The Potential Role of Integrin Signaling in Memory and Cognitive Impairment
Abstract
:1. Introduction and Integrin Signaling Mechanics
Integrins and the Blood–Brain Barrier
2. Integrins and Memory
2.1. Vascular Contributions to Cognitive Impairment and Dementia (VCID)
2.2. Alzheimer’s Disease (AD)
3. Improving the Translational Perspective for Modulating Integrin Signaling in the Context of Cognitive Impairment
Disease Model | Inhibitor/Modulator | Inference | Reference |
---|---|---|---|
3xTg-AD mice | 500 μg of the α4-integrin-specific antibody | Attenuated neuropathological hallmarks of AD, such as microgliosis, Aβ load, and tau hyperphosphorylation. The α4 integrin blocking attenuated leukocyte trafficking and improved cognitive impairment and AD neuropathology | Pietronigro et al., 2019 [56] |
C57BL6/J mice with Intrahippocampal Aβ oligomers injection | recombinant integrin β1 N-terminal signal peptide | Inhibited Aβ-induced ROS generation in primary astrocytes Inhibited astrogliosis and ER stress in mouse of AD | Ortiz-Sanz et al., 2022 [64] |
Rat model of ALS/PDC model (induced by L-BMAA) | C16 peptide KAFDITYVRLKF along with angiopetin 1 (Ang1) | Attenuated oxidative stress and inflammatory response Improved cognitive and motor function | Cai et al., 2018 [60] |
Human and mouse cortical neurons treated with Aβ | Domain V and LG3 of perlecan | Inhibited Aβ-induced neurotoxicity in an α2 integrin and c-Jun dependent manner | Wright et al., 2010 [67] |
Mouse hippocampal neurons treated with Aβ42 | DV and LG3 | DV and LG3 inhibited the α2β1 integrin receptor and prevented Aβ from binding | Parham et al., 2016 [65] |
Human platelets treated with Aβ1–40 | Rosmarinic acid | Aβ1–40-induced platelet adhesion is ameliorated by RA through the inhibition of NADPH oxidase/ROS/PKC-δ/integrin αIIbβ3 signaling pathways | Lee et al., 2021 [63] |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iskratsch, T.; Wolfenson, H.; Sheetz, M.P. Appreciating force and shape—The rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 2014, 15, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Harburger, D.S.; Calderwood, D.A. Integrin signalling at a glance. J. Cell Sci. 2009, 122, 159–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Guo, S.S.; Fässler, R. Integrin-mediated mechanotransduction. J. Cell Biol. 2016, 215, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Layseca, P.; Icha, J.; Hamidi, H.; Ivaska, J. Integrin trafficking in cells and tissues. Nat. Cell Biol. 2019, 21, 122–132. [Google Scholar] [CrossRef]
- Hynes, R.O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, J.D.; Dufresne, E.R.; Schwartz, M.A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 2014, 15, 802–812. [Google Scholar] [CrossRef] [Green Version]
- Ayloo, S.; Lazo, C.G.; Sun, S.; Zhang, W.; Cui, B.; Gu, C. Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood-CNS barrier. Neuron 2022, 110, 1641–1655.e1646. [Google Scholar] [CrossRef]
- Tang, J.; Kang, Y.; Huang, L.; Wu, L.; Peng, Y. TIMP1 preserves the blood-brain barrier through interacting with CD63/integrin β 1 complex and regulating downstream FAK/RhoA signaling. Acta Pharm. Sin. B 2020, 10, 987–1003. [Google Scholar] [CrossRef]
- Milner, R.; Hung, S.; Wang, X.; Berg, G.I.; Spatz, M.; del Zoppo, G.J. Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke 2008, 39, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Giancotti, F.G.; Ruoslahti, E. Integrin signaling. Science 1999, 285, 1028–1032. [Google Scholar] [CrossRef]
