Inhibition of PDE10A in a New Rat Model of Severe Dopamine Depletion Suggests New Approach to Non-Dopamine Parkinson’s Disease Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Compounds
2.3. Design of Experiments
2.4. In Vivo Tests
2.4.1. Locomotor Activity
2.4.2. Bar Test
2.5. Ex Vivo Bioanalytical Procedures
2.6. Statistical Analysis and Plots
3. Results
3.1. Treatment with L-DOPA + Carbidopa Restores Motor Functions and Brain DA Levels in DDD Rats
3.1.1. Motor Functions
3.1.2. DA Levels in the Striatum and the FC
3.2. Treatment with MP-10 Restores Motor Functions in DDD Rats without Affecting Brain DA Content
3.2.1. Motor Functions
3.2.2. DA Tissue Content in MP-10 Treated DDD Rats
4. Discussion
4.1. A Novel Model of Acute Severe DA Deficiency, DDD Rats
4.2. DA-Independent Restoring of DDD Rats’ Motor Functions by PDE10A Inhibition
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Chemical Compounds Studied in this Article
References
- Mhyre, T.R.; Boyd, J.T.; Hamill, R.W.; Maguire-Zeiss, K.A. Parkinson’s Disease. Subcell. Biochem. 2012, 65, 389–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; et al. Projected Number of People with Parkinson Disease in the Most Populous Nations, 2005 through 2030. Neurology 2007, 68, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, E.R.; Elbaz, A.; Nichols, E.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, J.-Y.J.; et al. Global, Regional, and National Burden of Parkinson’s Disease, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samii, A.; Nutt, J.G.; Ransom, B.R. Parkinson’s Disease. Lancet 2004, 363, 1783–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotzias, G.C.; Van Woert, M.H.; Schiffer, L.M. Aromatic Amino Acids and Modification of Parkinsonism. N. Engl. J. Med. 1967, 276, 374–379. [Google Scholar] [CrossRef]
- Hauser, R.A. Levodopa: Past, Present, and Future. Eur. Neurol. 2009, 62, 1–8. [Google Scholar] [CrossRef]
- Connolly, B.S.; Lang, A.E. Pharmacological Treatment of Parkinson Disease. JAMA 2014, 311, 1670. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease. JAMA 2020, 323, 548. [Google Scholar] [CrossRef]
- García, A.M.; Redondo, M.; Martinez, A.; Gil, C. Phosphodiesterase 10 Inhibitors: New Disease Modifying Drugs for Parkinson’s Disease? Curr. Med. Chem. 2014, 21, 1171–1187. [Google Scholar] [CrossRef]
- Lenda, T.; Ossowska, K.; Berghauzen-Maciejewska, K.; Matłoka, M.; Pieczykolan, J.; Wieczorek, M.; Konieczny, J. Antiparkinsonian-like Effects of CPL500036, a Novel Selective Inhibitor of Phosphodiesterase 10A, in the Unilateral Rat Model of Parkinson’s Disease. Eur. J. Pharmacol. 2021, 910, 174460. [Google Scholar] [CrossRef]
- Blokland, A.; Heckman, P.; Vanmierlo, T.; Schreiber, R.; Paes, D.; Prickaerts, J. Phosphodiesterase Type 4 Inhibition in CNS Diseases. Trends Pharmacol. Sci. 2019, 40, 971–985. [Google Scholar] [CrossRef] [PubMed]
- Baillie, G.S.; Tejeda, G.S.; Kelly, M.P. Therapeutic Targeting of 3′,5′-Cyclic Nucleotide Phosphodiesterases: Inhibition and Beyond. Nat. Rev. Drug Discov. 2019, 18, 770–796. [Google Scholar] [CrossRef] [PubMed]
- Heiman, M.; Schaefer, A.; Gong, S.; Peterson, J.D.; Day, M.; Ramsey, K.E.; Suárez-Fariñas, M.; Schwarz, C.; Stephan, D.A.; Surmeier, D.J.; et al. A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types. Cell 2008, 135, 738–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeger, T.F.; Bartlett, B.; Coskran, T.M.; Culp, J.S.; James, L.C.; Krull, D.L.; Lanfear, J.; Ryan, A.M.; Schmidt, C.J.; Strick, C.A.; et al. Immunohistochemical Localization of PDE10A in the Rat Brain. Brain Res. 2003, 985, 113–126. [Google Scholar] [CrossRef]
