Comprehensive Transcriptomic Profiling of m6A Modification in Age-Related Hearing Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Auditory Brainstem Response (ABR) Analysis
2.3. RNA Extraction and qRT–PCR
2.4. m6A Quantification
2.5. Western Blot Analysis
2.6. MeRIP-Seq and Data Analysis
2.7. RNA-Seq and Data Analysis
2.8. MeRIP-qPCR
3. Results
3.1. Increased Hearing Thresholds and Decreased Cochlear m6A Modification in Ageing Mice
3.2. Changes in m6A-Related Modification Enzymes in the Cochleae of 6 w and 12 m Mice
3.3. General Characteristics of m6A Methylation Modification in ARHL
3.4. Functional Enrichment and Pathway Analysis of Differentially m6A-Methylated Genes
3.5. Combined Analysis of MeRIP-Seq and RNA-Seq Data
3.6. Validation of Differentially m6A-Modified Genes by MeRIP-qPCR and qRT–PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
Gene | Forward and Reverse Primer |
---|---|
WTAP | F: 5′ GAAGGAGACACGACAGCAGTTGG 3′ |
R: 5′ GCTTGTGACCTCTGCCTGATCTAC 3′ | |
METTL3 | F: 5′ CGCTGCCTCCGATGTTGATCTG 3′ |
R: 5′ CTGACTGACCTTCTTGCTCTGCTG 3′ | |
FTO | F: 5′ ATGAAGACGCTGTGCCACTGTG 3′ |
R: 5′ CACGTTGTAGGCTGCTCTGCTC 3′ | |
ALKBH5 | F: 5′ GCAAGGTGAAGAGCGGCATCC 3′ |
R: 5′GTCCACCGTGTGCTCGTTGTAC 3′ | |
RAPGEF6 | F: 5′ AGCTGTCAGGACCAAAGTCG 3′ |
R: 5′ CGCTCAGGTGTTGCCTTGAT 3′ | |
BIRC6 | F: 5′ TGCAGAGGCTCAAAGTAGCC 3′ |
R: 5′ GGAACAGAATGCCCATTGGA 3′ | |
RPS6KA3 | F: 5′ GACAGCGCGGAGAATGGACA 3′ |
R: 5′ CCGAACACGGTCTCGAACTT 3′ | |
SH2D1B1 | F: 5′ TGTGCCTCTGTGTCTCGTTTA 3′ |
R: 5′ TTGTCCAATGTCCTTGTCTTCA 3′ | |
β-ACTIN | F: 5′ AGTGTGACGTTGACATCCGT 3′ |
R: 5′ TGCTAGGAGCCAGAGCAGTA 3′ |
Gene | Forward and Reverse Primer |
---|---|
RAPGEF6 | F: 5′ CAGGGGATATGGAGCAGGC 3′ |
R: 5′ CAGGCCTCCGTCACTAAATAG 3′ | |
BIRC6 | F: 5′ GCCTCCTCTCTCTTCCTTGG 3′ |
R: 5′ AATCAGCACCCCAGTAGTCA 3′ | |
RPS6KA3 | F: 5′ GGCGTCCTCCTTTATACAATGC 3′ |
R: 5′ GTCCTTTGCTGTGTCTGAAAC 3′ | |
SH2D1B1 | F: 5′ TGACCAAGCGAGAGTGTGAA 3′ |
R: 5′ GAGACACAGAGGCACAGGG 3′ |
ID | Gene | M6a Fold Change | m6A p Value | Gene Log FC | Gene p Value | Change |
---|---|---|---|---|---|---|
ENSMUSG00000029661 | COL1A2 | 231.2 | 1.38075 × 10−10 | −1.6059902 | 0.04229598 | Hypo-down |
ENSMUSG00000055737 | GHR | 11.7 | 4.29725 × 10−11 | −3.0214016 | 0.03698555 | Hypo-down |
ENSMUSG00000003882 | IL7R | 5.1 | 8.2386 × 10−8 | −8.2804095 | 0.03681321 | Hypo-down |
ENSMUSG00000027111 | ITGA6 | 2.9 | 1.19754 × 10−7 | −5.6042221 | 0.00835887 | Hyper-down |
ENSMUSG00000038668 | LPAR1 | 4.4 | 4.55964 × 10−7 | −2.5137438 | 0.0377013 | Hypo-down |
ENSMUSG00000021702 | THBS4 | 1044.7 | 2.7696 × 10−12 | −3.5606082 | 0.02895484 | Hypo-down |
ENSMUSG00000005871 | APC | 7.7 | 1.8278 × 10−8 | −9.4020705 | 0.01765319 | Hypo-down |
ENSMUSG00000020538 | SREBF1 | 2.3 | 2.8006 × 10−10 | 1.68543898 | 0.04796545 | Hyper-up |