- Edwards, D.N.; Salmeron, K.; Lukins, D.E.; Trout, A.L.; Fraser, J.F.; Bix, G.J. Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J. Cereb. Blood Flow. Metab. 2020, 40, 1695–1708. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yu, L.; Huang, S.; Lai, X.; Milner, R.; Li, L. Vascular expression of angiopoietin1, α5β1 integrin and tight junction proteins is tightly regulated during vascular remodeling in the post-ischemic brain. Neuroscience 2017, 362, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.N.; Al Ahmad, A.; Lee, B.; Parham, C.; Auckland, L.; Fertala, A.; Kahle, M.; Shaw, C.S.; Roberts, J.; Bix, G.J. Perlecan Domain V induces VEGf secretion in brain endothelial cells through integrin α5β1 and ERK-dependent signaling pathways. PLoS ONE 2012, 7, e45257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bix, G.; Iozzo, R.V. Matrix revolutions: "tails" of basement-membrane components with angiostatic functions. Trends Cell Biol. 2005, 15, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, X.; Liu, X.; Feng, G.; Fu, Y.; Milner, R.; Li, L. Overexpression of α5β1 integrin and angiopoietin-1 co-operatively promote blood-brain barrier integrity and angiogenesis following ischemic stroke. Exp. Neurol. 2019, 321, 113042. [Google Scholar] [CrossRef]
- Pang, D.; Wang, L.; Dong, J.; Lai, X.; Huang, Q.; Milner, R.; Li, L. Integrin α5β1-Ang1/Tie2 receptor cross-talk regulates brain endothelial cell responses following cerebral ischemia. Exp. Mol. Med. 2018, 50, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Izawa, Y.; Gu, Y.H.; Osada, T.; Kanazawa, M.; Hawkins, B.T.; Koziol, J.A.; Papayannopoulou, T.; Spatz, M.; Del Zoppo, G.J. β1-integrin-matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. J. Cereb. Blood Flow. Metab. 2018, 38, 641–658. [Google Scholar] [CrossRef]
- Grammas, P.; Sanchez, A.; Tripathy, D.; Luo, E.; Martinez, J. Vascular signaling abnormalities in Alzheimer disease. Cleve Clin. J. Med. 2011, 78 (Suppl. 1), S50–S53. [Google Scholar] [CrossRef] [Green Version]
- Bahr, B.A.; Staubli, U.; Xiao, P.; Chun, D.; Ji, Z.X.; Esteban, E.T.; Lynch, G. Arg-Gly-Asp-Ser-selective adhesion and the stabilization of long-term potentiation: Pharmacological studies and the characterization of a candidate matrix receptor. J. Neurosci. 1997, 17, 1320–1329. [Google Scholar] [CrossRef] [Green Version]
- Kramár, E.A.; Bernard, J.A.; Gall, C.M.; Lynch, G. Alpha3 integrin receptors contribute to the consolidation of long-term potentiation. Neuroscience 2002, 110, 29–39. [Google Scholar] [CrossRef]
- Stäubli, U.; Chun, D.; Lynch, G. Time-dependent reversal of long-term potentiation by an integrin antagonist. J. Neurosci. 1998, 18, 3460–3469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, D.; Gall, C.M.; Bi, X.; Lynch, G. Evidence that integrins contribute to multiple stages in the consolidation of long term potentiation in rat hippocampus. Neuroscience 2001, 105, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.M.; Wang, H.L.; Tang, Y.P.; Lee, E.H. Expression of integrin-associated protein gene associated with memory formation in rats. J. Neurosci. 