Elevated Soluble TNF-Receptor 1 in the Serum of Predementia Subjects with Cerebral Small Vessel Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Standard Protocol Approvals, Registrations and Patient Consent
2.3. Neuropsychological Battery
2.4. Covariates
2.5. Neuroimaging
2.6. Serum sTNF-R1 Measurements
2.7. Statistical Analyses
3. Results
3.1. Study Participants
3.2. Associations between sTNF-R1 and Neuroimaging Markers
3.3. Associations between sTNF-R1 and Cognitive Trajectories
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prince, M.; Albanese, E.; Guerchet, M.; Prina, M. World Alzheimer Report 2014: Dementia and Risk Reduction: An Analysis of Protective and Modifiable Risk Factors; Alzheimer’s Disease International: London, UK, 2014; p. 104. [Google Scholar]
- Zanon Zotin, M.C.; Sveikata, L.; Viswanathan, A.; Yilmaz, P. Cerebral small vessel disease and vascular cognitive impairment: From diagnosis to management. Curr. Opin. Neurol. 2021, 34, 246–257. [Google Scholar] [CrossRef]
- Chen, C.; Homma, A.; Mok, V.C.; Krishnamoorthy, E.; Alladi, S.; Meguro, K.; Abe, K.; Dominguez, J.; Marasigan, S.; Kandiah, N.; et al. Alzheimer’s disease with cerebrovascular disease: Current status in the Asia-Pacific region. J. Intern. Med. 2016, 280, 359–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, B.Y.K.; Yiu, B.; Ampil, E.; Chen, C.L.-H.; Dikot, Y.; Dominguez, J.C.; Ganeshbhai, P.V.; Hilal, S.; Kandiah, N.; Kim, S.; et al. High burden of cerebral white matter lesion in 9 Asian cities. Sci. Rep. 2021, 11, 11587. [Google Scholar] [CrossRef] [PubMed]
- Hilal, S.; Mok, V.; Youn, Y.C.; Wong, A.; Ikram, M.K.; Chen, C.L. Prevalence, risk factors and consequences of cerebral small vessel diseases: Data from three Asian countries. J. Neurol. Neurosurg. Psychiatry 2017, 88, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, T.; Kerkhofs, D.; Mizuno, T.; Steinbusch, H.W.M.; Foulquier, S. Vessel-Associated Immune Cells in Cerebrovascular Diseases: From Perivascular Macrophages to Vessel-Associated Microglia. Front. Neurosci. 2019, 13, 1291. [Google Scholar] [CrossRef] [Green Version]
- Pasqualetti, G.; Brooks, D.J.; Edison, P. The role of neuroinflammation in dementias. Curr. Neurol. Neurosci. Rep. 2015, 15, 17. [Google Scholar] [CrossRef]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N. Y.) 2018, 4, 575–590. [Google Scholar] [CrossRef]
- Liu, L.-R.; Liu, J.-C.; Bao, J.-S.; Bai, Q.-Q.; Wang, G.-Q. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front. Immunol. 2020, 11, 1024. [Google Scholar] [CrossRef]
- Barone, F.C.; Arvin, B.; White, R.F.; Miller, A.; Webb, C.L.; Willette, R.N.; Lysko, P.G.; Feuerstein, G.Z. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke 1997, 28, 1233–1244. [Google Scholar] [CrossRef]
- Tarkowski, E.; Blennow, K.; Wallin, A.; Tarkowski, A. Intracerebral Production of Tumor Necrosis Factor-α, a Local Neuroprotective Agent, in Alzheimer Disease and Vascular Dementia. J. Clin. Immunol. 1999, 19, 223–230. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, L.; He, P.; Li, R.; Shen, Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer’s disease and non-demented patients. J. Alzheimer’s Dis. 2010, 19, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Diez-Ruiz, A.; Tilz, G.P.; Zangerle, R.; Baier-Bitterlich, G.; Wachter, H.; Fuchs, D. Soluble receptors for tumour necrosis factor in clinical laboratory diagnosis. Eur. J. Haematol. 1995, 54, 1–8. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, J.; Qin, W.; Wang, S. Combination of plasma tumor necrosis factor receptors signaling proteins, beta-amyloid and apolipoprotein E for the detection of Alzheimer’s disease. Neurosci. Lett. 2013, 541, 99–104. [Google Scholar] [PubMed]
