Treatment-Emergent Cilgavimab Resistance Was Uncommon in Vaccinated Omicron BA.4/5 Outpatients
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Modeling of the Quasispecies
2.2. Molecular Dynamics Protocol
2.3. MD Analyses
3. Results
3.1. Mutational Pattern Analysis
3.2. Structural Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FDA Announces Evusheld Is Not Currently Authorized for Emergency Use in the U.S. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-evusheld-not-currently-authorized-emergency-use-us (accessed on 3 February 2023).
- European Medicines Agency, Evusheld. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/evusheld (accessed on 3 February 2023).
- FDA. Fact Sheet for Healthcare Providers: Emergency Use Authorization for Evusheld™ (Tixagevimab Co-Packaged with Cilgavimab). 2021. Available online: https://www.fda.gov/media/154701/download (accessed on 3 February 2023).
- Vellas, C.; Kamar, N.; Izopet, J. Resistance mutations in SARS-CoV-2 Omicron variant after tixagevimab-cilgavimab treatment. J. Infect. 2022, 85, e162–e163. [Google Scholar] [CrossRef]
- Ordaya, E.E.; Vergidis, P.; Razonable, R.R.; Yao, J.D.; Beam, E. Genotypic and predicted phenotypic analysis of SARS-CoV-2 Omicron subvariants in immunocompromised patients with COVID-19 following tixagevimab-cilgavimab prophylaxis. J. Clin. Virol. 2023, 160, 105382. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, J.; Zhu, K.; Xu, C.; Wang, D.; Hou, M. The effect of tixagevimab-cilgavimab on clinical outcomes in patients with COVID-19: A systematic review with meta-analysis. J. Infect. 2023, 86, e15–e17. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Casadevall, A. A critical analysis of the use of cilgavimab plus tixagevimab monoclonal antibody cocktail (Evusheld™) for COVID-19 prophylaxis and treatment. Viruses 2022, 14, 1999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cong, Y.; Duan, L.; Zhang, J.Z.H. Combined Antibodies Evusheld against the SARS-CoV-2 Omicron Variants BA.1.1 and BA.5: Immune Escape Mechanism from Molecular Simulation. J. Chem. Inf. Model. 2023, 63, 5297–5308. [Google Scholar] [CrossRef] [PubMed]
- Touret, F.; Baronti, C.; Pastorino, B.; Villarroel, P.M.S.; Ninove, L.; Nougairède, A.; de Lamballerie, X. In vitro activity of therapeutic antibodies against SARS-CoV-2 Omicron BA.1, BA.2 and BA.5. Sci. Rep. 2022, 12, 12609. [Google Scholar] [CrossRef]
- Ustianowski, A. Tixagevimab/cilgavimab for prevention and treatment of COVID-19: A review. Expert Rev. Anti-Infect. Ther. 2022, 20, 1517–1527. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Rueca, M.; Giombini, E.; Messina, F.; Bartolini, B.; Di Caro, A.; Capobianchi, M.R.; Gruber, C.E. The Easy-to-Use SARS-CoV-2 Assembler for Genome Sequencing: Development Study. JMIR bioinformatics and biotechnology. JMIR Bioinform. Biotechnol. 2022, 3, e31536. [Google Scholar] [CrossRef]
- Rachiglio, A.M.; De Sabato, L.; Roma, C.; Cennamo, M.; Fiorenza, M.; Terracciano, D.; Pasquale, R.; Bergantino, F.; Cavalcanti, E.; Botti, G.; et al. SARS-CoV-2 complete genome sequencing from the Italian Campania region using a highly automated next generation sequencing system. J. Transl. Med. 2021, 19, 246. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Borocci, S.; Cerchia, C.; Grottesi, A.; Sanna, N.; Prandi, I.G.; Abid, N.; Beccari, A.R.; Chillemi, G.; Talarico, C. Altered Local Interactions and Long-Range Communications in UK Variant (B.1.1.7) Spike Glycoprotein. Int. J. Mol. Sci. 2021, 22, 5464. [Google Scholar] [CrossRef]
- Abraham, L.; van der Spoel, H. GROMACS 2021.2 Manual. 2021. Available online: https://zenodo.org/record/4723561 (accessed on 15 May 2023).
