The Anti-Cancer Activity of Pentamidine and Its Derivatives (WLC-4059) Is through Blocking the Interaction between S100A1 and RAGE V Domain
Abstract
:1. Introduction
2. Methods
2.1. S100A1 Expression and Purification
2.2. 2D NMR Experiments
2.3. Biomolecular Docking (HADDOCK)
2.4. WST-1 Cell Proliferation Assay
3. Results and Discussion
3.1. Synthesis of Pentamidine Analog (WLC-4059)
3.2. Chemical Synthesis of 4,4′-((1,2-Phenylenebis(methylene))bis(oxy))dibenzonitrile (3)
3.3. Chemical Synthesis of 4,4′-((1,2-Phenylenebis(methylene))bis(oxy))dibenzimidamide (WLC-4059)
3.4. Mapping mS100A1 and RAGE V Domain Binding Interface
3.5. Complex Formation of S100A1 with the Small Molecule Pentamidine and the Pentamidine Derivative (WLC-4059)
3.6. Kd Calculation Using Fluorescence
3.7. Functional Assay
3.8. WST-1 Assay for Cytotoxicity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gebe, J.A.; Kiener, P.A.; Ring, H.Z.; Li, X.; Francke, U.; Aruffo, A. Molecular Cloning, Mapping to Human Chromosome 1 Q21-Q23, and Cell Binding Characteristics of Spalpha, a New Member of the Scavenger Receptor Cysteine-Rich (SRCR) Family of Proteins. J. Biol. Chem. 1997, 272, 6151–6158. [Google Scholar] [CrossRef] [Green Version]
- Donato, R. Functional Roles of S100 Proteins, Calcium-Binding Proteins of the EF-Hand Type. Biochim. Biophys. Acta-Mol. Cell Res. 1999, 1450, 191–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-J.; Wang, M. The S100 Protein Family and Its Application in Cardiac Diseases. World J. Emerg. Med. 2010, 1, 165–168. [Google Scholar] [PubMed]
- Cannon, B.R.; Zimmer, D.B.; Weber, D.J. S100A1 (S100 Calcium Binding Protein A1). Atlas Genet. Cytogenet. Oncol. Haematol. 2011, 15, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Maco, B.; Mandinova, A.; Duerrenberger, M.; Schäfer, B.; Uhrík, B.; Heizmann, C. Ultrastructural Distribution of the S100A1 Ca2+-Binding Protein in the Human Heart. Physiol. Res. 2001, 50, 567–574. [Google Scholar]
- Jurewicz, E.; Filipek, A. Ca2+- Binding Proteins of the S100 Family in Preeclampsia. Placenta 2022, 127, 43–51. [Google Scholar] [CrossRef]
- Bresnick, A.R.; Weber, D.J.; Zimmer, D.B. S100 Proteins in Cancer. Nat. Rev. Cancer 2015, 15, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Su, Y.K.; Zou, J.; Yang, L.W.; Chou, R.H.; Yu, C. S100B as an Antagonist to Block the Interaction between S100A1 and the RAGE V Domain. PLoS ONE 2018, 13, e0190545. [Google Scholar] [CrossRef] [Green Version]
- Wright, N.T.; Prosser, B.L.; Varney, K.M.; Zimmer, D.B.; Schneider, M.F.; Weber, D.J. S100A1 and Calmodulin Compete for the Same Binding Site on Ryanodine Receptor. J. Biol. Chem. 2008, 283, 26676–26683. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Yuan, T.; Chou, R.-H.; Yu, C. S100A4 Inhibits Cell Proliferation by Interfering with the S100A1-RAGE V Domain. PLoS ONE 2019, 14, e0212299. [Google Scholar] [CrossRef]