- Zhang, J.; Peng, M.; Jia, J. Plasma amyloid-β oligomers and soluble tumor necrosis factor receptors as potential biomarkers of AD. Curr. Alzheimer Res. 2014, 11, 325–331. [Google Scholar]
- Buchhave, P.; Zetterberg, H.; Blennow, K.; Minthon, L.; Janciauskiene, S.; Hansson, O. Soluble TNF receptors are associated with Aβ metabolism and conversion to dementia in subjects with mild cognitive impairment. Neurobiol. Aging 2010, 31, 1877–1884. [Google Scholar] [CrossRef]
- West, N.A.; Kullo, I.J.; Morris, M.C.; Mosley, T.H. Sex-specific associations of inflammation markers with cognitive decline. Exp. Gerontol. 2020, 138, 110986. [Google Scholar] [CrossRef]
- Grandy, J.K. Melatonin: Therapeutic intervention in mild cognitive impairment and Alzheimer disease. J. Neurol. Neurophysiol. 2013, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Soininen, H.; Solomon, A.; Visser, P.J.; Hendrix, S.B.; Blennow, K.; Kivipelto, M.; Hartmann, T.; Hallikainen, I.; Hallikainen, M.; Helisalmi, S. 24-month intervention with a specific multinutrient in people with prodromal Alzheimer’s disease (LipiDiDiet): A randomized, double-blind, controlled trial. Lancet Neurol. 2017, 16, 965–975. [Google Scholar] [PubMed] [Green Version]
- Chai, Y.L.; Hilal, S.; Chong, J.P.; Ng, Y.X.; Liew, O.W.; Xu, X.; Ikram, M.K.; Venketasubramanian, N.; Richards, A.M.; Lai, M.K. Growth differentiation factor-15 and white matter hyperintensities in cognitive impairment and dementia. Medicine 2016, 95, e4566. [Google Scholar]
- Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Journal of Psychiatry: Washington, DC, USA, 1994. [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Román, G.C.; Tatemichi, T.K.; Erkinjuntti, T.; Cummings, J.; Masdeu, J.; Garcia, J.; Amaducci, L.; Orgogozo, J.-M.; Brun, A.; Hofman, A. Vascular dementia: Diagnostic criteria for research studies: Report of the NINDS-AIREN International Workshop. Neurology 1993, 43, 250. [Google Scholar]
- Xu, X.; Chan, Q.L.; Hilal, S.; Ikram, M.K.; Venketasubramanian, N.; Tan, B.Y.; Dong, Y.; Chen, C.L.; Collinson, S.L. The Diagnostic Utility of the NINDS-CSN Neuropsychological Battery in Memory Clinics. Dement. Geriatr. Cogn. Dis. Extra 2016, 6, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-Y.; Kan, C.N.; Cheah, I.K.; Chong, J.R.; Xu, X.; Vrooman, H.; Hilal, S.; Venketasubramanian, N.; Chen, C.P.; Halliwell, B.; et al. Low Plasma Ergothioneine Predicts Cognitive and Functional Decline in an Elderly Cohort Attending Memory Clinics. Antioxidants 2022, 11, 1717. [Google Scholar] [PubMed]