- Coskran, T.M.; Morton, D.; Menniti, F.S.; Adamowicz, W.O.; Kleiman, R.J.; Ryan, A.M.; Strick, C.A.; Schmidt, C.J.; Stephenson, D.T. Immunohistochemical Localization of Phosphodiesterase 10A in Multiple Mammalian Species. J. Histochem. Cytochem. 2006, 54, 1205–1213. [Google Scholar] [CrossRef] [Green Version]
- Lakics, V.; Karran, E.H.; Boess, F.G. Quantitative Comparison of Phosphodiesterase MRNA Distribution in Human Brain and Peripheral Tissues. Neuropharmacology 2010, 59, 367–374. [Google Scholar] [CrossRef]
- Xie, Z.; Adamowicz, W.O.; Eldred, W.D.; Jakowski, A.B.; Kleiman, R.J.; Morton, D.G.; Stephenson, D.T.; Strick, C.A.; Williams, R.D.; Menniti, F.S. Cellular and Subcellular Localization of PDE10A, a Striatum-Enriched Phosphodiesterase. Neuroscience 2006, 139, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.P.; Adamowicz, W.; Bove, S.; Hartman, A.J.; Mariga, A.; Pathak, G.; Reinhart, V.; Romegialli, A.; Kleiman, R.J. Select 3’,5’-Cyclic Nucleotide Phosphodiesterases Exhibit Altered Expression in the Aged Rodent Brain. Cell. Signal. 2014, 26, 383–397. [Google Scholar] [CrossRef]
- Bateup, H.S.; Svenningsson, P.; Kuroiwa, M.; Gong, S.; Nishi, A.; Heintz, N.; Greengard, P. Cell Type-Specific Regulation of DARPP-32 Phosphorylation by Psychostimulant and Antipsychotic Drugs. Nat. Neurosci. 2008, 11, 932–939. [Google Scholar] [CrossRef] [Green Version]
- Gerfen, C.R.; Surmeier, D.J. Modulation of Striatal Projection Systems by Dopamine. Annu. Rev. Neurosci. 2011, 34, 441–466. [Google Scholar] [CrossRef]
- Tritsch, N.X.; Sabatini, B.L. Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum. Neuron 2012, 76, 33–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valjent, E.; Bertran-Gonzalez, J.; Hervé, D.; Fisone, G.; Girault, J.A. Looking BAC at Striatal Signaling: Cell-Specific Analysis in New Transgenic Mice. Trends Neurosci. 2009, 32, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.-M.; Gainetdinov, R.R. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.J.; Chapin, D.S.; Cianfrogna, J.; Corman, M.L.; Hajos, M.; Harms, J.F.; Hoffman, W.E.; Lebel, L.A.; McCarthy, S.A.; Nelson, F.R.; et al. Preclinical Characterization of Selective Phosphodiesterase 10A Inhibitors: A New Therapeutic Approach to the Treatment of Schizophrenia. J. Pharmacol. Exp. Ther. 2008, 325, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, K.; Maehara, S.; Yuge, N.; Ishikawa, M.; Miyazaki, Y.; Naba, H.; Kato, Y.; Nakao, K. Pharmacological Characterization of a Novel Potent, Selective, and Orally Active Phosphodiesterase 10A Inhibitor, PDM-042 [(E)-4-(2-(2-(5,8-Dimethyl-[1,2,4]Triazolo[1,5-a]Pyrazin-2-Yl)Vinyl)-6-(Pyrrolidin-1-Yl)Pyrimidin-4-Yl)Morpholine] in Rats: Potential. Pharmacol. Res. Perspect. 2016, 4, 1–12. [Google Scholar] [CrossRef]
- Megens, A.A.H.P.; Hendrickx, H.M.R.; Hens, K.A.; Fonteyn, I.; Langlois, X.; Lenaerts, I.; Somers, M.V.F.; De Boer, P.; Vanhoof, G. Pharmacology of JNJ-42314415, a Centrally Active Phosphodiesterase 10A (PDE10A) Inhibitor: A Comparison of PDE10A Inhibitors with D2 Receptor Blockers as Potential Antipsychotic Drugs. J. Pharmacol. Exp. Ther. 2014, 349, 138–154. [Google Scholar] [CrossRef]
