnetto, D., Mancini, F., Mosca Balma, A., & Mussano, F. (2022). Plasma of Argon Treatment of the Implant Surface, Systematic Review of In Vitro Studies. Biomolecules, 12(9), 1219. https://doi.org/10.3390/biom12091219