- Chai, Y.L.; Yeo, H.K.; Wang, J.; Hilal, S.; Ikram, M.K.; Venketasubramanian, N.; Wong, B.S.; Chen, C.L. Apolipoprotein e4 is Associated with Dementia and Cognitive Impairment Predominantly Due to Alzheimer’s Disease and Not with Vascular Cognitive Impairment: A Singapore-Based Cohort. J. Alzheimer’s Dis. 2016, 51, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- Hilal, S.; Chai, Y.L.; Ikram, M.K.; Elangovan, S.; Yeow, T.B.; Xin, X.; Chong, J.Y.; Venketasubramanian, N.; Richards, A.M.; Chong, J.P.; et al. Markers of cardiac dysfunction in cognitive impairment and dementia. Medicine 2015, 94, e297. [Google Scholar] [CrossRef]
- Saridin, F.N.; Chew, K.A.; Reilhac, A.; Gyanwali, B.; Villaraza, S.G.; Tanaka, T.; Scheltens, P.; van der Flier, W.M.; Chen, C.L.H.; Hilal, S. Cerebrovascular disease in suspected non-Alzheimer’s pathophysiology and cognitive decline over time. Eur. J. Neurol. 2022, 29, 1922–1929. [Google Scholar] [CrossRef] [PubMed]
- Wahlund, L.O.; Barkhof, F.; Fazekas, F.; Bronge, L.; Augustin, M.; Sjogren, M.; Wallin, A.; Ader, H.; Leys, D.; Pantoni, L.; et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001, 32, 1318–1322. [Google Scholar]
- Gyanwali, B.; Shaik, M.A.; Venketasubramanian, N.; Chen, C.; Hilal, S. Mixed-Location Cerebral Microbleeds: An Imaging Biomarker for Cerebrovascular Pathology in Cognitive Impairment and Dementia in a Memory Clinic Population. J. Alzheimer’s Dis. 2019, 71, 1309–1320. [Google Scholar] [CrossRef]
- Convit, A.; de Asis, J.; de Leon, M.J.; Tarshish, C.Y.; De Santi, S.; Rusinek, H. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease. Neurobiol. Aging 2000, 21, 19–26. [Google Scholar] [CrossRef]
- Wu, L.Y.; Cheah, I.K.; Chong, J.R.; Chai, Y.L.; Tan, J.Y.; Hilal, S.; Vrooman, H.; Chen, C.P.; Halliwell, B.; Lai, M.K.P. Low plasma ergothioneine levels are associated with neurodegeneration and cerebrovascular disease in dementia. Free Radic. Biol. Med. 2021, 177, 201–211. [Google Scholar] [CrossRef]
- Chong, J.R.; Ashton, N.J.; Karikari, T.K.; Tanaka, T.; Saridin, F.N.; Reilhac, A.; Robins, E.G.; Nai, Y.H.; Vrooman, H.; Hilal, S.; et al. Plasma P-tau181 to Aβ42 ratio is associated with brain amyloid burden and hippocampal atrophy in an Asian cohort of Alzheimer’s disease patients with concomitant cerebrovascular disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2021, 17, 1649–1662. [Google Scholar] [CrossRef]
- Chai, Y.L.; Chong, J.R.; Raquib, A.R.; Xu, X.; Hilal, S.; Venketasubramanian, N.; Tan, B.Y.; Kumar, A.P.; Sethi, G.; Chen, C.P.; et al. Plasma osteopontin as a biomarker of Alzheimer’s disease and vascular cognitive impairment. Sci. Rep. 2021, 11, 4010. [Google Scholar] [CrossRef]
- Chua, X.Y.; Chai, Y.L.; Chew, W.S.; Chong, J.R.; Ang, H.L.; Xiang, P.; Camara, K.; Howell, A.R.; Torta, F.; Wenk, M.R.; et al. Immunomodulatory sphingosine-1-phosphates as plasma biomarkers of Alzheimer’s disease and vascular cognitive impairment. Alzheimer’s Res. Ther. 2020, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Schilling, M.; Besselmann, M.; Leonhard, C.; Mueller, M.; Ringelstein, E.B.; Kiefer, R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: A study in green fluorescent protein transgenic bone marrow chimeric mice. Exp. Neurol. 2003, 183, 25–33. [Google Scholar] [CrossRef]
- Tanaka, R.; Komine-Kobayashi, M.; Mochizuki, H.; Yamada, M.; Furuya, T.; Migita, M.; Shimada, T.; Mizuno, Y.; Urabe, T. Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 2003, 117, 531–539. [Google Scholar] [CrossRef]