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Kirschner, K.N.; Yongye, A.B.; Tschampel, S.M.; González-Outeiriño, J.; Daniels, C.R.; Foley, B.L.; Woods, R.J. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655. [Google Scholar] [CrossRef]
- Mark, P.; Nilsson, L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E.; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; et al. AmberTools21 Reference Manual; University of California: San Francisco, CA, USA, 2021. [Google Scholar]
- da Silva, A.W.S.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef]
- Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2007, 4, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Kollman, P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Romeo, I.; Prandi, I.G.; Giombini, E.; Gruber, C.E.M.; Pietrucci, D.; Borocci, S.; Abid, N.; Fava, A.; Beccari, A.R.; Chillemi, G.; et al. The Spike Mutants Website: A Worldwide Used Resource against SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 13082. [Google Scholar] [CrossRef]
- Prandi, I.G.; Mavian, C.; Giombini, E.; Gruber, C.E.M.; Pietrucci, D.; Borocci, S.; Abid, N.; Beccari, A.R.; Talarico, C.; Chillemi, G. Structural Evolution of Delta (B.1.617.2) and Omicron (BA.1) Spike Glycoproteins. Int. J. Mol. Sci. 2022, 23, 8680. [Google Scholar] [CrossRef]
- Solis, O.; Beccari, A.R.; Iaconis, D.; Talarico, C.; Ruiz-Bedoya, C.A.; Nwachukwu, J.C.; Cimini, A.; Castelli, V.; Bertini, R.; Montopoli, M.; et al. The SARS-CoV-2 Spike Protein Binds and Modulates Estrogen Receptors. Sci. Adv. 2022, 8, eadd4150. [Google Scholar] [CrossRef]
- Amadei, A.; Linssen, A.B.M.; Berendsen, H.J.C. Essential dynamics of proteins. Proteins Struct. Funct. Bioinform. 1993, 17, 412–425. [Google Scholar] [CrossRef]
- Tagliamonte, M.S.; Abid, N.; Borocci, S.; Sangiovanni, E.; Ostrov, D.A.; Pond, S.L.K.; Salemi, M.; Chillemi, G.; Mavian, C. Multiple Recombination Events and Strong Purifying Selection at the Origin of SARS-CoV-2 Spike Glycoprotein Increased Correlated Dynamic Movements. Int. J. Mol. Sci. 2020, 22, 80. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, J.; Xiao, T.; Peng, H.; Sterling, S.M.; Walsh, R.M.J.; Rawson, S.; Rits-Volloch, S.; Chen, B. Distinct Conformational States of SARS-CoV-2 Spike Protein. Science 2020, 369, 1586–1592. [Google Scholar] [CrossRef]
- Rockett, R.; Basile, K.; Maddocks, S.; Fong, W.; Agius, J.E.; Johnson-Mackinnon, J.; Arnott, A.; Chandra, S.; Gall, M.; Draper, J.; et al. Resistance mutations in SARS-CoV-2 Delta variant after sotrovimab use. N. Engl. J. Med. 2021, 386, 1477–1479. [Google Scholar] [CrossRef] [PubMed]
- Vellas, C.; Trémeaux, P.; Del Bello, A.; Latour, J.; Jeanne, N.; Ranger, N.; Danet, C.; Martin-Blondel, G.; Delobel, P.; Kamar, N.; et al. Resistance mutations in SARS-CoV-2 Omicron variant in patients treated with sotrovimab. Clin. Microbiol. Infect. 2022, 28, 1297–1299. [Google Scholar] [CrossRef] [PubMed]
- Huygens, S.; Oude Munnink, B.; Gharbharan, A.; Koopmans, M.; Rijnders, B. Sotrovimab resistance and viral persistence after treatment of immunocompromised patients infected with the SARS-CoV-2 Omicron variant. Clin. Infect. Dis. 2023, 76, e507–e509. [Google Scholar] [CrossRef]
- Gliga, S.; Luebke, N.; Killer, A.; Gruell, H.; Walker, A.; Dilthey, A.T.; Thielen, A.; Lohr, C.; Flaßhove, C.; Krieg, S.; et al. Rapid selection of sotrovimab escape variants in SARS-CoV-2 Omicron infected immunocompromised patients. Clin. Infect. Dis. 2023, 76, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Maggi, F.; Franchini, M.; McConnell, S.; Casadevall, A. Analysis of immune escape variants from antibody-based therapeutics against COVID-19: A systematic review. Int. J. Mol. Sci. 2022, 23, 29. [Google Scholar] [CrossRef] [PubMed]
