Therapeutic Efficacy of Mesenchymal Stem/Stromal Cell Small Extracellular Vesicles in Alleviating Arthritic Progression by Restoring Macrophage Balance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture of MSC and Preparation of MSC-sEV
2.2. Mice
2.3. CIA Model
2.4. Mouse Plasma Anti-CII Antibody and Cytokine Measurement
2.5. Histological Assessment of CIA
2.6. Immunohistochemistry Staining for CD163
2.7. Statistical Tests
3. Results
3.1. MSC-sEVs Alleviate the Arthritic Index (AI) in a Mouse Model of CIA
3.2. MSC-sEVs Decrease Anti-CII, IL-6, and C5b-9 in a Mouse Model of CIA
3.3. MSC-sEVs Reduce the Histopathological Scores in a Mouse Model of CIA
3.4. MSC-sEVs Increase Anti-Inflammatory M2 but Not Pro-Inflammatory M1 Macrophages
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid Arthritis: Pathological Mechanisms and Modern Pharmacologic Therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid Arthritis: A Brief Overview of the Treatment. Med Princ Pract. 2018, 27, 501–507. [Google Scholar] [CrossRef]
- Chester Wasko, M.; Dasgupta, A.; Ilse Sears, G.; Fries, J.F.; Ward, M.M. Prednisone Use and Risk of Mortality in Patients with Rheumatoid Arthritis: Moderation by Use of Disease-Modifying Antirheumatic Drugs. Arthritis Care Res. 2016, 68, 706–710. [Google Scholar] [CrossRef]
- del Rincón, I.; Battafarano, D.F.; Restrepo, J.F.; Erikson, J.M.; Escalante, A. Glucocorticoid Dose Thresholds Associated with All-Cause and Cardiovascular Mortality in Rheumatoid Arthritis. Arthritis Rheumatol. 2014, 66, 264–272. [Google Scholar] [CrossRef]
- Lopez-Santalla, M.; Bueren, J.A.; Garin, M.I. Mesenchymal stem/stromal cell-based therapy for the treatment of rheumatoid arthritis: An update on preclinical studies. eBioMedicine 2021, 69, 103427. [Google Scholar] [CrossRef]
- Lee, B.W.; Kwok, S.K. Mesenchymal Stem/Stromal Cell-Based Therapies in Systemic Rheumatic Disease: From Challenges to New Approaches for Overcoming Restrictions. Int J Mol Sci. 2023, 24, 10161. [Google Scholar] [CrossRef]
- Caplan, A.I. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl. Med. 2017, 6, 1445–1451. [Google Scholar] [CrossRef]
- Caplan, A.I.; Dennis, J.E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 2006, 98, 1076–1084. [Google Scholar] [CrossRef]
- Timmers, L.; Lim, S.-K.; Arslan, F.; Armstrong, J.S.; Hoefler, I.E.; Doevendans, P.A.; Piek, J.J.; El Oakley, R.M.; Choo, A.; Lee, C.N.; et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 2008, 1, 129–137. [Google Scholar] [CrossRef]
- Bruno, S.; Grange, C.; Deregibus, M.C.; Calogero, R.A.; Saviozzi, S.; Collino, F.; Morando, L.; Busca, A.; Falda, M.; Bussolati, B.; et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 2009, 20, 1053–1067. [Google Scholar] [CrossRef]
- Lai, R.C.; Arslan, F.; Lee, M.M.; Sze, N.S.; Choo, A.; Chen, T.S.; Salto-Tellez, M.; Timmers, L.; Lee, C.N.; El Oakley, R.M.; et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010, 4, 214–222. [Google Scholar] [CrossRef]
- Bruno, S.; Tapparo, M.; Collino, F.; Chiabotto, G.; Deregibus, M.C.; Soares Lindoso, R.; Neri, F.; Kholia, S.; Giunti, S.; Wen, S. Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells. Tissue Eng. Part A 2017, 23, 1262–1273. [Google Scholar] [CrossRef]
- Gimona, M.; Brizzi, M.F.; Choo, A.B.H.; Dominici, M.; Davidson, S.M.; Grillari, J.; Hermann, D.M.; Hill, A.F.; de Kleijn, D.; Lai, R.C.; et al. Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy 2021, 23, 373–380. [Google Scholar] [CrossRef]
- Doeppner, T.R.; Herz, J.; Gorgens, A.; Schlechter, J.; Ludwig, A.K.; Radtke, S.; de Miroschedji, K.; Horn, P.A.; Giebel, B.; Hermann, D.M. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl. Med. 2015, 4, 1131–1143. [Google Scholar] [CrossRef]
