Molecular Influence of the ATM Protein in the Treatment of Human Cells with Different Radioprotective Drugs: Comparisons between Antioxidative and Pro-Episkevic Strategies
Abstract
:1. Introduction
- -
- High-intensity warfare has recently emerged as a reality in Europe: Old cold war challenges are currently largely under review, among which the place of radioprotector countermeasures should usefully be revisited. Military operations under radiological/nuclear threat (even limited to tactical level) could result in numerous cases of acute radiation syndrome. Targeting fallout may be more realistic and could offer opportunities for innovative radioprotectors use. As an example, nuclear power plant security during military operations has been a concern for some years in NATO strategy, and recent operations in Ukraine (Tchernobyl area and Zaporizhia power plant) clearly illustrate some of these various scenarios. In such context, maintaining the freedom of action of forces may result in deliberate or accidental limited irradiation of soldiers up to 750 mGy [8].
- -
- Space radiation represents the most hazardous factor of space exploration [9]. For the astronauts in their spacecraft, exposure to space radiation can be summarized as a continuous low dose rate of X- and gamma-rays (the “bath of radiation”) and a flux of low-energy particles emitted from the metallic shielding [9]. Hence, specific radiation protection countermeasures are needed to protect astronauts.
- -
- Radioprotective agents are useful in the medical context, notably in anticancer radiotherapy (RT) to specifically protect healthy tissues surrounding the tumor [2,3,10,11]. There has been a plethora of RT trials involving radioprotectors, generally sulfhydryl compounds and other antioxidants. Analogs of cysteine, notably cysteamine, and glutathione were applied to irradiated animals and then cancer patients; the development of new thiol-containing agents was a major axis of research in this field [12,13,14,15,16]. More than 4000 candidate compounds were tested in the Walter Reed Army Research Center (USA) [7]. Among them, WR2721 (ethyol and amifostine) appeared to be the most efficient radioprotective drug in RT. Amifostine was notably shown to reduce IR-induced esophagitis, mucositis, lung inflammation and cisplatin-related nephrotoxicity. Despite some side effects, the application of amifostine during RT generally permits to achieve high rates of complete response [17,18,19,20,21,22,23]. Since 1999, the use of amifostine in RT is permitted by the US Federal Drug Agency agreement to reduce xerostomia in patients undergoing postoperative RT for head and neck cancer [21].
2. Materials and Methods
2.1. Cell Lines
2.2. Radioprotective Drugs
2.3. X-ray Irradiations
2.4. Immunofluorescence
2.5. Statistical Analysis
3. Results
3.1. Radioprotective Effect of the Antioxidative N-Acetylcysteine (NAC)
3.2. Radioprotective Effect of the Antioxidative Amifostine (Ethyol)
3.3. Radioprotective Effect of the Pro-Episkevic Drugs Zoledronate and Pravastatin
3.4. Influence of the ATM Protein in the Antioxidative and Pro-Episkevic Approaches
3.5. Review of the Radioprotective Action of the Pro-Episkevic ZOPRA Combinations
4. Discussion
4.1. Documented Evidence That NAC and Amifostine May Act as Radioprotectors
4.2. Documented Evidence That Statins and Bisphosphonates May Act as Radioprotectors
4.3. Toward a Unified Model for Chemical Radioprotection?
- -
- DSB and ATM monomers induction: Immediately after irradiation, cytoplasmic ATM dimers dissociate in ATM monomers in a linearly dose-dependent manner; in parallel, in the nucleus, the RI DNA damage, and notably, the RI DSB, are induced in a dose-dependent manner as well [38]. During this step, the antioxidative approach leads to reduce the ROS in both cytoplasm and nucleus. Hence, the antioxidative approach would result in the decrease in the number of both RI-induced ATM monomers and DSB. This action should equally affect the DSB recognized by NHEJ and those recognized by any other pathways or even DSB that are not recognized at all. As a result, the number of early γH2AX foci decreases [31,32,33,40,41,48,49,50]. In the case of normal-RIANS quiescent cells, all the DSB are recognized by NHEJ: the number of γH2AX foci corresponds to the DSB physically induced by IR. Hence, the radioprotective effect of any antioxidative drug can be easily quantified on radioresistant controls. Conversely, in the case of delayed-RIANS quiescent cells, the difference between the number of DSB physically induced (about 40 per Gy) and the number of DSB recognized by NHEJ reflected by the γH2AX foci corresponds to the number of the DSB non-recognized by NHEJ or recognized by other pathways than NHEJ. At this step, the pro-episkevic drugs may not significantly impact the process.