- Dri, P.; Gasparini, C.; Menegazzi, R.; Cramer, R.; Albéri, L.; Presani, G.; Garbisa, S.; Patriarca, P. TNF-induced shedding of TNF receptors in human polymorphonuclear leukocytes: Role of the 55-kDa TNF receptor and involvement of a membrane-bound and non-matrix metalloproteinase. J. Immunol. 2000, 165, 2165–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Works, M.G.; Koenig, J.B.; Sapolsky, R.M. Soluble TNF receptor 1-secreting ex vivo-derived dendritic cells reduce injury after stroke. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2013, 33, 1376–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, P.; Lawrence, A.J.; Lambert, C.; Patel, B.; Chung, A.W.; MacKinnon, A.D.; Morris, R.G.; Barrick, T.R.; Markus, H.S. Strategic lacunes and their relationship to cognitive impairment in cerebral small vessel disease. NeuroImag. Clin. 2014, 4, 828–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyanwali, B.; Lui, B.; Tan, C.S.; Chong, E.J.Y.; Vrooman, H.; Chen, C.; Hilal, S. Cerebral Microbleeds and White Matter Hyperintensities are Associated with Cognitive Decline in an Asian Memory Clinic Study. Curr. Alzheimer Res. 2021, 18, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Alagiakrishnan, K.; McCracken, P.; Feldman, H. Treating vascular risk factors and maintaining vascular health: Is this the way towards successful cognitive ageing and preventing cognitive decline? Postgrad Med. J. 2006, 82, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Hosoki, S.; Tanaka, T.; Ihara, M. Diagnostic and prognostic blood biomarkers in vascular dementia: From the viewpoint of ischemic stroke. Neurochem. Int. 2021, 146, 105015. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.T.; Ozturk, T.; Kollhoff, A.; Wharton, W.; Christina Howell, J.; Weiner, M.; Aisen, P.; Petersen, R.; Jack, C.R.; Jagust, W.; et al. Higher CSF sTNFR1-related proteins associate with better prognosis in very early ‘Alzheimer’s disease. Nat. Commun. 2021, 12, 4001. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Peng, F.; Initiative, A.s.D.N. CSF TNF α levels were associated with conversion from mild cognitive impairment to dementia. PLoS ONE 2022, 17, e0274503. [Google Scholar] [CrossRef]
- D’Elia, L.F.; Satz, P.; Uchiyama, C.L.; White, T. Color Trails Test; PAR: Odessa, FL, USA, 1996; Available online: https://www.parinc.com/Products/Pkey/77 (accessed on 9 March 2023).
- Wechsler, D. Subtest Administration and Scoring. WAIS–IV: Administration and Scoring Manual; The Psychological Corporation: San Antonio, TX, USA, 2009; pp. 87–93. [Google Scholar]
- Mack, W.J.; Freed, D.M.; Williams, B.W.; Henderson, V.W. Boston Naming Test: Shortened versions for use in Alzheimer’s disease. J. Gerontol. 1992, 47, P154–P158. [Google Scholar] [CrossRef] [PubMed]
- Meyers, J. Meyers Scoring System for the Rey Complex Figure Test and the Recognition Trial; Psychological Assessment Resources: Odessa, FL, USA, 1994; Available online: https://www.parinc.com/Products/Pkey/355 (accessed on 9 March 2023).
- Smith, A. Symbol Digit Modalities Test; Western Psychological Services: Los Angeles, CA, USA, 1973; Available online: https://www.wpspublish.com/sdmt-symbol-digit-modalities-test (accessed on 9 March 2023).