ENSMUSG00000020122 | EGFR | 6.3 | 2.51291 × 10−6 | −3.4024714 | 0.04096643 | Hyper-down |
References
- De Iorio, M.L.; Rapport, L.J.; Wong, C.G.; Stach, B.A. Characteristics of Adults with Unrecognized Hearing Loss. Am. J. Audiol. 2019, 28, 384–390. [Google Scholar] [CrossRef]
- Makary, C.A.; Shin, J.; Kujawa, S.G.; Liberman, M.C.; Merchant, S.N. Age-Related Primary Cochlear Neuronal Degeneration in Human Temporal Bones. J. Assoc. Res. Otolaryngol. 2011, 12, 711–717. [Google Scholar] [CrossRef]
- Chavant, M.; Kapoula, Z. Presbycusis and the Aging of Eye Movement: Common Attention Mechanisms. Brain Sci. 2022, 12, 107. [Google Scholar] [CrossRef]
- Parham, K.; McKinnon, B.J.; Eibling, D.; Gates, G.A. Challenges and Opportunities in Presbycusis. Otolaryngol. Head Neck Surg. 2011, 144, 491–495. [Google Scholar] [CrossRef]
- Tu, N.C.; Friedman, R.A. Age-Related Hearing Loss: Unraveling the Pieces. Laryngoscope Investig. Otolaryngol. 2018, 3, 68–72. [Google Scholar] [CrossRef]
- Locher, H.; Frijns, J.H.; van Iperen, L.; de Groot, J.C.; Huisman, M.A.; de Sousa Lopes, S.M.C. Neurosensory Development and Cell Fate Determination in the Human Cochlea. Neural Dev. 2013, 8, 20. [Google Scholar] [CrossRef]
- Choi, J.E.; Ahn, J.; Moon, I.J. Associations Between Age-Related Hearing Loss and Dietaryassessment Using Data From Korean National Health Andnutrition Examination Survey. Nutrients 2021, 13, 1230. [Google Scholar] [CrossRef]
- Keithley, E.M. Pathology and Mechanisms of Cochlear Aging. J. Neurosci. Res. 2020, 98, 1674–1684. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, B.; Nie, Z.; Duan, L.; Xiong, Q.; Jin, Z.; Yang, C.; Chen, Y. The Role of M6a Modification in the Biological Functions and Diseases. Signal Transduct. Target. Ther. 2021, 6, 74. [Google Scholar] [CrossRef]
- Zheng, Y.; Cong, S.; Ding, Y.; Yuan, B.; Wang, H.-Q.; Zhang, J.-B.; Zhang, W.-D.; Guo, H.-X. Comprehensive Analysis of Differences in N6-Methyladenosine RNA Methylomes in the Rat Adenohypophysis after Gnrh Treatment. FASEB J. 2022, 36, e22204. [Google Scholar]
- Liang, J.; Sun, J.; Zhang, W.; Wang, X.; Xu, Y.; Peng, Y.; Zhang, L.; Xiong, W.; Liu, Y.; Liu, H. Novel Insights Into the Roles of N(6)-Methyladenosine (M(6)a) Modification and Autophagy in Human Diseases. Int. J. Biol. Sci. 2023, 19, 705–720. [Google Scholar] [CrossRef]
- Gao, R.; Ye, M.; Liu, B.; Wei, M.; Ma, D.; Dong, K. M6a Modification: A Double-Edged Sword in Tumor Development. Front. Oncol. 2021, 11, 679367. [Google Scholar] [CrossRef]
- Dong, G.; Yu, J.; Shan, G.; Su, L.; Yu, N.; Yang, S. N6-Methyladenosine Methyltransferase METTL3 Promotes Angiogenesis and Atherosclerosis by Upregulating the JAK2/STAT3 Pathway Via M6a Reader IGF2BP1. Front. Cell Dev. Biol. 2021, 9, 731810. [Google Scholar] [CrossRef]