1998, 18, 4305–4313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.P.; Lindberg, F.P.; Wang, H.L.; Huang, A.M.; Lee, E.H. Impaired memory retention and decreased long-term potentiation in integrin-associated protein-deficient mice. Learn. Mem. 1999, 6, 448–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.P.; Ma, Y.L.; Wan, F.J.; Tsai, L.Y.; Lindberg, F.P.; Lee, E.H. Functional blocking of integrin-associated protein impairs memory retention and decreases glutamate release from the hippocampus. Neuroscience 2001, 102, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.S.; Weeber, E.J.; Kurup, S.; Sweatt, J.D.; Davis, R.L. Integrin requirement for hippocampal synaptic plasticity and spatial memory. J. Neurosci. 2003, 23, 7107–7116. [Google Scholar] [CrossRef]
- Huang, Z.; Shimazu, K.; Woo, N.H.; Zang, K.; Müller, U.; Lu, B.; Reichardt, L.F. Distinct roles of the beta 1-class integrins at the developing and the mature hippocampal excitatory synapse. J. Neurosci. 2006, 26, 11208–11219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, C.S.; Levenson, J.M.; Mukhopadhyay, P.S.; Zong, L.; Bradley, A.; Sweatt, J.D.; Davis, R.L. Alpha3-integrins are required for hippocampal long-term potentiation and working memory. Learn. Mem. 2007, 14, 606–615. [Google Scholar] [CrossRef] [Green Version]
- Einheber, S.; Schnapp, L.M.; Salzer, J.L.; Cappiello, Z.B.; Milner, T.A. Regional and ultrastructural distribution of the alpha 8 integrin subunit in developing and adult rat brain suggests a role in synaptic function. J. Comp. Neurol. 1996, 370, 105–134. [Google Scholar] [CrossRef]
- Nishimura, S.L.; Boylen, K.P.; Einheber, S.; Milner, T.A.; Ramos, D.M.; Pytela, R. Synaptic and glial localization of the integrin alphavbeta8 in mouse and rat brain. Brain Res. 1998, 791, 271–282. [Google Scholar] [CrossRef]
- Bi, X.; Lynch, G.; Zhou, J.; Gall, C.M. Polarized distribution of alpha5 integrin in dendrites of hippocampal and cortical neurons. J. Comp. Neurol. 2001, 435, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Kramár, E.A.; Lin, B.; Rex, C.S.; Gall, C.M.; Lynch, G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc. Natl. Acad. Sci. USA 2006, 103, 5579–5584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, M.S.; Bradley, W.D.; Gourley, S.L.; Lin, Y.C.; Simpson, M.A.; Reichardt, L.F.; Greer, C.A.; Taylor, J.R.; Koleske, A.J. Integrin β1 signals through Arg to regulate postnatal dendritic arborization, synapse density, and behavior. J. Neurosci. 2012, 32, 2824–2834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koleske, A.J.; Gifford, A.M.; Scott, M.L.; Nee, M.; Bronson, R.T.; Miczek, K.A.; Baltimore, D. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 1998, 21, 1259–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, M.A.; Bradley, W.D.; Harburger, D.; Parsons, M.; Calderwood, D.A.; Koleske, A.J. Direct interactions with the integrin β1 cytoplasmic tail activate the Abl2/Arg kinase. J. Biol. Chem. 2015, 290, 8360–8372. [Google Scholar] [CrossRef] [Green Version]
- Moresco, E.M.; Donaldson, S.; Williamson, A.; Koleske, A.J. Integrin-mediated dendrite branch maintenance requires Abelson (Abl) family kinases. J. Neurosci. 2005, 25, 6105–6118. [Google Scholar] [CrossRef] [Green Version]
- Sfakianos, M.K.; Eisman, A.; Gourley, S.L.; Bradley, W.D.; Scheetz, A.J.; Settleman, J.; Taylor, J.R.; Greer, C.A.; Williamson, A.; Koleske, A.J. Inhibition of Rho via Arg and p190RhoGAP in the postnatal mouse hippocampus regulates dendritic spine maturation, synapse and dendrite stability, and behavior. J. Neurosci. 2007, 27, 10982–10992. [Google Scholar] [CrossRef] [Green Version]