- Tiburu, E.K.; Issah, I.; Darko, M.; Armah-Sekum, R.E.; Gyampo, S.O.A.; Amoateng, N.K.; Kwofie, S.K.; Awandare, G. Investigating the Conformation of S100β Protein Under Physiological Parameters Using Computational Modeling: A Clue for Rational Drug Design. Open Biomed. Eng. J. 2018, 12, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.E.; Kekenes-Huskey, P.M. Molecular Basis of S100A1 Activation at Saturating and Subsaturating Calcium Concentrations. Biophys. J. 2016, 110, 1052–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.F.; Ramasamy, R.; Schmidt, A.M. The Receptor for Advanced Glycation Endproducts (RAGE) and Cardiovascular Disease. Expert Rev. Mol. Med. 2009, 11, e9. [Google Scholar] [CrossRef] [Green Version]
- Sparvero, L.J.; Asafu-Adjei, D.; Kang, R.; Tang, D.; Amin, N.; Im, J.; Rutledge, R.; Lin, B.; Amoscato, A.A.; Zeh, H.J.; et al. RAGE (Receptor for Advanced Glycation Endproducts), RAGE Ligands, and Their Role in Cancer and Inflammation. J. Transl. Med. 2009, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Bierhaus, A.; Humpert, P.M.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.M.; Nawroth, P.P. Understanding RAGE, the Receptor for Advanced Glycation End Products. J. Mol. Med. 2005, 83, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Luo, H.; Xie, B.; Tian, T.; Li, S.; Chen, Z.; Liu, J.; Zhao, X.; Zhang, L.; Deng, Y.; et al. Targeting Adaptor Protein SLP76 of RAGE as a Therapeutic Approach for Lethal Sepsis. Nat. Commun. 2021, 12, 308. [Google Scholar] [CrossRef]
- Leclerc, E.; Fritz, G.; Vetter, S.; Heizmann, C. Binding of S100 Proteins to RAGE: An Update. Biochim. Biophys. Acta 2009, 1793, 993–1007. [Google Scholar] [CrossRef] [Green Version]
- Dowarha, D.; Chou, R.-H.; Yu, C. S100B as an Antagonist To Interfere with the Interface Area Flanked by S100A11 and RAGE V Domain. ACS Omega 2018, 3, 9689–9698. [Google Scholar] [CrossRef] [Green Version]
- Moysa, A.; Hammerschmid, D.; Szczepanowski, R.H.; Sobott, F.; Dadlez, M. Enhanced Oligomerization of Full-Length RAGE by Synergy of the Interaction of Its Domains. Sci. Rep. 2019, 9, 20332. [Google Scholar] [CrossRef] [Green Version]
- Olaoba, O.T.; Kadasah, S.; Vetter, S.W.; Leclerc, E. RAGE Signaling in Melanoma Tumors. Int. J. Mol. Sci. 2020, 21, 8989. [Google Scholar] [CrossRef]
- Bongarzone, S.; Savickas, V.; Luzi, F.; Gee, A.D. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. J. Med. Chem. 2017, 60, 7213–7232. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, R.; Vannucci, S.J.; Du Yan, S.S.; Herold, K.; Yan, S.F.; Schmidt, A.M. Advanced Glycation End Products and RAGE: A Common Thread in Aging, Diabetes, Neurodegeneration, and Inflammation. Glycobiology 2005, 15, 16R–28R. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Jeong, M.S.; Jang, S.B. Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int. J. Mol. Sci. 2021, 22, 6904. [Google Scholar] [CrossRef]
- Clement, B.; Bürenheide, A.; Rieckert, W.; Schwarz, J. Diacetyldiamidoximeester of Pentamidine, a Prodrug for Treatment of Protozoal Diseases: Synthesis, in Vitro and in Vivo Biotransformation. ChemMedChem 2006, 1, 1260–1267. [Google Scholar] [CrossRef]
- Drake, S.; Lampasona, V.; Nicks, H.L.; Schwarzmann, S.W. Pentamidine Isethionate in the Treatment of Pneumocystis Carinii Pneumonia. Clin. Pharm. 1985, 4, 507–516. [Google Scholar] [CrossRef]