- Chen, X.; Yu, C.; Guo, M.; Zheng, X.; Ali, S.; Huang, H.; Zhang, L.; Wang, S.; Huang, Y.; Qie, S.; et al. Down-Regulation of M6a mRNA Methylation is Involved in Dopaminergic Neuronal Death. ACS Chem. Neurosci. 2019, 10, 2355–2363. [Google Scholar] [CrossRef]
- Shafik, A.M.; Zhang, F.; Guo, Z.; Dai, Q.; Pajdzik, K.; Li, Y.; Kang, Y.; Yao, B.; Wu, H.; He, C.; et al. N6-Methyladenosine Dynamics in Neurodevelopment and Aging, and its Potential Role in Alzheimer’s Disease. Genome Biol. 2021, 22, 17. [Google Scholar] [CrossRef]
- Tang, Z.; Cao, J.; Yao, J.; Fan, X.; Zhao, J.; Zhao, M.; Duan, Q.; Han, B.; Duan, S. KDM1A-Mediated Upregulation of METTL3 Ameliorates Alzheimer’s Disease Via Enhancing Autophagic Clearance of P-Tau through M6a-Dependent Regulation of STUB1. Free. Radic. Biol. Med. 2023, 195, 343–358. [Google Scholar] [CrossRef]
- Wang, E.; Li, Y.; Li, H.; Liu, Y.; Ming, R.; Wei, J.; Du, P.; Li, X.; Zong, S.; Xiao, H. METTL3 Reduces Oxidative Stress-Induced Apoptosis in Presbycusis by Regulating the N6-Methyladenosine Level of SIRT1 mRNA. Neuroscience 2023, 521, 110–122. [Google Scholar] [CrossRef]
- Teichert, M.; Liebmann, L.; Hübner, C.A.; Bolz, J. Homeostatic Plasticity and Synaptic Scaling in the Adult Mouse Auditory Cortex. Sci. Rep. 2017, 7, 17423. [Google Scholar] [CrossRef]
- Kasemsiri, P.; Yimtae, K.; Thanawirattananit, P.; Israsena, P.; Noymai, A.; Laohasiriwong, S.; Vatanasapt, P.; Siripaopradith, P.; Kingkaew, P. Effectiveness of a Programable Body-Worn Digital Hearing Aid for Older Adults in a Developing Country: A Randomized Controlled Trial with a Cross-Over Design. BMC Geriatr. 2021, 21, 437. [Google Scholar] [CrossRef]
- Wang, J.; Puel, J.-L. Presbycusis: An Update On Cochlear Mechanisms and Therapies. J. Clin. Med. 2020, 9, 218. [Google Scholar] [CrossRef]
- Li, Q.; Zang, Y.; Sun, Z.; Zhang, W.; Liu, H. Long Noncoding RNA GM44593 Attenuates Oxidative Stress From Age-Related Hearing Loss by Regulating Mir-29B/WNK1. Bioengineered 2022, 13, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zheng, J.; Shen, W.; Ma, L.; Zhao, M.; Wang, X.; Tang, J.; Yan, J.; Wu, Z.; Zou, Z.; et al. Elevated SLC26A4 Gene Promoter Methylation is Associated with the Risk of Presbycusis in Men. Mol. Med. Rep. 2017, 16, 347–352. [Google Scholar] [CrossRef]