- -
- ATM monomers diffusion and DSB recognition: The RI ATM monomers diffuse in the nucleus. The pro-episkevic approach may result in accelerating and facilitating the diffusion of ATM monomers in the nucleus. Consequently, the number of pATM monomers that diffuse in the nucleus increases [31,32,33,40,41,48,49,50]. In the normal-RIANS quiescent cells, the number of ATM monomers available is sufficient to recognize all the DSB physically induced: no effect is observed. Conversely, in the delayed-RIANS quiescent cells, a larger number of ATM monomers contributes to recognize some additional DSB that are not recognized at all or that are recognized by other pathways than NHEJ. Hence, the number of γH2AX foci increases [31,32,33,40,41,48,49,50].
- -
- DSB repair: In the case of the normal-RIANS quiescent cells, the pro-episkevic approach has no significant effect, while the antioxidative approach that leads to decrease the number of DSB does not reduce the proportion of unrepairable DSB. In the case of delayed-RIANS quiescent cells, the pro-episkevic approach contributes to increase the subset of DSB repaired by NHEJ, which decreases the RI lethal effect, while the antioxidative approach is not efficient enough to make the unrepaired DSB disappear.
5. Conclusions
- -
- The radiation protection strategy has long been based on an antioxidative approach consisting in reducing the oxidization process of the RI water radiolysis through an efficient reduction in ROS:
- ⚬
- The number of DSB induced by IR decreases significantly;
- ⚬
- Our findings confirm the efficiency of amifostine as one of the most efficient antioxidative drugs.
- -
- The pro-episkevic approach, directly deriving from the RIANS model, aims at stimulating repair and contributes to increase the number of DSB managed by NHEJ—the most predominant DSB repair and signaling pathway in mammalians:
- ⚬
- The combination of pravastatin and zoledronate (ZOPRA) shows a significant pro-episkevic property that appears to be more efficient than amifostine;
- ⚬
- In the case of genetic syndromes associated with the loss of function of some genes essential for DSB repair, the effect of ZOPRA appears to be limited.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foray, N.; Bourguignon, M.; Hamada, N. Individual response to ionizing radiation. Mutat. Res. Rev. 2016, 770, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.F.; Landauer, M.R. History and development of radiation-protective agents. Int. J. Radiat. Biol. 2009, 85, 539–573. [Google Scholar] [CrossRef] [PubMed]
- Citrin, D.; Cotrim, A.P.; Hyodo, F.; Baum, B.J.; Krishna, M.C.; Mitchell, J.B. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 2010, 15, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Mönig, H.; Messerschmidt, O.; Streffer, C. Chemical radioprotection in mammals and in man. In Radiation Exposure and Occupational Risks; Scherer, E., Streffer, C., Trott, K.R., Eds.; Springer: Berlin, Germany, 1990; pp. 97–143. [Google Scholar]
- Lacassagne, A. Chute de la sensiblité aux rayons X chez la souris nouveau-née en état d’asphyxie. C. R. L’académie Des. Sci. 1942, 616, 231–232. [Google Scholar]
- Akerfeldt, S. Preparation and determination of sodium hydrogen S-(2-aminoethyl)-phosphorothioate. Acta Chem. Scand. 1959, 13, 1479–1480. [Google Scholar] [CrossRef]
- Sweeney, T.R. A Survey of Compounds from the Antiradiation Drug Development Program of the US Army Medical Research and Development Command; Walter Reed Army Institute of Research: Washington, DC, USA, 1979. [Google Scholar]
- Walker, R.I. Requirements of radioprotectors for military and emergency needs. Pharmacol. Ther. 1988, 39, 13–20. [Google Scholar] [CrossRef]