- Nikonenko, I.; Toni, N.; Moosmayer, M.; Shigeri, Y.; Muller, D.; Sargent Jones, L. Integrins are involved in synaptogenesis, cell spreading, and adhesion in the postnatal brain. Brain Res. Dev. Brain Res. 2003, 140, 185–194. [Google Scholar] [CrossRef]
- Webb, D.J.; Zhang, H.; Majumdar, D.; Horwitz, A.F. alpha5 integrin signaling regulates the formation of spines and synapses in hippocampal neurons. J. Biol. Chem. 2007, 282, 6929–6969.935. [Google Scholar] [CrossRef] [Green Version]
- Van Gool, D.; Carmeliet, G.; Triau, E.; Cassiman, J.J.; Dom, R. Appearance of localized immunoreactivity for the alpha 4 integrin subunit and for fibronectin in brains from Alzheimer’s, Lewy body dementia patients and aged controls. Neurosci. Lett. 1994, 170, 71–73. [Google Scholar] [CrossRef]
- Akiyama, H.; Kawamata, T.; Dedhar, S.; McGeer, P.L. Immunohistochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue. J. Neuroimmunol. 1991, 32, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Preciado-Patt, L.; Hershkoviz, R.; Fridkin, M.; Lider, O. Serum amyloid A binds specific extracellular matrix glycoproteins and induces the adhesion of resting CD4+ T cells. J. Immunol. 1996, 156, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Koo, E.H.; Selkoe, D.J. Cell surface amyloid beta-protein precursor colocalizes with beta 1 integrins at substrate contact sites in neural cells. J. Neurosci. 1997, 17, 1004–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matter, M.L.; Zhang, Z.; Nordstedt, C.; Ruoslahti, E. The alpha5beta1 integrin mediates elimination of amyloid-beta peptide and protects against apoptosis. J. Cell Biol. 1998, 141, 1019–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iadecola, C.; Duering, M.; Hachinski, V.; Joutel, A.; Pendlebury, S.T.; Schneider, J.A.; Dichgans, M. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. J. Am. Coll Cardiol. 2019, 73, 3326–3344. [Google Scholar] [CrossRef] [PubMed]
- Raz, L.; Knoefel, J.; Bhaskar, K. The neuropathology and cerebrovascular mechanisms of dementia. J. Cereb. Blood Flow. Metab. 2016, 36, 172–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurd, M.D.; Martorell, P.; Delavande, A.; Mullen, K.J.; Langa, K.M. Monetary costs of dementia in the United States. N. Engl. J. Med. 2013, 368, 1326–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [CrossRef]
- Bir, S.C.; Khan, M.W.; Javalkar, V.; Toledo, E.G.; Kelley, R.E. Emerging Concepts in Vascular Dementia: A Review. J. Stroke Cerebrovasc. Dis. 2021, 30, 105864. [Google Scholar] [CrossRef]
- O’Brien, J.T.; Erkinjuntti, T.; Reisberg, B.; Roman, G.; Sawada, T.; Pantoni, L.; Bowler, J.V.; Ballard, C.; DeCarli, C.; Gorelick, P.B.; et al. Vascular cognitive impairment. Lancet Neurol. 2003, 2, 89–98. [Google Scholar] [CrossRef]
- Gooch, J.; Wilcock, D.M. Animal Models of Vascular Cognitive Impairment and Dementia (VCID). Cell Mol. Neurobiol. 2016, 36, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; Maniskas, M.E.; Bix, G.J. Bilateral carotid artery stenosis causes unexpected early changes in brain extracellular matrix and blood-brain barrier integrity in mice. PLoS ONE 2018, 13, e0195765. [Google Scholar] [CrossRef] [PubMed]