- Bouzid, A.; Smeti, I.; Dhouib, L.; Roche, M.; Achour, I.; Khalfallah, A.; Gibriel, A.A.; Charfeddine, I.; Ayadi, H.; Lachuer, J.; et al. Masmoudi. Down-Expression of P2RX2, KCNQ5, ERBB3 and SOCS3 through DNA Hypermethylation in Elderly Women with Presbycusis. Biomarkers 2018, 23, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.R.; Wijesinghe, P.; Nunez, D.A. Micrornas in Acquired Sensorineural Hearing Loss. J. Laryngol. Otol. 2019, 133, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Wu, Y.; Zhao, J.; Cheng, C.; Lin, J.; Yang, Y.; Lu, L.; Xiang, Q.; Bian, T.; Liu, Q. N6-Methyladenosine-Modified Circsav1 Triggers Ferroptosis in Copd through Recruiting YTHDF1 to Facilitate the Translation of IREB2. Cell Death Differ. 2023, 30, 1293–1304. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Liang, J.; Jiang, M.; Zhang, T.; Wan, X.; Wu, J.; Li, X.; Chen, J.; Sun, J.; et al. METTL3-Mediated M6a Modification of HMGA2 mRNA Promotes Subretinal Fibrosis and Epithelial-Mesenchymal Transition. J. Mol. Cell Biol. 2023. [Google Scholar] [CrossRef]
- Zhou, L.; Tang, R.; Li, X.; Tian, S.; Li, B.; Qin, G. N(6)-Methyladenosine RNA Modification Regulates Strawberry Fruit Ripening in an ABA-Dependent Manner. Genome Biol. 2021, 22, 168. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Ran, X.; Wang, D.; Zheng, X.; Zhang, M.; Yu, B.; Sun, Y.; Wu, J. METTL14 Mediates the Inflammatory Response of Macrophages in Atherosclerosis through the NF-KAPPAB/Il-6 Signaling Pathway. Cell. Mol. Life Sci. 2022, 79, 311. [Google Scholar] [CrossRef]
- Niu, X.; Xu, J.; Liu, J.; Chen, L.; Qiao, X.; Zhong, M. Landscape of N(6)-Methyladenosine Modification Patterns in Human Ameloblastoma. Front. Oncol. 2020, 10, 556497. [Google Scholar] [CrossRef]
- Fan, C.; Ma, Y.; Chen, S.; Zhou, Q.; Jiang, H.; Zhang, J.; Wu, F. Comprehensive Analysis of the Transcriptome-Wide M6a Methylation Modification Difference in Liver Fibrosis Mice by High-Throughput M6a Sequencing. Front. Cell Dev. Biol. 2021, 9, 767051. [Google Scholar] [CrossRef]
- Gilbert, W.V.; Bell, T.A.; Schaening, C. Messenger RNA Modifications: Form, Distribution, and Function. Science 2016, 352, 1408–1412. [Google Scholar] [CrossRef] [PubMed]
- Coling, D.E.; Yu, K.C.; Somand, D.; Satar, B.; Bai, U.; Huang, T.-T.; Seidman, M.D.; Epstein, C.J.; Mhatre, A.N.; Lalwani, A.K. Effect of SOD1 Overexpression on Age- and Noise-Related Hearing Loss. Free. Radic. Biol. Med. 2003, 34, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, G.; Zhao, X.; Lin, X.; Gao, Y.; Raimundo, N.; Li, G.-L.; Shang, W.; Wu, H.; Song, L. Down-Regulation of AMPK Signaling Pathway Rescues Hearing Loss in TFB1 Transgenic Mice and Delays Age-Related Hearing Loss. Aging 2020, 12, 5590–5611. [Google Scholar] [CrossRef] [PubMed]
- Moghbeli, M. Molecular Interactions of Mir-338 During Tumor Progression and Metastasis. Cell. Mol. Biol. Lett. 2021, 26, 13. [Google Scholar] [CrossRef]