- Suzuki, K.; Harada, A.; Suzuki, H.; Capuani, C.; Ugolini, A.; Corsi, M.; Kimura, H. Combined Treatment with a Selective PDE10A Inhibitor TAK-063 and Either Haloperidol or Olanzapine at Subeffective Doses Produces Potent Antipsychotic-like Effects without Affecting Plasma Prolactin Levels and Cataleptic Responses in Rodents. Pharmacol. Res. Perspect. 2018, 6, e00372. [Google Scholar] [CrossRef] [Green Version]
- Langen, B.; Dost, R.; Egerland, U.; Stange, H.; Hoefgen, N. Effect of PDE10A Inhibitors on MK-801-Induced Immobility in the Forced Swim Test. Psychopharmacology 2012, 221, 249–259. [Google Scholar] [CrossRef]
- Megens, A.A.H.P.; Hendrickx, H.M.R.; Mahieu, M.M.A.; Wellens, A.L.Y.; de Boer, P.; Vanhoof, G. PDE10A Inhibitors Stimulate or Suppress Motor Behavior Dependent on the Relative Activation State of the Direct and Indirect Striatal Output Pathways. Pharmacol. Res. Perspect. 2014, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Sukhanov, I.; Dorotenko, A.; Savchenko, A.; Dravolina, O.A. Tolerance to a Paradoxical Increase in Motor Activity Induced by PDE10A Inhibition under Hypodopaminergic Conditions. Authorea 2022. [Google Scholar] [CrossRef]
- Sotnikova, T.D.; Beaulieu, J.-M.; Barak, L.S.; Wetsel, W.C.; Caron, M.G.; Gainetdinov, R.R. Dopamine-Independent Locomotor Actions of Amphetamines in a Novel Acute Mouse Model of Parkinson Disease. PLoS Biol. 2005, 3, e271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotnikova, T.D.; Caron, M.G.; Gainetdinov, R.R. DDD Mice, a Novel Acute Mouse Model of Parkinson’s Disease. Neurology 2006, 67, S12–S17. [Google Scholar] [CrossRef] [PubMed]
- Leo, D.; Sukhanov, I.; Gainetdinov, R.R. Novel Translational Rat Models of Dopamine Transporter Deficiency. Neural Regen. Res. 2018, 13, 2091–2093. [Google Scholar] [CrossRef] [PubMed]
- Leo, D.; Sukhanov, I.; Zoratto, F.; Illiano, P.; Caffino, L.; Sanna, F.; Messa, G.; Emanuele, M.; Esposito, A.; Dorofeikova, M.; et al. Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. J. Neurosci. 2018, 38, 1959–1972. [Google Scholar] [CrossRef] [Green Version]
- Managò, F.; Espinoza, S.; Salahpour, A.; Sotnikova, T.D.; Caron, M.G.; Premont, R.T.; Gainetdinov, R.R. The Role of GRK6 in Animal Models of Parkinson’s Disease and L-DOPA Treatment. Sci. Rep. 2012, 2, 301. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Harada, A.; Suzuki, H.; Miyamoto, M.; Kimura, H. TAK-063, a PDE10A Inhibitor with Balanced Activation of Direct and Indirect Pathways, Provides Potent Antipsychotic-like Effects in Multiple Paradigms. Neuropsychopharmacology 2016, 41, 2252–2262. [Google Scholar] [CrossRef] [Green Version]
- Banasikowski, T.J.; Beninger, R.J. Haloperidol Conditioned Catalepsy in Rats: A Possible Role for D1-like Receptors. Int. J. Neuropsychopharmacol. 2012, 15, 1525–1534. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. LmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Giros, B.; Jaber, M.; Jones, S.R.; Wightman, R.M.; Caron, M.G. Hyperlocomotion and Indifference to Cocaine and Amphetamine in Mice Lacking the Dopamine Transporter. Nature 1996, 379, 606–612. [Google Scholar] [CrossRef]
- Kurzina, N.P.; Volnova, A.B.; Aristova, I.Y.; Gainetdinov, R.R. A New Paradigm for Training Hyperactive Dopamine Transporter Knockout Rats: Influence of Novel Stimuli on Object Recognition. Front. Behav. Neurosci. 2021, 15, 654469. [Google Scholar] [CrossRef]