- Nawaz, M.; Fatima, F.; Vallabhaneni, K.C.; Penfornis, P.; Valadi, H.; Ekstrom, K.; Kholia, S.; Whitt, J.D.; Fernandes, J.D.; Pochampally, R.; et al. Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells Int. 2016, 2016, 1073140. [Google Scholar] [CrossRef]
- Baek, G.; Choi, H.; Kim, Y.; Lee, H.C.; Choi, C. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Therapeutics and as a Drug Delivery Platform. Stem Cells Transl. Med. 2019, 8, 880–886. [Google Scholar] [CrossRef]
- Witwer, K.W.; Van Balkom, B.W.M.; Bruno, S.; Choo, A.; Dominici, M.; Gimona, M.; Hill, A.F.; De Kleijn, D.; Koh, M.; Lai, R.C.; et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J. Extracell. Vesicles 2019, 8, 1609206. [Google Scholar] [CrossRef]
- van Balkom, B.W.M.; Gremmels, H.; Giebel, B.; Lim, S.K. Proteomic Signature of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles. Proteomics 2019, 19, 1800163. [Google Scholar] [CrossRef]
- Chen, T.S.; Arslan, F.; Yin, Y.; Tan, S.S.; Lai, R.C.; Choo, A.B.; Padmanabhan, J.; Lee, C.N.; de Kleijn, D.P.; Lim, S.K. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 2011, 9, 47. [Google Scholar] [CrossRef]
- Zhang, B.; Yeo, R.W.Y.; Lai, R.C.; Sim, E.W.K.; Chin, K.C.; Lim, S.K. Mesenchymal stromal cell exosome–enhanced regulatory T-cell production through an antigen-presenting cell–mediated pathway. Cytotherapy 2018, 20, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yin, Y.; Lai, R.C.; Tan, S.S.; Choo, A.B.H.; Lim, S.K. Mesenchymal Stem Cells Secrete Immunologically Active Exosomes. Stem Cells Dev. 2014, 23, 1233–1244. [Google Scholar] [CrossRef]
- Lai, R.C.; Yeo, R.W.; Tan, S.S.; Zhang, B.; Yin, Y.; Sze, N.S.; Choo, A.; Lim, S.K. Mesenchymal Stem Cell Exosomes: The Future MSC-Based Therapy? In Mesenchymal Stem Cell Therapy; Chase, L., Vemuri, M., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 39–62. [Google Scholar]
- Arslan, F.; Lai, R.C.; Smeets, M.B.; Akeroyd, L.; Choo, A.; Aguor, E.N.; Timmers, L.; van Rijen, H.V.; Doevendans, P.A.; Pasterkamp, G.; et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013, 10, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lai, R.C.; Sim, W.K.; Choo, A.B.H.; Lane, E.B.; Lim, S.K. Topical Application of Mesenchymal Stem Cell Exosomes Alleviates the Imiquimod Induced Psoriasis-Like Inflammation. Int. J. Mol. Sci. 2021, 22, 720. [Google Scholar] [CrossRef]
- Loh, J.T.; Zhang, B.; Teo, J.K.H.; Lai, R.C.; Choo, A.B.H.; Lam, K.-P.; Lim, S.K. Mechanism for the attenuation of neutrophil and complement hyperactivity by MSC exosomes. Cytotherapy 2022, 24, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Loinard, C.; Ribault, A.; Lhomme, B.; Benderitter, M.; Flamant, S.; Paul, S.; Dubois, V.; Lai, R.C.; Lim, S.K.; Tamarat, R. HuMSC-EV induce monocyte/macrophage mobilization to orchestrate neovascularization in wound healing process following radiation injury. Cell Death Discov. 2023, 9, 38. [Google Scholar] [CrossRef]
- Zhang, S.; Chuah, S.J.; Lai, R.C.; Hui, J.H.P.; Lim, S.K.; Toh, W.S. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 2018, 156, 16–27. [Google Scholar] [CrossRef]
- Chuah, S.J.; Yong, C.W.; Teo, K.Y.W.; Chew, J.R.J.; Cheow, Y.A.; Zhang, S.; Wong, R.C.W.; Lim, A.A.T.; Lim, S.K.; Toh, W.S. Mesenchymal stromal cell-derived small extracellular vesicles modulate macrophage polarization and enhance angio-osteogenesis to promote bone healing. Genes Dis. 2022, 9, 841–844. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, B.; Lai, R.C.; Sim, W.K.; Lam, K.P.; Lim, S.K. MSC-sEV Treatment Polarizes Pro-Fibrotic M2 Macrophages without Exacerbating Liver Fibrosis in NASH. Int. J. Mol. Sci. 2023, 24, 8092. [Google Scholar] [CrossRef]