- Sun, J.; Guo, Y.; Fan, Y.; Wang, Q.; Zhang, Q.; Lai, D. Decreased Expression of IDH1 by Chronic Unpredictable Stress Suppresses Proliferation and Accelerates Senescence of Granulosa Cells through Ros Activated MAPK Signaling Pathways. Free. Radic. Biol. Med. 2021, 169, 122–136. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Rong, K.; Liang, J.; Wang, Z.; Zhao, J.; Zhang, P.; Li, Y.; Wang, L.; Ma, H.; et al. Eupatilin Attenuates the Senescence of Nucleus Pulposus Cells and Mitigates Intervertebral Disc Degeneration Via Inhibition of the MAPK/NF-KAPPB Signaling Pathway. Front. Pharmacol. 2022, 13, 940475. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Z.; Li, W.; Tang, D.; Zhao, L.; He, Y.; Li, H. Inhibition of KDM5A Attenuates Cisplatin-Induced Hearing Loss Via Regulation of the MAPK/AKT Pathway. Cell. Mol. Life Sci. 2022, 79, 596. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, S.; Dai, X.; Xia, Z.-F.; Xiao, H.; He, X.-L.; Yang, R.; Li, J. SOD2 Alleviates Hearing Loss Induced by Noise and Kanamycin in Mitochondrial DNA4834-Deficient Rats by Regulating PI3K/MAPK Signaling. Curr. Med Sci. 2021, 41, 587–596. [Google Scholar] [CrossRef]
- Deutscher, M.P. Degradation of RNA in Bacteria: Comparison of mRNA and Stable RNA. Nucleic Acids Res. 2006, 34, 659–666. [Google Scholar] [CrossRef]
- Imam, H.; Kim, G.-W.; Mir, S.A.; Khan, M.; Siddiqui, A. Interferon-Stimulated Gene 20 (ISG20) Selectively Degrades N6-Methyladenosine Modified Hepatitis B Virus Transcripts. PLoS Pathog. 2020, 16, e1008338. [Google Scholar] [CrossRef]
- Weng, J.; Chen, M.; Shi, B.; Liu, D.; Weng, S.; Guo, R. Konjac Glucomannan Defends Against High-Fat Diet-Induced Atherosclerosis in Rabbits by Promoting the PI3K/AKT Pathway. Heliyon 2023, 9, e13682. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, Z.; Liu, Y.; Cao, H.; Yang, J.; Wang, B. PIN1 Protects Hair Cells and Auditory Hei-Oc1 Cells Against Senescence by Inhibiting the PI3K/AKT/MTOR Pathway. Oxidative Med. Cell. Longev. 2021, 2021, 9980444. [Google Scholar] [CrossRef] [PubMed]
- Courtois-Cox, S.; Williams, S.M.G.; Reczek, E.E.; Johnson, B.W.; McGillicuddy, L.T.; Johannessen, C.M.; Hollstein, P.E.; MacCollin, M.; Cichowski, K. A Negative Feedback Signaling Network Underlies Oncogene-Induced Senescence. Cancer Cell 2006, 10, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Zha, D.-J.; Chen, F.-Q.; Fan, B.; Lu, F.; Du, W.-J.; Chen, J.; An, X.-G.; Wang, R.-F.; Li, W.; Song, Y.-L. PTEN Inhibitor Bisperoxovanadium Protects Against Noise-Induced Hearing Loss. Neural Regen. Res. 2023, 18, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zheng, Z.; Liu, C.; Li, W.; Zhao, L.; Nie, G.; Li, H. Inhibiting DNA Methylation Alleviates Cisplatin-Induced Hearing Loss by Decreasing Oxidative Stress-Induced Mitochondria-Dependent Apoptosis Via the LRP1-PI3K/AKT Pathway. Acta Pharm. Sin. B 2022, 12, 1305–1321. [Google Scholar] [CrossRef]