- Liu, L.; Wang, F.; Tong, Y.; Li, L.-F.; Liu, Y.; Gao, W.-Q. Pentamidine Inhibits Prostate Cancer Progression via Selectively Inducing Mitochondrial DNA Depletion and Dysfunction. Cell Prolif. 2020, 53, e12718. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, Z.; Kou, Z. Pentamidine Inhibits Ovarian Cancer Cell Proliferation and Migration by Maintaining Stability of PTEN In Vitro. Drug Des. Devel. Ther. 2021, 15, 2857–2868. [Google Scholar] [CrossRef]
- Nowakowski, M.; Jaremko, Ł.; Jaremko, M.; Zhukov, I.; Belczyk-Ciesielska, A.; Bierzyński, A.; Ejchart, A. Solution NMR Structure and Dynamics of Human Apo-S100A1 Protein. J. Struct. Biol. 2011, 174, 391–399. [Google Scholar] [CrossRef]
- Yang, H.; Lundbäck, P.; Ottosson, L.; Erlandsson-Harris, H.; Venereau, E.; Bianchi, M.E.; Al-Abed, Y.; Andersson, U.; Tracey, K.J.; Antoine, D.J. RETRACTED ARTICLE: Redox Modification of Cysteine Residues Regulates the Cytokine Activity of High Mobility Group Box-1 (HMGB1). Mol. Med. 2012, 18, 250–259. [Google Scholar] [CrossRef]
- He, H.; Han, L.; Guan, W.; Li, J.; Han, W.; Yu, Y. An Efficient Expression and Purification Strategy for the Production of S100 Proteins in Escherichia Coli. Bioengineered 2013, 4, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Ehlerman, P.; Remppis, A.; Most, P.; Bernotat, J.; Heizmann, C.W.; Katus, H.A. Purification of the Ca2+-Binding Protein S100A1 from Myocardium and Recombinant Escherichia coli. J. Chromatogr. B Biomed. Sci. Appl. 2000, 737, 39–45. [Google Scholar] [CrossRef]
- Alvarado, E. Two-Dimensional Experiments with Vnmrj 2. 2011, pp. 1–13. Available online: http://prod.lsa.umich.edu/content/dam/chem-assets/chem-docs/2D_experiments-v2.pdf (accessed on 19 December 2022).
- Goddard, D.; Kneller, D.G. SPARKY 3; University of California: San Francisco, CA, USA, 2000. [Google Scholar]
- Lee, W.; Tonelli, M.; Markley, J.L. NMRFAM-SPARKY: Enhanced Software for Biomolecular NMR Spectroscopy. Bioinformatics 2015, 31, 1325–1327. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; et al. DrugBank 4.0: Shedding New Light on Drug Metabolism. Nucleic Acids Res. 2014, 42, D1091-7. [Google Scholar] [CrossRef] [Green Version]
- Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; et al. DrugBank 3.0: A Comprehensive Resource for “omics” Research on Drugs. Nucleic Acids Res. 2011, 39, D1035–D1041. [Google Scholar] [CrossRef] [Green Version]
- Van Zundert, G.C.P.; Rodrigues, J.P.G.L.M.; Trellet, M.; Schmitz, C.; Kastritis, P.L.; Karaca, E.; Melquiond, A.S.J.; Van Dijk, M.; De Vries, S.J.; Bonvin, A.M.J.J. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J. Mol. Biol. 2016, 428, 720–725. [Google Scholar] [CrossRef] [Green Version]
- de Vries, S.J.; van Dijk, A.J.; Krzeminski, M.; van Dijk, M.; Thureau, A.; Hsu, V.; Wassenaar, T.; Bonvin, A.M.J.J. No TitHADDOCK versus HADDOCK: New Features and Performance of HADDOCK2.0 on the CAPRI Targetsle. Proteins Struct. Funct. Bioinform. 2007, 69, 726–733. [Google Scholar] [CrossRef] [Green Version]
- DeLano, W.L. The PyMOL Molecular Graphics System, Version 2.3; Schrödinger LLC: New York, NY, USA, 2020. [Google Scholar]
- DeLano, W.L. The PyMOL Molecular Graphics System. Delano Scientific, San Carlos. 2002. Available online: http://www.pymol.org/pymol (accessed on 19 December 2022).