- Tardito, S.; Martinelli, G.; Soldano, S.; Paolino, S.; Pacini, G.; Patane, M.; Alessandri, E.; Smith, V.; Cutolo, M. Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun. Rev. 2019, 18, 102397. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.Y.W.; Zhang, S.; Loh, J.T.; Lai, R.C.; Hey, H.W.D.; Lam, K.P.; Lim, S.K.; Toh, W.S. Mesenchymal Stromal Cell Exosomes Mediate M2-like Macrophage Polarization through CD73/Ecto-5′-Nucleotidase Activity. Pharmaceutics 2023, 15, 1489. [Google Scholar] [CrossRef] [PubMed]
- Brand, D.D.; Kang, A.H.; Rosloniec, E.F. The mouse model of collagen-induced arthritis. Methods Mol. Med. 2004, 102, 295–312. [Google Scholar] [PubMed]
- Miyoshi, M.; Liu, S. Collagen-Induced Arthritis Models. Methods Mol. Biol. 2018, 1868, 3–7. [Google Scholar] [PubMed]
- Schmitz, N.; Laverty, S.; Kraus, V.B.; Aigner, T. Basic methods in histopathology of joint tissues. Osteoarthr. Cartil. 2010, 18 (Suppl. S3), S113–S116. [Google Scholar] [CrossRef]
- Lories, R.J.; Matthys, P.; de Vlam, K.; Derese, I.; Luyten, F.P. Ankylosing enthesitis, dactylitis, and onychoperiostitis in male DBA/1 mice: A model of psoriatic arthritis. Ann. Rheum. Dis. 2004, 63, 595–598. [Google Scholar] [CrossRef]
- Roszer, T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediat. Inflamm. 2015, 2015, 816460. [Google Scholar] [CrossRef]
- Fahy, N.; de Vries-van Melle, M.L.; Lehmann, J.; Wei, W.; Grotenhuis, N.; Farrell, E.; van der Kraan, P.M.; Murphy, J.M.; Bastiaansen-Jenniskens, Y.M.; van Osch, G.J. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthr. Cartil. 2014, 22, 1167–1175. [Google Scholar] [CrossRef]
- Lim, S.S.; Conn, D.L. The use of low-dose prednisone in the management of rheumatoid arthritis. Bull. Rheum. Dis. 2001, 50, 1–4. [Google Scholar]
- Vasandan, A.B.; Jahnavi, S.; Shashank, C.; Prasad, P.; Kumar, A.; Prasanna, S.J. Human Mesenchymal Stem Cells Program Macrophage Plasticity by Altering Their Metabolic Status Via a Pge(2)-Dependent Mechanism. Sci Rep. 2016, 6, 38308. [Google Scholar] [CrossRef]
- Luque-Campos, N.; Bustamante-Barrientos, F.A.; Pradenas, C.; García, C.; Araya, M.J.; Bohaud, C.; Contreras-López, R.; Elizondo-Vega, R.; Djouad, F.; Luz-Crawford, P.; et al. The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming. Front Immunol. 2021, 12, 624746. [Google Scholar] [CrossRef] [PubMed]
- Selleri, S.; Bifsha, P.; Civini, S.; Pacelli, C.; Dieng, M.M.; Lemieux, W.; Jin, P.; Bazin, R.; Patey, N.; Marincola, F.M.; et al. Human Mesenchymal Stromal Cell-Secreted Lactate Induces M2-Macrophage Differentiation by Metabolic Reprogramming. Oncotarget. 2016, 7, 30193–30210. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Ju, G.; Zhou, J.; Zhong, L.; Rong, L.; Chen, W.; Zhang, X.; Zhou, R.; Ding, D.; Ji, T. Microvesicles Derived from Human Umbilical Cord Mesenchyme Promote M2 Macrophage Polarization and Ameliorate Renal Fibrosis Following Partial Nephrectomy Via Hepatocyte Growth Factor. Hum Cell. 2021, 34, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Willis, G.R.; Fernandez-Gonzalez, A.; Anastas, J.; Vitali, S.H.; Liu, X.; Ericsson, M.; Kwong, A.; Mitsialis, S.A.; Kourembanas, S. Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation. Am J Respir Crit Care Med. 2018, 197, 104–116. [Google Scholar] [CrossRef]
- Harrell, C.R.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells. 2019, 12, 1605. [Google Scholar] [CrossRef]
- Morita, T.; Shima, Y.; Wing, J.B.; Sakaguchi, S.; Ogata, A.; Kumanogoh, A. The Proportion of Regulatory T Cells in Patients with Rheumatoid Arthritis: A Meta-Analysis. PLoS ONE 2016, 11, e0162306. [Google Scholar] [CrossRef]