- Reinwald, J.R.; Gass, N.; Mallien, A.S.; Sartorius, A.; Becker, R.; Sack, M.; Falfan-Melgoza, C.; Clemm von Hohenberg, C.; Leo, D.; Pfeiffer, N.; et al. Dopamine Transporter Silencing in the Rat: Systems-Level Alterations in Striato-Cerebellar and Prefrontal-Midbrain Circuits. Mol. Psychiatry 2022, 27, 2329–2339. [Google Scholar] [CrossRef] [PubMed]
- Savchenko, A.; Müller, C.; Lubec, J.; Leo, D.; Korz, V.; Afjehi-Sadat, L.; Malikovic, J.; Sialana, F.J.; Lubec, G.; Sukhanov, I. The Lack of Dopamine Transporter Is Associated with Conditional Associative Learning Impairments and Striatal Proteomic Changes. Front. Psychiatry 2022, 13, 1–10. [Google Scholar] [CrossRef]
- De Deurwaerdère, P.; Di Giovanni, G.; Millan, M.J. Expanding the Repertoire of L-DOPA’s Actions: A Comprehensive Review of Its Functional Neurochemistry. Prog. Neurobiol. 2017, 151, 57–100. [Google Scholar] [CrossRef]
- Chagraoui, A.; Boulain, M.; Juvin, L.; Anouar, Y.; Barrière, G.; De Deurwaerdère, P. L-DOPA in Parkinson’s Disease: Looking at the “False” Neurotransmitters and Their Meaning. Int. J. Mol. Sci. 2019, 21, 294. [Google Scholar] [CrossRef] [Green Version]
- Sotnikova, T.D.; Beaulieu, J.-M.; Espinoza, S.; Masri, B.; Zhang, X.; Salahpour, A.; Barak, L.S.; Caron, M.G.; Gainetdinov, R.R. The Dopamine Metabolite 3-Methoxytyramine Is a Neuromodulator. PLoS ONE 2010, 5, e13452. [Google Scholar] [CrossRef]
- Espinoza, S.; Managò, F.; Leo, D.; Sotnikova, T.D.; Gainetdinov, R.R. Role of Catechol-O-Methyltransferase (COMT)-Dependent Processes in Parkinson’s Disease and L-DOPA Treatment. CNS Neurol. Disord.-Drug Targets 2012, 11, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.Y.; Schwarzschild, M.A. Treatment of Parkinson’s Disease: What’s in the Non-Dopaminergic Pipeline? Neurotherapeutics 2014, 11, 34–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiti, P.; Manna, J.; Dunbar, G.L. Current Understanding of the Molecular Mechanisms in Parkinson’s Disease: Targets for Potential Treatments. Transl. Neurodegener. 2017, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Stayte, S.; Vissel, B. Advances in Non-Dopaminergic Treatments for Parkinson’s Disease. Front. Neurosci. 2014, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Gouda, N.A.; Elkamhawy, A.; Cho, J. Emerging Therapeutic Strategies for Parkinson’s Disease and Future Prospects: A 2021 Update. Biomedicines 2022, 10, 371. [Google Scholar] [CrossRef]
- Abbott, A. Laboratory Animals: The Renaissance Rat. Nature 2004, 428, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Picconi, B.; Tozzi, A.; Ghiglieri, V.; Di Filippo, M. Direct and Indirect Pathways of Basal Ganglia: A Critical Reappraisal. Nat. Neurosci. 2014, 17, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Jun, S.B.; Jin, X.; Pham, M.D.; Vogel, S.S.; Lovinger, D.M.; Costa, R.M. Concurrent Activation of Striatal Direct and Indirect Pathways during Action Initiation. Nature 2013, 494, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friend, D.M.; Kravitz, A.V. Working Together: Basal Ganglia Pathways in Action Selection. Trends Neurosci. 2014, 37, 301–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Tecuapetla, F.; Costa, R.M. Basal Ganglia Subcircuits Distinctively Encode the Parsing and Concatenation of Action Sequences. Nat. Neurosci. 2014, 17, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Hikosaka, O.; Takikawa, Y.; Kawagoe, R. Role of the Basal Ganglia in the Control of Purposive Saccadic Eye Movements. Physiol. Rev. 2000, 80, 953–978. [Google Scholar] [CrossRef] [Green Version]