- Togo, T.; Akiyama, H.; Iseki, E.; Kondo, H.; Ikeda, K.; Kato, M.; Oda, T.; Tsuchiya, K.; Kosaka, K. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol. 2002, 124, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, S.; McGeer, P.L.; Akiyama, H. Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’s disease brain tissue. Neurosci. Lett. 1988, 91, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Rossi, B.; Angiari, S.; Zenaro, E.; Budui, S.L.; Constantin, G. Vascular inflammation in central nervous system diseases: Adhesion receptors controlling leukocyte-endothelial interactions. J. Leukoc. Biol. 2011, 89, 539–556. [Google Scholar] [CrossRef] [PubMed]
- Pietronigro, E.; Zenaro, E.; Bianca, V.D.; Dusi, S.; Terrabuio, E.; Iannoto, G.; Slanzi, A.; Ghasemi, S.; Nagarajan, R.; Piacentino, G.; et al. Blockade of α4 integrins reduces leukocyte-endothelial interactions in cerebral vessels and improves memory in a mouse model of Alzheimer’s disease. Sci. Rep. 2019, 9, 12055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitayama, J.; Fuhlbrigge, R.C.; Puri, K.D.; Springer, T.A. P-selectin, L-selectin, and alpha 4 integrin have distinct roles in eosinophil tethering and arrest on vascular endothelial cells under physiological flow conditions. J. Immunol. 1997, 159, 3929–3939. [Google Scholar] [CrossRef]
- Engelhardt, B.; Ransohoff, R.M. Capture, crawl, cross.s: The T cell code to breach the blood-brain barriers. Trends Immunol. 2012, 33, 579–589. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, F.; Yang, J.; Han, S. Angiopoietin-1 ameliorates inflammation-induced vascular leakage and improves functional impairment in a rat model of acute experimental autoimmune encephalomyelitis. Exp. Neurol. 2014, 261, 245–257. [Google Scholar] [CrossRef]
- Cai, H.Y.; Tian, K.W.; Zhang, Y.Y.; Jiang, H.; Han, S. Angiopoietin-1 and ανβ3 integrin peptide promote the therapeutic effects of L-serine in an amyotrophic lateral sclerosis/Parkinsonism dementia complex model. Aging (Albany NY) 2018, 10, 3507–3527. [Google Scholar] [CrossRef]
- Li, Q.X.; Berndt, M.C.; Bush, A.I.; Rumble, B.; Mackenzie, I.; Friedhuber, A.; Beyreuther, K.; Masters, C.L. Membrane-associated forms of the beta A4 amyloid protein precursor of Alzheimer’s disease in human platelet and brain: Surface expression on the activated human platelet. Blood 1994, 84, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Laske, C.; Sopova, K.; Stellos, K. Platelet activation in Alzheimer’s disease: From pathophysiology to clinical value. Curr. Vasc. Pharmacol. 2012, 10, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Jee, H.J.; Jung, Y.S. Aβ(1-40)-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin α(IIb)β(3) Signaling. Antioxidants 2021, 10, 1671. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Sanz, C.; Llavero, F.; Zuazo-Ibarra, J.; Balantzategi, U.; Quintela-López, T.; Wyssenbach, A.; Capetillo-Zarate, E.; Matute, C.; Alberdi, E.; Zugaza, J.L. Recombinant Integrin β1 Signal Peptide Blocks Gliosis Induced by Aβ Oligomers. Int. J. Mol. Sci. 2022, 23, 5747. [Google Scholar] [CrossRef] [PubMed]
- Parham, C.L.; Shaw, C.; Auckland, L.D.; Dickeson, S.K.; Griswold-Prenner, I.; Bix, G. Perlecan Domain V Inhibits Amyloid-β Induced Activation of the α2β1 Integrin-Mediated Neurotoxic Signaling Cascade. J. Alzheimers Dis. 2016, 54, 1629–1647. [Google Scholar] [CrossRef]
- Wright, S.; Parham, C.; Lee, B.; Clarke, D.; Auckland, L.; Johnston, J.; Lawrence, A.L.; Dickeson, S.K.; Santoro, S.A.; Griswold-Prenner, I.; et al. Perlecan domain V inhibits α2 integri.in-mediated amyloid-β neurotoxicity. Neurobiol. Aging 2012, 33, 1379–1388. [Google Scholar] [CrossRef]