- Chen, J.; Fang, X.; Zhong, P.; Song, Z.; Hu, X. N6-Methyladenosine Modifications: Interactions with Novel RNA-Binding Proteins and Roles in Signal Transduction. RNA Biol. 2019, 16, 991–1000. [Google Scholar] [CrossRef]
- Wang, W.; Shao, F.; Yang, X.; Wang, J.; Zhu, R.; Yang, Y.; Zhao, G.; Guo, D.; Sun, Y.; Wang, J.; et al. METTL3 Promotes Tumour Development by Decreasing APC Expression Mediated by APC mRNA N(6)-Methyladenosine-Dependent YTHDF Binding. Nat. Commun. 2021, 12, 3803. [Google Scholar] [CrossRef]
- Tang, Z.; Sun, C.; Yan, Y.; Niu, Z.; Li, Y.; Xu, X.; Zhang, J.; Wu, Y.; Li, Y.; Wang, L.; et al. Aberrant Elevation of FTO Levels Promotes Liver Steatosis by Decreasing the M6a Methylation and Increasing the Stability of SREBF1 and CHREBP mRNAs. J. Mol. Cell Biol. 2023, 14, mjac061. [Google Scholar] [CrossRef]
- Dave, B.; Migliaccio, I.; Gutierrez, M.C.; Wu, M.-F.; Chamness, G.C.; Wong, H.; Narasanna, A.; Chakrabarty, A.; Hilsenbeck, S.G.; Huang, J.; et al. Loss of Phosphatase and Tensin Homolog or Phosphoinositol-3 Kinase Activation and Response to Trastuzumab or Lapatinib in Human Epidermal Growth Factor Receptor 2-Overexpressing Locally Advanced Breast Cancers. J. Clin. Oncol. 2011, 29, 166–173. [Google Scholar] [CrossRef]
- White, P.M.; Stone, J.S.; Groves, A.K.; Segil, N. EGFR Signaling is Required for Regenerative Proliferation in the Cochlea: Conservation in Birds and Mammals. Dev. Biol. 2012, 363, 191–200. [Google Scholar] [CrossRef]
- Kang, H.; Choi, S.J.; Park, K.H.; Lee, C.K.; Moon, J.S. Impaired Glycolysis Promotes Alcoholexposure-Induced Apoptosis in Hei-Oc1 Cells Via Inhibition of EGFR Signaling. Int. J. Mol. Sci. 2020, 21, 476. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-J.; Liu, H.-Y.; Xiao, Z.-Y.; Qiu, T.; Zhang, D.; Zhang, L.-J.; Han, F.-Y.; Chen, G.-J.; Xu, X.-M.; Zhu, J.-H.; et al. IGF2BP3 Promotes the Progression of Colorectal Cancer and Mediates Cetuximab Resistance by Stabilizing EGFR mRNA in an M(6)a-Dependent Manner. Cell Death Dis. 2023, 14, 581. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Liao, D.; Zhang, M.; Zeng, C.; Li, X.; Zhang, R.; Ma, H.; Kang, T. YTHDF2 Suppresses Cell Proliferation and Growth Via Destabilizing the EGFR mRNA in Hepatocellular Carcinoma. Cancer Lett. 2019, 442, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Xie, Y.; Dang, Y.; Zhang, J.; Song, Y.; Lan, D. Use of RNA - Sequencing to Detect Abnormal Transcription of the Collagen Alpha-2 (Vi) Chain Gene that Can Lead to Bethlem Myopathy. Int. J. Mol. Med. 2021, 47, 28. [Google Scholar] [CrossRef] [PubMed]
ID | Gene | m6A Fold Change | m6A p-Value | Gene Log FC | Gene p-Value | Change |
---|---|---|---|---|---|---|
ENSMUSG00000037533 | RAPGEF6 | 433.2 | 1.2812 × 10−14 | −10.025374 | 0.00213148 | Hyper-down |