- Mink, J.W. The Basal Ganglia and Involuntary Movements. Arch. Neurol. 2003, 60, 1365. [Google Scholar] [CrossRef] [Green Version]
- Nambu, A. Seven Problems on the Basal Ganglia. Curr. Opin. Neurobiol. 2008, 18, 595–604. [Google Scholar] [CrossRef]
- Lee, S.J.; Lodder, B.; Chen, Y.; Patriarchi, T.; Tian, L.; Sabatini, B.L. Cell-Type-Specific Asynchronous Modulation of PKA by Dopamine in Learning. Nature 2021, 590, 451–456. [Google Scholar] [CrossRef]
- Martel, J.C.; Gatti McArthur, S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front. Pharmacol. 2020, 11, 1003. [Google Scholar] [CrossRef]
- Ferré, S.; Fredholm, B.B.; Morelli, M.; Popoli, P.; Fuxe, K. Adenosine-Dopamine Receptor-Receptor Interactions as an Integrative Mechanism in the Basal Ganglia. Trends Neurosci. 1997, 20, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Quiroz, C.; Luján, R.; Uchigashima, M.; Simoes, A.P.; Lerner, T.N.; Borycz, J.; Kachroo, A.; Canas, P.M.; Orru, M.; Schwarzschild, M.A.; et al. Key Modulatory Role of Presynaptic Adenosine A2A Receptors in Cortical Neurotransmission to the Striatal Direct Pathway. Sci. World J. 2009, 9, 1321–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferré, S.; Lluís, C.; Justinova, Z.; Quiroz, C.; Orru, M.; Navarro, G.; Canela, E.I.; Franco, R.; Goldberg, S.R. Adenosine-Cannabinoid Receptor Interactions. Implications for Striatal Function. Br. J. Pharmacol. 2010, 160, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardoni, F.; Bellone, C. Modulation of the Glutamatergic Transmission by Dopamine: A Focus on Parkinson, Huntington and Addiction Diseases. Front. Cell. Neurosci. 2015, 9, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-F.; Lee, C.; Chern, Y. Adenosine Receptor Neurobiology: Overview. Int. Rev. Neurobiol. 2014, 119, 1–49. [Google Scholar] [CrossRef]
- Xie, Z.; Westmoreland, S.V.; Bahn, M.E.; Chen, G.-L.; Yang, H.; Vallender, E.J.; Yao, W.-D.; Madras, B.K.; Miller, G.M. Rhesus Monkey Trace Amine-Associated Receptor 1 Signaling: Enhancement by Monoamine Transporters and Attenuation by the D2 Autoreceptor in Vitro. J. Pharmacol. Exp. Ther. 2007, 321, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Carboni, L.; Romoli, B.; Bate, S.T.; Romualdi, P.; Zoli, M. Increased Expression of CRF and CRF-Receptors in Dorsal Striatum, Hippocampus, and Prefrontal Cortex after the Development of Nicotine Sensitization in Rats. Drug Alcohol Depend. 2018, 189, 12–20. [Google Scholar] [CrossRef]
- Ingallinesi, M.; Galet, B.; Pegon, J.; Faucon Biguet, N.; Do Thi, A.; Millan, M.J.; Mannoury la Cour, C.; Meloni, R. Knock-down of GPR88 in the Dorsal Striatum Alters the Response of Medium Spiny Neurons to the Loss of Dopamine Input and l-3-4-Dyhydroxyphenylalanine. Front. Pharmacol. 2019, 10, 1233. [Google Scholar] [CrossRef] [Green Version]
- Vaganova, A.N.; Katolikova, N.V.; Murtazina, R.Z.; Kuvarzin, S.R.; Gainetdinov, R.R. Public Transcriptomic Data Meta-Analysis Demonstrates TAAR6 Expression in the Mental Disorder-Related Brain Areas in Human and Mouse Brain. Biomolecules 2022, 12, 1259. [Google Scholar] [CrossRef]
- Gainetdinov, R.R.; Hoener, M.C.; Berry, M.D. Trace Amines and Their Receptors. Pharmacol. Rev. 2018, 70, 549–620. [Google Scholar] [CrossRef]