- Restier-Verlet, J.; El-Nachef, L.; Ferlazzo, M.L.; Al-Choboq, J.; Granzotto, A.; Bouchet, A.; Foray, N. Radiation on Earth or in Space: What Does It Change? Int. J. Mol. Sci. 2021, 22, 3739. [Google Scholar] [CrossRef]
- Nair, C.K.; Parida, D.K.; Nomura, T. Radioprotectors in radiotherapy. J. Radiat. Res. 2001, 42, 21–37. [Google Scholar] [CrossRef]
- Weiss, J.F. Pharmacologic approaches to protection against radiation-induced lethality and other damage. Environ. Health Perspect. 1997, 105 (Suppl. 6), 1473–1478. [Google Scholar] [CrossRef]
- Vachon, A.; Roman, V.; Lecomte, C.; Folcher, G.; Fatome, M.; Braquet, P.; Berleur, F. A radioprotector: Cysteamine, inhibits oxygen transport in lipidic membranes. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1987, 52, 847–852. [Google Scholar] [CrossRef]
- Deschavanne, P.J.; Midander, J.; Debieu, D.; Malaise, E.P.; Revesz, L. Radioprotective effect of cysteamine in glutathione synthetase-deficient cells. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1986, 49, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Lespinasse, F.; Oiry, J.; Fatome, M.; Ardouin, P.; Imbach, J.; Malaise, E.P.; Guichard, M. Radioprotection of EMT6 tumor by a new class of radioprotectors based on a pseudo-peptide cysteamine combination. Int. J. Radiat. Oncol. Biol. Phys. 1985, 11, 1035–1038. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 2018, 217, 2291–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadhav, G.K.; Bhanumathi, P.; Devi, P.U.; Seetharamaiah, T.; Vidyasagar, M.S.; Rao, K.K.; Hospet, C.S.; Solomon, J.G. Possible role of glutathione in predicting radiotherapy response of cervix cancer. Int. J. Radiat. Oncol. Biol. Phys. 1998, 41, 3–5. [Google Scholar] [CrossRef]
- Utley, J.F.; Phillips, T.L.; Kane, L.J. Protection of normal tissues by WR2721 during fractionated irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1976, 1, 699–703. [Google Scholar] [CrossRef]
- Wadler, S.; Haynes, H.; Beitler, J.J.; Goldberg, G.; Holland, J.F.; Hochster, H.; Bruckner, H.; Mandeli, J.; Smith, H.; Runowicz, C. Management of hypocalcemic effects of WR2721 administered on a daily times five schedule with cisplatin and radiation therapy. The New York Gynecologic Oncology Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1993, 11, 1517–1522. [Google Scholar] [CrossRef]
- Treskes, M.; Boven, E.; van de Loosdrecht, A.A.; Wijffels, J.F.; Cloos, J.; Peters, G.J.; Pinedo, H.M.; van der Vijgh, W.J. Effects of the modulating agent WR2721 on myelotoxicity and antitumour activity in carboplatin-treated mice. Eur. J. Cancer 1994, 30, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Wynn, R.B.; Mehta, V. Reduction of treatment breaks and radiation-induced esophagitis and pneumonitis using amifostine in unresectable non-small cell lung cancer patients receiving definitive concurrent chemotherapy and radiation therapy: A prospective community-based clinical trial. Semin. Oncol. 2005, 32, S99–S104. [Google Scholar] [CrossRef]
- King, M.; Joseph, S.; Albert, A.; Thomas, T.V.; Nittala, M.R.; Woods, W.C.; Vijayakumar, S.; Packianathan, S. Use of Amifostine for Cytoprotection during Radiation Therapy: A Review. Oncology 2020, 98, 61–80. [Google Scholar] [CrossRef]
- Seed, T.M.; Inal, C.E.; Singh, V.K. Radioprotection of hematopoietic progenitors by low dose amifostine prophylaxis. Int. J. Radiat. Biol. 2014, 90, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Seed, T.M. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin. Drug Saf. 2019, 18, 1077–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirel, C.; Kilciksiz, S.; Ay, O.I.; Gurgul, S.; Ay, M.E.; Erdal, N. Effect of N-acetylcysteine on radiation-induced genotoxicity and cytotoxicity in rat bone marrow. J. Radiat. Res. 2009, 50, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuni, Y.; Goldstein, S.; Dean, O.M.; Berk, M. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta 2013, 1830, 4117–4129. [Google Scholar] [CrossRef]