- Oh, S.; Rankin, A.L.; Caton, A.J. CD4+CD25+ regulatory T cells in autoimmune arthritis. Immunol. Rev. 2010, 233, 97–111. [Google Scholar] [CrossRef]
- Fresneda Alarcon, M.; McLaren, Z.; Wright, H.L. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front. Immunol. 2021, 12, 649693. [Google Scholar] [CrossRef]
- Holers, V.M.; Banda, N.K. Complement in the Initiation and Evolution of Rheumatoid Arthritis. Front. Immunol. 2018, 9, 1057. [Google Scholar] [CrossRef]
- Zhang, S.; Wong, K.L.; Ren, X.; Teo, K.Y.W.; Afizah, H.; Choo, A.B.H.; Lai, R.C.; Lim, S.K.; Hui, J.H.P.; Toh, W.S. Mesenchymal Stem Cell Exosomes Promote Functional Osteochondral Repair in a Clinically Relevant Porcine Model. Am. J. Sports Med. 2022, 50, 788–800. [Google Scholar] [CrossRef]
Arthritic Extent | Score |
---|---|
No visible effects of arthritis | 0 |
Edema and/or erythema of one digit | 1 |
Edema and/or erythema of 2 joints | 2 |
Edema and/or erythema of more than 2 joints | 3 |
Severe arthritis of the entire paw and digits including limb deformation and ankylosis of the joint. | 4 |
Group | No. Mice | AI | Dose | ROA | Regimen |
---|---|---|---|---|---|
Naïve | 5 | 0 | N/A | N/A | N/A |
Vehicle | 10 | 2.8 ± 0.2 | 50 µL/mouse | IP | Every other day for 2 weeks |
Prednisolone * | 10 | 2.8 ± 0.2 | 10 mg/kg | PO | Daily for 2 weeks |
MSC-sEV_1 µg | 10 | 2.8 ± 0.2 | 1 µg/mouse | IP | Every other day for 2 weeks |
MSC-sEV_10 µg | 10 | 2.8 ± 0.2 | 10 µg/mouse | IP | Every other day for 2 weeks |
Score | ||
---|---|---|
Inflammation | 0 | Normal |
0.5 | Very minimal, affects synovium of only one joint, either a digit joint or the wrist or ankle with minimal infiltration or there may be very minor multifocal synovial or periarticular infiltration of few inflammatory cells in a few joints | |
1 | Minimal, infiltration of inflammatory cells in synovium and periarticular tissue of 1–2 affected digit joints is generally minimal to moderate or minimal in wrist/ankle, generally about 1–10% of the area at risk is affected | |
2 | Mild, infiltration of inflammatory cells in synovium and periarticular tissue of 2–3 affected joints is generally mild to marked or mild in wrist/ankle, generally about 11–25% of the area at risk is affected | |
3 | Moderate, infiltration of inflammatory cells in synovium and periarticular tissue in up to 4 affected digit joints +/− wrist or ankle is generally mild to marked, generally about 26–50% of the area at risk is affected | |
4 | Marked infiltration of inflammatory cells in most joints with marked edema, several unaffected digit joints may be present, generally about 51–75% of the area at risk is affected | |
5 | Severe diffuse infiltration with severe edema affecting greater than 75% of all joints and periarticular tissues, greater than 75% of area at risk affected severely, a few digit joints may be less severely affected with not more than 1 unaffected digit joint | |
Pannus | 0 | Normal |
0.5 | Very minimal, marginal zone only, less than 1% of area at risk affected | |
1 | Minimal infiltration of pannus in cartilage and subchondral bone, marginal zones mainly. Approximately 1–10% of area at risk affected | |
2 | Mild infiltration with marginal zone destruction of hard tissue in affected joints, 11–25% of area at risk affected | |
3 | Moderate infiltration with moderate hard tissue destruction in affected joints, 26–50% of area at risk affected | |
4 | Marked infiltration with marked destruction of joint architecture, affecting most joints, 51–75% of area at risk affected | |