- Grammatopoulos, D.K. Insights into Mechanisms of Corticotropin-Releasing Hormone Receptor Signal Transduction. Br. J. Pharmacol. 2012, 166, 85–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagnon, D.; Petryszyn, S.; Sanchez, M.G.; Bories, C.; Beaulieu, J.M.; De Koninck, Y.; Parent, A.; Parent, M. Striatal Neurons Expressing D1 and D2 Receptors Are Morphologically Distinct and Differently Affected by Dopamine Denervation in Mice. Sci. Rep. 2017, 7, 41432. [Google Scholar] [CrossRef] [PubMed]
Name of Experiment and Subjects | Phase | Procedures Order |
---|---|---|
MOTOR EFFECTS OF L-DOPA + CARBIDOPA IN THE DDD RATS DAT-KO rats (females, n = 30) Group 1 (n = 7)—0 + 0 mg/kg Group 2 (n = 7)—10 + 10 mg/kg Group 3 (n = 7)—20 + 10 mg/kg Group 4 (n = 9)—40 + 10 mg/kg | I. Baseline | (1) Locomotor activity test (60 min) (2) Bar test |
II. αMPT | (1) αMPT administration. Doses: 250 mg/kg, i/p (2) Locomotor activity test (60 min) (3) Bar test | |
III. L-DOPA | (1) L-DOPA + carbidopa administration. Doses: 0 + 0, 10 + 10, 20 + 10, 40 + 10 mg/kg, i/p (2) Locomotor activity test (30 min) (3) Bar test (4) Locomotor activity test (30 min) | |
Euthanasia, brain sampling for neurochemical analysis | ||
MOTOR EFFECTS OF PDE10A INHIBITOR IN THE DDD RATS DAT-KO rats (females, n = 35) Group 1 (n = 9)—0 mg/kg Group 2 (n = 9)—1 mg/kg Group 3 (n = 9)—3 mg/kg Group 4 (n = 8)—5 mg/kg | I. Baseline | (1) Locomotor activity test (60 min) (2) Bar test |
II. αMPT | (1) αMPT administration. Doses: 250 mg/kg, i/p (2) Locomotor activity test (60 min) (3) Bar test | |
III. MP-10 (1) | (1) MP-10 administration. Doses: 0, 1, 3, 5 mg/kg, i/p (2) Locomotor activity test (60 min, postinjection time—30 min) (3) Bar test | |
IV. MP-10 (2) | (1) Locomotor activity test (60 min) (2) Bar test | |
V. MP-10 (3) | (1) Locomotor activity test (60 min) (2) Bar test | |
Euthanasia, brain sampling for neurochemical analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhanov, I.; Dorotenko, A.; Fesenko, Z.; Savchenko, A.; Efimova, E.V.; Mor, M.S.; Belozertseva, I.V.; Sotnikova, T.D.; Gainetdinov, R.R. Inhibition of PDE10A in a New Rat Model of Severe Dopamine Depletion Suggests New Approach to Non-Dopamine Parkinson’s Disease Therapy. Biomolecules 2023, 13, 9. https://doi.org/10.3390/biom13010009
Sukhanov I, Dorotenko A, Fesenko Z, Savchenko A, Efimova EV, Mor MS, Belozertseva IV, Sotnikova TD, Gainetdinov RR. Inhibition of PDE10A in a New Rat Model of Severe Dopamine Depletion Suggests New Approach to Non-Dopamine Parkinson’s Disease Therapy. Biomolecules. 2023; 13(1):9. https://doi.org/10.3390/biom13010009
Chicago/Turabian StyleSukhanov, Ilya, Artem Dorotenko, Zoia Fesenko, Artem Savchenko, Evgeniya V. Efimova, Mikael S. Mor, Irina V. Belozertseva, Tatyana D. Sotnikova, and Raul R. Gainetdinov. 2023. "Inhibition of PDE10A in a New Rat Model of Severe Dopamine Depletion Suggests New Approach to Non-Dopamine Parkinson’s Disease Therapy" Biomolecules 13, no. 1: 9. https://doi.org/10.3390/biom13010009
APA StyleSukhanov, I., Dorotenko, A., Fesenko, Z., Savchenko, A., Efimova, E. V., Mor, M. S., Belozertseva, I. V., Sotnikova, T. D., & Gainetdinov, R. R. (2023). Inhibition of PDE10A in a New Rat Model of Severe Dopamine Depletion Suggests New Approach to Non-Dopamine Parkinson’s Disease Therapy. Biomolecules, 13(1), 9. https://doi.org/10.3390/biom13010009