- Wright, S.; Malinin, N.L.; Powell, K.A.; Yednock, T.; Rydel, R.E.; Griswold-Prenner, I. Alpha2beta1 and alphaVbeta1 integrin signaling pathways mediate amyloid-beta-induced neurotoxicity. Neurobiol. Aging 2007, 28, 226–237. [Google Scholar] [CrossRef]
- Qin, T.; Prins, S.; Groeneveld, G.J.; Van Westen, G.; de Vries, H.E.; Wong, Y.C.; Bischoff, L.J.M.; de Lange, E.C.M. Utility of Animal Models to Understand Human Alzheimer’s Disease, Using the Mastermind Research Approach to Avoid Unnecessary Further Sacrifices of Animals. Int. J. Mol. Sci. 2020, 21, 3158. [Google Scholar] [CrossRef]
- Vitek, M.P.; Araujo, J.A.; Fossel, M.; Greenberg, B.D.; Howell, G.R.; Rizzo, S.J.S.; Seyfried, N.T.; Tenner, A.J.; Territo, P.R.; Windisch, M.; et al. Translational animal models for Alzheimer’s disease: An Alzheimer’s Association Business Consortium Think Tank. Alzheimers Dement. (N Y) 2020, 6, e12114. [Google Scholar] [CrossRef]
- Santiago, J.A.; Potashkin, J.A. The Impact of Disease Comorbidities in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 631770. [Google Scholar] [CrossRef]
- Veening-Griffioen, D.H.; Ferreira, G.S.; van Meer, P.J.K.; Boon, W.P.C.; Gispen-de Wied, C.C.; Moors, E.H.M.; Schellekens, H. Are some animal models more equal than others? A case study on the translational value of animal models of efficacy for Alzheimer’s disease. Eur. J. Pharmacol. 2019, 859, 172524. [Google Scholar] [CrossRef] [PubMed]
- Hainsworth, A.H.; Allan, S.M.; Boltze, J.; Cunningham, C.; Farris, C.; Head, E.; Ihara, M.; Isaacs, J.D.; Kalaria, R.N.; Lesnik Oberstein, S.A.; et al. Translational models for vascular cognitive impairment: A review including larger species. BMC Med. 2017, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muratoglu, S.C.; Charette, M.F.; Galis, Z.S.; Greenstein, A.S.; Daugherty, A.; Joutel, A.; Kozel, B.A.; Wilcock, D.M.; Collins, E.C.; Sorond, F.A.; et al. Perspectives on Cognitive Phenotypes and Models of Vascular Disease. Arterioscler Thromb. Vasc. Biol. 2022, 42, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Su, B.; Udeh-Momoh, C.; Price, G.; Tzoulaki, I.; Vamos, E.P.; Majeed, A.; Riboli, E.; Ahmadi-Abhari, S.; Middleton, L.T. Associations of Cardiovascular and Non-Cardiovascular Comorbidities with Dementia Risk in Patients with Diabetes: Results from a Large UK Cohort Study. J. Prev. Alzheimers Dis. 2022, 9, 86–91. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biose, I.J.; Ismael, S.; Ouvrier, B.; White, A.L.; Bix, G.J. The Potential Role of Integrin Signaling in Memory and Cognitive Impairment. Biomolecules 2023, 13, 108. https://doi.org/10.3390/biom13010108
Biose IJ, Ismael S, Ouvrier B, White AL, Bix GJ. The Potential Role of Integrin Signaling in Memory and Cognitive Impairment. Biomolecules. 2023; 13(1):108. https://doi.org/10.3390/biom13010108
Chicago/Turabian StyleBiose, Ifechukwude Joachim, Saifudeen Ismael, Blake Ouvrier, Amanda Louise White, and Gregory Jaye Bix. 2023. "The Potential Role of Integrin Signaling in Memory and Cognitive Impairment" Biomolecules 13, no. 1: 108. https://doi.org/10.3390/biom13010108
APA StyleBiose, I. J., Ismael, S., Ouvrier, B., White, A. L., & Bix, G. J. (2023). The Potential Role of Integrin Signaling in Memory and Cognitive Impairment. Biomolecules, 13(1), 108. https://doi.org/10.3390/biom13010108