- Barlaz Us, S.; Vezir, O.; Yildirim, M.; Bayrak, G.; Yalin, S.; Balli, E.; Yalin, A.E.; Comelekoglu, U. Protective effect of N-acetyl cysteine against radiotherapy-induced cardiac damage. Int. J. Radiat. Biol. 2020, 96, 661–670. [Google Scholar] [CrossRef]
- Maasilta, P.; Holsti, L.R.; Blomqvist, P.; Kivisaari, L.; Mattson, K. N-acetylcysteine in combination with radiotherapy in the treatment of non-small cell lung cancer: A feasibility study. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 1992, 25, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Kryston, T.B.; Georgiev, A.B.; Pissis, P.; Georgakilas, A.G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 2011, 711, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Kurashige, T.; Shimamura, M.; Nagayama, Y. N-Acetyl-L-cysteine protects thyroid cells against DNA damage induced by external and internal irradiation. Radiat. Environ. Biophys. 2017, 56, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Ferlazzo, M. Impact of the Nucleoshuttling of the ATM Protein in Response to Ionizing Radiation: Notions of Pro- and Anti-Episkevic Features. PhD Thesis, University of Lyon, Lyon, France, 2017. [Google Scholar]
- Combemale, P.; Sonzogni, L.; Devic, C.; Bencokova, Z.; Ferlazzo, M.L.; Granzotto, A.; Burlet, S.F.; Pinson, S.; Amini-Adle, M.; Al-Choboq, J.; et al. Individual Response to Radiation of Individuals with Neurofibromatosis Type I: Role of the ATM Protein and Influence of Statins and Bisphosphonates. Mol. Neurobiol. 2022, 59, 556–573. [Google Scholar] [CrossRef] [PubMed]
- Ferlazzo, M.L.; Bach-Tobdji, M.K.E.; Djerad, A.; Sonzogni, L.; Burlet, S.F.; Devic, C.; Granzotto, A.; Bodgi, L.; Djeffal-Kerrar, A.; Foray, N. Radiobiological characterization of tuberous sclerosis: A delay in the nucleo-shuttling of ATM may be responsible for radiosensitivity. Mol. Neurobiol. 2017, 55, 4973–4983. [Google Scholar] [CrossRef]
- Bachelet, J.T.; Granzotto, A.; Ferlazzo, M.; Sonzogni, L.; Berthel, E.; Devic, C.; Foray, N. First radiobiological characterization of the McCune-Albright syndrome: Influence of the ATM protein and effect of statins + bisphosphonates treatment. Int. J. Radiat. Biol. 2021, 97, 317–328. [Google Scholar] [CrossRef]
- Berthel, E.; Foray, N.; Ferlazzo, M.L. The Nucleoshuttling of the ATM Protein: A Unified Model to Describe the Individual Response to High- and Low-Dose of Radiation? Cancers 2019, 11, 905. [Google Scholar] [CrossRef] [Green Version]
- Georgoulis, A.; Vorgias, C.E.; Chrousos, G.P.; Rogakou, E.P. Genome Instability and gammaH2AX. Int. J. Mol. Sci. 2017, 18, 1979. [Google Scholar] [CrossRef]
- Berthel, E.; Ferlazzo, M.C.D.; Bourguignon, M.; Foray, N. What does the History of Research on the Repair of DNA Double-Strand Breaks Tell Us?—A Comprehensive Review of Human Radiosensitivity. Int. J. Mol. Sci. 2019, 20, 5339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothkamm, K.; Lobrich, M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl. Acad. Sci. USA 2003, 100, 5057–5062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodgi, L.; Foray, N. The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: Resolution of the linear-quadratic model. Int. J. Radiat. Biol. 2016, 92, 117–131. [Google Scholar] [CrossRef]