ENSMUSG00000024073 | BIRC6 | 800.7 | 5.0835 × 10−14 | −2.9943806 | 0.02636128 | Hyper-down |
ENSMUSG00000058997 | VWA8 | 201.1 | 7.6235 × 10−14 | −3.7058447 | 0.01945395 | Hyper-down |
ENSMUSG00000068036 | MLLT4 | 353.6 | 1.4383 × 10−13 | −1.9414922 | 0.04990249 | Hyper-down |
ENSMUSG00000022607 | PTK2 | 19.9 | 1.6866 × 10−13 | −3.4652058 | 0.01968117 | Hyper-down |
ENSMUSG00000032410 | XRN1 | 1434.8 | 2.9063 × 10−13 | −10.023874 | 0.00555607 | Hyper-down |
ENSMUSG00000003847 | NFAT5 | 8.6 | 3.6304 × 10−13 | −2.3516677 | 0.03805174 | Hyper-down |
ENSMUSG00000032555 | TOPBP1 | 11.8 | 8.4203 × 10−13 | −7.2946474 | 0.01763448 | Hyper-down |
ENSMUSG00000024672 | MS4A7 | 6.7 | 2.8421 × 10−12 | 1.83305783 | 0.04776993 | Hyper- up |
ENSMUSG00000029186 | PI4K2B | 3.5 | 2.8892 × 10−12 | −10.125856 | 0.02227473 | Hyper-down |
ENSMUSG00000067149 | IGJ | 312.9 | 1.4276 × 10−13 | 8.49015602 | 0.00112192 | Hypo-up |
ENSMUSG00000031309 | RPS6KA3 | 24.95 | 1.8979 × 10−13 | −5.2427937 | 0.00759645 | Hypo-down |
ENSMUSG00000096334 | SH2D1B1 | 412.2 | 3.1109 × 10−13 | 6.18769686 | 0.02234852 | Hypo-up |
ENSMUSG00000030231 | PLEKHA5 | 167.2 | 3.5733 × 10−13 | −6.9262512 | 0.00946439 | Hypo-down |
ENSMUSG00000024900 | CPT1A | 524.4 | 3.6441 × 10−13 | −2.580643 | 0.01844615 | Hypo-down |
ENSMUSG00000025278 | FLNB | 93.24 | 3.6648 × 10−13 | −3.7084202 | 0.03199615 | Hypo-down |
ENSMUSG00000030811 | FBXL19 | 470.7 | 3.9417 × 10−13 | −9.4987969 | 0.03882934 | Hypo-down |
ENSMUSG00000024749 | TMC1 | 543.7 | 5.0403 × 10−13 | −8.4734806 | 0.03470489 | Hypo-down |
ENSMUSG00000061080 | LSAMP | 554.1 | 5.7905 × 10−13 | 9.7209504 | 0.00629816 | Hypo-up |
ENSMUSG00000022297 | FZD6 | 698.6 | 6.9979 × 10−13 | −9.89231 | 0.0045972 | Hypo-down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, M.; Zhou, X.; Hu, Y.; Zhang, J.; Yang, T.; Chen, Z.; Yuan, W. Comprehensive Transcriptomic Profiling of m6A Modification in Age-Related Hearing Loss. Biomolecules 2023, 13, 1537. https://doi.org/10.3390/biom13101537
Feng M, Zhou X, Hu Y, Zhang J, Yang T, Chen Z, Yuan W. Comprehensive Transcriptomic Profiling of m6A Modification in Age-Related Hearing Loss. Biomolecules. 2023; 13(10):1537. https://doi.org/10.3390/biom13101537
Chicago/Turabian StyleFeng, Menglong, Xiaoqing Zhou, Yaqin Hu, Juhong Zhang, Ting Yang, Zhiji Chen, and Wei Yuan. 2023. "Comprehensive Transcriptomic Profiling of m6A Modification in Age-Related Hearing Loss" Biomolecules 13, no. 10: 1537. https://doi.org/10.3390/biom13101537
APA StyleFeng, M., Zhou, X., Hu, Y., Zhang, J., Yang, T., Chen, Z., & Yuan, W. (2023). Comprehensive Transcriptomic Profiling of m6A Modification in Age-Related Hearing Loss. Biomolecules, 13(10), 1537. https://doi.org/10.3390/biom13101537