5 | Severe infiltration associated with total or near total destruction of joint architecture, affects all joints, greater than 75% of area at risk affected | |
Cartilage damage | 0 | Normal |
0.5 | Very minimal, affects marginal zones only of one to several joints, proteoglycan loss mainly | |
1 | Minimal, generally minimal damage with 1–10% cartilage loss in paws | |
2 | Mild, generally mild loss of toluidine blue staining (proteoglycan) with focal areas of chondrocyte loss and/or collagen disruption in some affected joints/areas with 11–25% overall cartilage loss in paws | |
3 | Moderate, generally moderate loss of toluidine blue staining (proteoglycan) with multifocal chondrocyte loss and/or collagen disruption in affected joints/area with 26–50% overall cartilage loss in paws | |
4 | Marked, marked loss of toluidine blue staining (proteoglycan) with multifocal marked (depth to deep zone or tidemark) chondrocyte loss and/or collagen disruption in most joints with a few unaffected or mildly affected with 51–75% overall loss in paws | |
5 | Severe, severe diffuse loss of toluidine blue staining (proteoglycan) with severe (depth to tide mark) chondrocyte loss and/or collagen disruption in most or all joints, greater than 75% loss in paws | |
Bone Resorption | 0 | Normal |
0.5 | Very minimal resorption affects only marginal zones | |
1 | Minimal approximately 1–10% of area at risk of subchondral bone affected | |
2 | Mild, more numerous areas of resorption, approximately 11–25% of total area at risk of subchondral bone affected | |
3 | Moderate, obvious resorption of subchondral bone resulting in approximately 26–50% of area at risk of subchondral bone affected | |
4 | Marked, very obvious resorption of subchondral bone resulting in approximately 51–75% of area at risk of subchondral bone affected | |
5 | Severe, distortion of entire joint due to destruction approximately 76–100% of area at risk of subchondral bone affected | |
Periosteal new bone formation | 0 | Normal, no periosteal proliferation |
0.5 | Minimal focal or multifocal early proliferation, measures less than 40 μm width (<1 unit on 25×) | |
1 | Minimal multifocal early proliferation, measures 40–80 μm width (1–2 units on 25×) | |
2 | Mild multifocal to diffuse with widths that measure approximately 120–200 μm (3–5 units on 25×) | |
3 | Moderate diffuse with widths that measure 240–280 μm (6–7 units on 25×) | |
4 | Marked diffuse with widths that measure 320–400 μm (8–10 units on 25×) | |
5 | Severe, diffuse with widths that measure greater than 400 μm (>10 units on 25×) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Lai, R.C.; Sim, W.K.; Lim, S.K. Therapeutic Efficacy of Mesenchymal Stem/Stromal Cell Small Extracellular Vesicles in Alleviating Arthritic Progression by Restoring Macrophage Balance. Biomolecules 2023, 13, 1501. https://doi.org/10.3390/biom13101501
Zhang B, Lai RC, Sim WK, Lim SK. Therapeutic Efficacy of Mesenchymal Stem/Stromal Cell Small Extracellular Vesicles in Alleviating Arthritic Progression by Restoring Macrophage Balance. Biomolecules. 2023; 13(10):1501. https://doi.org/10.3390/biom13101501
Chicago/Turabian StyleZhang, Bin, Ruenn Chai Lai, Wei Kian Sim, and Sai Kiang Lim. 2023. "Therapeutic Efficacy of Mesenchymal Stem/Stromal Cell Small Extracellular Vesicles in Alleviating Arthritic Progression by Restoring Macrophage Balance" Biomolecules 13, no. 10: 1501. https://doi.org/10.3390/biom13101501
APA StyleZhang, B., Lai, R. C., Sim, W. K., & Lim, S. K. (2023). Therapeutic Efficacy of Mesenchymal Stem/Stromal Cell Small Extracellular Vesicles in Alleviating Arthritic Progression by Restoring Macrophage Balance. Biomolecules, 13(10), 1501. https://doi.org/10.3390/biom13101501