- van Zundert, G.C.P.; Bonvin, A.M.J.J. Modeling Protein–Protein Complexes Using the HADDOCK Webserver “Modeling Protein Complexes with HADDOCK”. Methods Mol. Biol. 2014, 1137, 163–179. [Google Scholar] [CrossRef]
- Parveen, N.; Lin, Y.L.; Khan, M.I.; Chou, R.H.; Sun, C.M.; Yu, C. Suramin Derivatives Play an Important Role in Blocking the Interaction between FGF1 and FGFRD2 to Inhibit Cell Proliferation. Eur. J. Med. Chem. 2020, 206, 112656. [Google Scholar] [CrossRef]
- Parveen, N.; Lin, Y.-L.; Chou, R.-H.; Sun, C.-M.; Yu, C. Synthesis of Novel Suramin Analogs With Anti-Proliferative Activity via FGF1 and FGFRD2 Blockade. Front. Chem. 2022, 9, 764200. [Google Scholar] [CrossRef]
- Gehlen, M.H. The Centenary of the Stern-Volmer Equation of Fluorescence Quenching: From the Single Line Plot to the SV Quenching Map. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100338. [Google Scholar] [CrossRef]
- Liang, H.; Zhong, Y.; Zhou, S.; Peng, L. Knockdown of RAGE Expression Inhibits Colorectal Cancer Cell Invasion and Suppresses Angiogenesis in Vitro and in Vivo. Cancer Lett. 2011, 313, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-R.; Lin, C.; Lu, C.-C.; Kuo, S.-C.; Tsao, J.-W.; Juan, Y.-N.; Chiu, H.-Y.; Lee, F.-Y.; Yang, J.-S.; Tsai, F.-J. YC-1 Induces G(0)/G(1) Phase Arrest and Mitochondria-Dependent Apoptosis in Cisplatin-Resistant Human Oral Cancer CAR Cells. BioMedicine 2017, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizian-Farsani, F.; Abedpoor, N.; Hasan Sheikhha, M.; Gure, A.O.; Nasr-Esfahani, M.H.; Ghaedi, K. Receptor for Advanced Glycation End Products Acts as a Fuel to Colorectal Cancer Development. Front. Oncol. 2020, 10, 552283. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parveen, N.; Chiu, W.-J.; Shen, L.-C.; Chou, R.-H.; Sun, C.-M.; Yu, C. The Anti-Cancer Activity of Pentamidine and Its Derivatives (WLC-4059) Is through Blocking the Interaction between S100A1 and RAGE V Domain. Biomolecules 2023, 13, 81. https://doi.org/10.3390/biom13010081
Parveen N, Chiu W-J, Shen L-C, Chou R-H, Sun C-M, Yu C. The Anti-Cancer Activity of Pentamidine and Its Derivatives (WLC-4059) Is through Blocking the Interaction between S100A1 and RAGE V Domain. Biomolecules. 2023; 13(1):81. https://doi.org/10.3390/biom13010081
Chicago/Turabian StyleParveen, Nuzhat, Wei-Jung Chiu, Li-Ching Shen, Ruey-Hwang Chou, Chung-Ming Sun, and Chin Yu. 2023. "The Anti-Cancer Activity of Pentamidine and Its Derivatives (WLC-4059) Is through Blocking the Interaction between S100A1 and RAGE V Domain" Biomolecules 13, no. 1: 81. https://doi.org/10.3390/biom13010081
APA StyleParveen, N., Chiu, W.-J., Shen, L.-C., Chou, R.-H., Sun, C.-M., & Yu, C. (2023). The Anti-Cancer Activity of Pentamidine and Its Derivatives (WLC-4059) Is through Blocking the Interaction between S100A1 and RAGE V Domain. Biomolecules, 13(1), 81. https://doi.org/10.3390/biom13010081