- Brandt, J. The Hopkins Verbal Learning Test: Development of a new memory test with six equivalent forms. Clin. Neuropsychol. 1991, 5, 125–142. [Google Scholar] [CrossRef]
Characteristics | NCI (n = 93) | CIND (n = 103) | p-Value |
---|---|---|---|
Age, mean (SD) | 68.9 (6.4) | 74.1 (6.9) | <0.001 * |
Female, n (%) | 54 (58.1) | 49 (47.6) | 0.142 |
Years of education, mean (SD) | 9.7 (4.7) | 7.9 (4.4) | 0.006 * |
APOE4 carrier, n (%) | 22 (23.7) | 27 (26.2) | 0.680 |
Hypertension, n (%) | 53 (57.0) | 69 (67.0) | 0.149 |
Diabetes mellitus, n (%) | 20 (21.5) | 33 (32.0) | 0.097 |
Cardiovascular disease, n (%) | 5 (5.4) | 14 (13.6) | 0.052 |
Hyperlipidemia, n (%) | 66 (71.0) | 80 (77.7) | 0.282 |
sTNF-R1, median (IQR), pg/mL | 1126.5 (381.3) | 1236.5 (587.4) | <0.001 * |
sTNF-R1 (Tertiles) | WMH (ARWMC) MD (95% CI) | Number of Lacunes RR (95% CI) | Number of CMBs RR (95% CI) |
---|---|---|---|
Model I | |||
Lowest | 0 | 1 | 1 |
Middle | 0.34 (−0.90, 1.59) | 1.68 (0.79, 3.58) | 1.59 (1.00, 2.53) |
p = 0.590 | p = 0.182 | p = 0.051 | |
Highest | 1.43 (0.20, 2.65) | 4.16 (2.15, 8.04) | 2.02 (1.29, 3.16) |
p = 0.022 * | p < 0.001 * | p = 0.002 * | |
Model II | |||
Lowest | 0 | 1 | 1 |
Middle | −0.21 (−1.43, 1.02) | 2.08 (0.95, 4.56) | 1.56 (0.91, 2.68) |
p = 0.738 | p = 0.068 | p = 0.110 | |
Highest | 0.18 (−1.22, 1.58) | 6.91 (3.19, 14.96) | 1.73 (0.97, 3.08) |
p = 0.800 | p < 0.001 * | p = 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salai, K.H.T.; Wu, L.-Y.; Chong, J.R.; Chai, Y.L.; Gyanwali, B.; Robert, C.; Hilal, S.; Venketasubramanian, N.; Dawe, G.S.; Chen, C.P.; et al. Elevated Soluble TNF-Receptor 1 in the Serum of Predementia Subjects with Cerebral Small Vessel Disease. Biomolecules 2023, 13, 525. https://doi.org/10.3390/biom13030525
Salai KHT, Wu L-Y, Chong JR, Chai YL, Gyanwali B, Robert C, Hilal S, Venketasubramanian N, Dawe GS, Chen CP, et al. Elevated Soluble TNF-Receptor 1 in the Serum of Predementia Subjects with Cerebral Small Vessel Disease. Biomolecules. 2023; 13(3):525. https://doi.org/10.3390/biom13030525
Chicago/Turabian StyleSalai, Kaung H. T., Liu-Yun Wu, Joyce R. Chong, Yuek Ling Chai, Bibek Gyanwali, Caroline Robert, Saima Hilal, Narayanaswamy Venketasubramanian, Gavin S. Dawe, Christopher P. Chen, and et al. 2023. "Elevated Soluble TNF-Receptor 1 in the Serum of Predementia Subjects with Cerebral Small Vessel Disease" Biomolecules 13, no. 3: 525. https://doi.org/10.3390/biom13030525
APA StyleSalai, K. H. T., Wu, L. -Y., Chong, J. R., Chai, Y. L., Gyanwali, B., Robert, C., Hilal, S., Venketasubramanian, N., Dawe, G. S., Chen, C. P., & Lai, M. K. P. (2023). Elevated Soluble TNF-Receptor 1 in the Serum of Predementia Subjects with Cerebral Small Vessel Disease. Biomolecules, 13(3), 525. https://doi.org/10.3390/biom13030525