- Granzotto, A.; Benadjaoud, M.A.; Vogin, G.; Devic, C.; Ferlazzo, M.L.; Bodgi, L.; Pereira, S.; Sonzogni, L.; Forcheron, F.; Viau, M.; et al. Influence of Nucleoshuttling of the ATM Protein in the Healthy Tissues Response to Radiation Therapy: Toward a Molecular Classification of Human Radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Ferlazzo, M.L.; Sonzogni, L.; Granzotto, A.; Bodgi, L.; Lartin, O.; Devic, C.; Vogin, G.; Pereira, S.; Foray, N. Mutations of the Huntington’s Disease Protein Impact on the ATM-Dependent Signaling and Repair Pathways of the Radiation-Induced DNA Double-Strand Breaks: Corrective Effect of Statins and Bisphosphonates. Mol. Neurobiol. 2014, 49, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Al-Choboq, J.; Ferlazzo, M.L.; Sonzogni, L.; Granzotto, A.; El-Nachef, L.; Maalouf, M.; Berthel, E.; Foray, N. Usher Syndrome Belongs to the Genetic Diseases Associated with Radiosensitivity: Influence of the ATM Protein Kinase. Int. J. Mol. Sci. 2022, 23, 1570. [Google Scholar] [CrossRef]
- Le Reun, E.; Bodgi, L.; Granzotto, A.; Sonzogni, L.; Ferlazzo, M.L.; Al-Choboq, J.; El-Nachef, L.; Restier-Verlet, J.; Berthel, E.; Devic, C.; et al. Quantitative correlations between radiosensitivity biomarkers show that the ATM protein kinase is strongly involved in the radiotoxicities observed after radiotherapy. Int. J. Mol. Sci. 2022, 23, 10434. [Google Scholar] [CrossRef]
- Joubert, A.; Zimmerman, K.M.; Bencokova, Z.; Gastaldo, J.; Rénier, W.; Chavaudra, N.; Favaudon, V.; Arlett, C.; Foray, N. DNA double-strand break repair defects in syndromes associated with acute radiation response: At least two different assays to predict intrinsic radiosensitivity? Int. J. Radiat. Biol. 2008, 84, 107–125. [Google Scholar] [CrossRef]
- Foray, N.; Fertil, B.; Alsbeih, M.G.; Badie, C.; Chavaudra, N.; Iliakis, G.; Malaise, E.P. Dose-rate effect on radiation-induced DNA double-strand breaks in the human fibroblast HF19 cell line. Int. J. Radiat. Biol. 1996, 69, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Foray, N.; Priestley, A.; Alsbeih, G.; Badie, C.; Capulas, E.P.; Arlett, C.F.; Malaise, E.P. Hypersensitivity of ataxia telangiectasia fibroblasts to ionizing radiation is associated with a repair deficiency of DNA double-strand breaks. Int. J. Radiat. Biol. 1997, 72, 271–283. [Google Scholar] [PubMed]
- Varela, I.; Pereira, S.; Ugalde, A.P.; Navarro, C.L.; Suarez, M.F.; Cau, P.; Cadinanos, J.; Osorio, F.G.; Foray, N.; Cobo, J.; et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat. Med. 2008, 14, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Foray, N.; Marot, D.; Gabriel, A.; Randrianarison, V.; Carr, A.M.; Perricaudet, M.; Ashworth, A.; Jeggo, P. A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J. 2003, 22, 2860–2871. [Google Scholar] [CrossRef] [Green Version]
- Ferlazzo, M.; Berthel, E.; Granzotto, A.; Devic, C.; Sonzogni, L.; Bachelet, J.T.; Pereira, S.; Bourguignon, M.; Sarasin, A.; Mezzina, M.; et al. Some mutations in the xeroderma pigmentosum D gene may lead to moderate but significant radiosensitivity associated with a delayed radiation-induced ATM nuclear localization. Int. J. Radiat. Biol. 2019, 96, 394–410. [Google Scholar] [CrossRef]
- Bachelet, J.T.A.G.; Ferlazzo, M.; Sonzogni, L.; Berthel, E.C.D.; Foray, N. First Radiobiological Characterization of Skin and Bone Cells from A Patient Suffering from the PI3KCA-Related Overgrowth Spectrum (PROS) Syndrome. Arch. Med. Clin. Case Rep. 2020, 4, 1052–1066. [Google Scholar] [CrossRef]
- Moulay Lakhdar, I.; Ferlazzo, M.L.; Al Choboq, J.; Berthel, E.; Sonzogni, L.; Devic, C.; Granzotto, A.; Thariat, J.; Foray, N. Fibroblasts from Retinoblastoma Patients Show Radiosensitivity Linked to Abnormal Localization of the ATM Protein. Curr. Eye Res. 2020, 46, 546–557. [Google Scholar] [CrossRef]
- Badie, C.; Goodhardt, M.; Waugh, A.; Doyen, N.; Foray, N.; Calsou, P.; Singleton, B.; Gell, D.; Salles, B.; Jeggo, P.; et al. A DNA double-strand break defective fibroblast cell line (180BR) derived from a radiosensitive patient represents a new mutant phenotype. Cancer Res. 1997, 57, 4600–4607. [Google Scholar]
- McKinnon, P.J. Ataxia-telangiectasia: An inherited disorder of ionizing-radiation sensitivity in man. Progress in the elucidation of the underlying biochemical defect. Hum. Genet. 1987, 75, 197–208. [Google Scholar] [CrossRef]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghu, G.; Berk, M.; Campochiaro, P.A.; Jaeschke, H.; Marenzi, G.; Richeldi, L.; Wen, F.Q.; Nicoletti, F.; Calverley, P.M.A. The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disorders Characterized by Oxidative Stress. Curr. Neuropharmacol. 2021, 19, 1202–1224. [Google Scholar] [CrossRef]
- Tenorio, M.; Graciliano, N.G.; Moura, F.A.; Oliveira, A.C.M.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Verhey, L.J.; Sedlacek, R. Determination of the radioprotective effects of topical applications of MEA, WR-2721, and N-acetylcysteine on murine skin. Radiat. Res. 1983, 93, 175–183. [Google Scholar] [CrossRef]
- Kataoka, Y.; Murley, J.S.; Baker, K.L.; Grdina, D.J. Relationship between phosphorylated histone H2AX formation and cell survival in human microvascular endothelial cells (HMEC) as a function of ionizing radiation exposure in the presence or absence of thiol-containing drugs. Radiat. Res. 2007, 168, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedre, B.; Barayeu, U.; Ezerina, D.; Dick, T.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacol. Ther. 2021, 228, 107916. [Google Scholar] [CrossRef]
- Whillier, S.; Raftos, J.E.; Chapman, B.; Kuchel, P.W. Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 2009, 14, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Glover, D.; Riley, L.; Carmichael, K.; Spar, B.; Glick, J.; Kligerman, M.M.; Agus, Z.S.; Slatopolsky, E.; Attie, M.; Goldfarb, S. Hypocalcemia and inhibition of parathyroid hormone secretion after administration of WR-2721 (a radioprotective and chemoprotective agent). N. Engl. J. Med. 1983, 309, 1137–1141. [Google Scholar] [CrossRef]
- Akbulut, S.; Elbe, H.; Eris, C.; Dogan, Z.; Toprak, G.; Otan, E.; Erdemli, E.; Turkoz, Y. Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats. World J. Gastroenterol. 2014, 20, 10158–10165. [Google Scholar] [CrossRef]
- Onalan, G.; Gulumser, C.; Mulayim, B.; Dagdeviren, A.; Zeyneloglu, H. Effects of amifostine on endometriosis, comparison with N-acetyl cysteine, and leuprolide as a new treatment alternative: A randomized controlled trial. Arch. Gynecol. Obstet. 2014, 289, 193–200. [Google Scholar] [CrossRef]
- Murray, D.; Prager, A.; Milas, L. Radioprotection of cultured mammalian cells by the aminothiols WR-1065 and WR-255591: Correlation between protection against DNA double-strand breaks and cell killing after gamma radiation. Radiat. Res. 1989, 120, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Haydont, V.; Bourgier, C.; Pocard, M.; Lusinchi, A.; Aigueperse, J.; Mathe, D.; Bourhis, J.; Vozenin-Brotons, M.C. Pravastatin Inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2007, 13, 5331–5340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramanian, R.; Maideen, N.M.P. HMG-CoA Reductase Inhibitors (Statins) and their Drug Interactions Involving CYP Enzymes, P-glycoprotein and OATP Transporters-An Overview. Curr. Drug Metab. 2021, 22, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, V.; Henninger, C.; Simiantonakis, I.; Buchholzer, M.; Ahmadian, M.R.; Budach, W.; Fritz, G. Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation. Cell Death Dis. 2017, 8, e2978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efimova, E.V.; Ricco, N.; Labay, E.; Mauceri, H.J.; Flor, A.C.; Ramamurthy, A.; Sutton, H.G.; Weichselbaum, R.R.; Kron, S.J. HMG-CoA Reductase Inhibition Delays DNA Repair and Promotes Senescence After Tumor Irradiation. Mol. Cancer Ther. 2018, 17, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Sehitoglu, I.; Tumkaya, L.; Bedir, R.; Kalkan, Y.; Cure, M.C.; Yucel, A.F.; Zorba, O.U.; Yuce, S.; Cure, E. Zoledronic acid aggravates kidney damage during ischemia reperfusion injury in rat. J. Environ. Pathol. Toxicol. Oncol. 2015, 34, 53–61. [Google Scholar] [CrossRef]
- Mirrakhimov, A.E. Hypercalcemia of Malignancy: An Update on Pathogenesis and Management. N. Am. J. Med. Sci. 2015, 7, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Pan, B.; Jia, D.; Yu, Y. Long-term safety and efficacy of bisphosphonate therapy in advanced lung cancer with bone metastasis. Future Oncol. 2022, 18, 2257–2267. [Google Scholar] [CrossRef]
- Srivichit, B.; Thonusin, C.; Chattipakorn, N.; Chattipakorn, S.C. Impacts of bisphosphonates on the bone and its surrounding tissues: Mechanistic insights into medication-related osteonecrosis of the jaw. Arch. Toxicol. 2022, 96, 1227–1255. [Google Scholar] [CrossRef]
- Zaborowska, M.; Broniatowski, M.; Wydro, P.; Matyszewska, D.; Bilewicz, R. Structural modifications of lipid membranes exposed to statins—Langmuir monolayer and PM-IRRAS study. J. Mol. Lipids 2020, 313, 113570. [Google Scholar] [CrossRef]
- Bootman, M.D.; Fearnley, C.; Smyrnias, I.; MacDonald, F.; Roderick, H.L. An update on nuclear calcium signalling. J. Cell Sci. 2009, 122, 2337–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodgi, L.; Canet, A.; Pujo-Menjouet, L.; Lesne, A.; Victor, J.M.; Foray, N. Mathematical models of radiation action on living cells: From the target theory to the modern approaches. A historical and critical review. J. Theor. Biol. 2016, 394, 93–101. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restier-Verlet, J.; Drouet, M.; Pras, P.; Ferlazzo, M.L.; Granzotto, A.; Sonzogni, L.; Al-Choboq, J.; El Nachef, L.; François, S.; Bourguignon, M.; et al. Molecular Influence of the ATM Protein in the Treatment of Human Cells with Different Radioprotective Drugs: Comparisons between Antioxidative and Pro-Episkevic Strategies. Biomolecules 2023, 13, 524. https://doi.org/10.3390/biom13030524
Restier-Verlet J, Drouet M, Pras P, Ferlazzo ML, Granzotto A, Sonzogni L, Al-Choboq J, El Nachef L, François S, Bourguignon M, et al. Molecular Influence of the ATM Protein in the Treatment of Human Cells with Different Radioprotective Drugs: Comparisons between Antioxidative and Pro-Episkevic Strategies. Biomolecules. 2023; 13(3):524. https://doi.org/10.3390/biom13030524
Chicago/Turabian StyleRestier-Verlet, Juliette, Michel Drouet, Pauline Pras, Mélanie L. Ferlazzo, Adeline Granzotto, Laurène Sonzogni, Joëlle Al-Choboq, Laura El Nachef, Sabine François, Michel Bourguignon, and et al. 2023. "Molecular Influence of the ATM Protein in the Treatment of Human Cells with Different Radioprotective Drugs: Comparisons between Antioxidative and Pro-Episkevic Strategies" Biomolecules 13, no. 3: 524. https://doi.org/10.3390/biom13030524
APA StyleRestier-Verlet, J., Drouet, M., Pras, P., Ferlazzo, M. L., Granzotto, A., Sonzogni, L., Al-Choboq, J., El Nachef, L., François, S., Bourguignon, M., & Foray, N. (2023). Molecular Influence of the ATM Protein in the Treatment of Human Cells with Different Radioprotective Drugs: Comparisons between Antioxidative and Pro-Episkevic Strategies. Biomolecules, 13(3), 524. https://doi.org/10.3390/biom13030524