- Ragonnet-Cronin, M.; Nutalai, R.; Huo, J.; Dijokaite-Guraliuc, A.; Das, R.; Tuekprakhon, A.; Supasa, P.; Liu, C.; Selvaraj, M.; Groves, N.; et al. Generation of SARS-CoV-2 escape mutations by monoclonal antibody therapy. Nat. Commun. 2023, 14, 3334. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Quiroga, R.; McConnell, S.; Johnson, M.C.; Casadevall, A. Convergent evolution in SARS-CoV-2 Spike creates a variant soup from which new COVID-19 waves emerge. Int. J. Mol. Sci. 2023, 24, 2264. [Google Scholar] [CrossRef]
Pt | Gender | Age | Risk Factors for COVID-19 Progression | Immunodeficiency | SARS-CoV-2 Vaccination Status | SARS-CoV-2 PCR Cycle Threshold (Ct) on the Day of Cilgavimab Infusion | SARS-CoV-2 Lineage | Resistance Mutation (% in Quasispecies) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7 | 30 | at Day 0 | at Day 7 | |||||||
1 | Female | 73 | age > 65 yrs, chronic lung disease | No | 3 doses | 11.9 | 21.2 | Neg | BA.5.2.1 | - | - |
2 | Male | 68 | age > 65 yrs, cardiovascular disease | No | 3 doses | 14.1 | 25.1 | 37.0 | BA.5.2 | K444N (47%) | - |
3 | Female | 69 | age > 65 yrs, cancer | Yes | 3 doses | 14.4 | 23.0 | NA | BA.4 | - | - |
4 | Female | 72 | age > 65 yrs, cancer | Yes | 3 doses | 12.9 | 19.4 | 36.9 | BA.5.1 | - | - |
5 | Male | 60 | chronic lung disease, obesity | No | 3 doses | 17.3 | 24.6 | NA | BA.5.2.1 | - | - |
6 | Female | 84 | age > 65 yrs, cancer, cardiovascular disease | Yes | 4 doses | 11.8 | 19.0 | Neg | BA.5.1 | - | - |
7 | Female | 82 | age > 65 yrs, obesity | No | 3 doses | 17.2 | 17.8 | NA | BF.5 (BA.5.1.2.5) * | - | - |
8 | Female | 55 | diabetes, cardiovascular disease | No | 3 doses | 17.5 | 25.5 | NA | BA.5.1.23 | - | - |
9 | Male | 70 | age > 65 yrs, cardiovascular disease | No | 3 doses | 12.8 | 26.5 | 36.6 | BA.5.2.1 | - | - |
10 | Female | 54 | cancer | Yes | 3 doses | 21.9 | 25.7 | Neg | BA.5.2 | - | - |
11 | Male | 63 | neurologic disease | No | Unvaccinated | 16.1 | 22.8 | NA | BA.4 | - | K444N (53%) |
12 | Female | 74 | age > 65 yrs, hematologic disease | Yes | 4 doses | 14.9 | 20.2 | NA | BA.5.6 | - | - |
13 | Male | 81 | age > 65 yrs, diabetes, chronic lung disease | No | 3 doses | 13.8 | 17.4 | NA | BA.5.1 | - | - |
14 | Female | 76 | age > 65 yrs, diabetes, cardiovascular disease, neurologic disease | No | 3 doses | 18.0 | 26.2 | NA | BA.5.1.25 | - | - |
15 | Female | 76 | age > 65 yrs, cardiovascular disease | No | 3 doses | 19.0 | 22.0 | NA | BA.5.1 | - | - |
16 | Male | 85 | age > 65 yrs, cardiovascular disease | No | 4 doses | 13.6 | 18.4 | NA | BA.5.1.23 | - | - |
17 | Female | 55 | cancer | Yes | 3 doses | 17.6 | 22.5 | NA | BA.5.1 | - | - |
18 | Male | 63 | renal impairment | No | 3 doses | 13.3 | 26.8 | NA | BQ.1.1 (BA.5.3.1–1.1.1.1.1) * | R346T (100%) and K444T (100%) | - |
19 | Female | 75 | age > 65 yrs, diabetes, cardiovascular disease | No | 3 doses | 16.2 | 22.8 | 35.6 | BA.4.6 | R346T (100%) | - |
20 | Female | 60 | kidney transplantation | Yes | 4 doses | 12.3 | 19.1 | NA | BA.5.2.1 | - | - |
21 | Female | 62 | Sjögren syndrome, immunosuppressive therapies | Yes | 3 doses | 12.8 | 16.4 | NA | BA.5.2.1 | - | - |
22 | Male | 61 | kidney transplantation | Yes | 4 doses | 17.6 | 22.7 | NA | BA.5.1 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruber, C.E.M.; Tucci, F.G.; Rueca, M.; Mazzotta, V.; Gramigna, G.; Vergori, A.; Fabeni, L.; Berno, G.; Giombini, E.; Butera, O.; et al. Treatment-Emergent Cilgavimab Resistance Was Uncommon in Vaccinated Omicron BA.4/5 Outpatients. Biomolecules 2023, 13, 1538. https://doi.org/10.3390/biom13101538
Gruber CEM, Tucci FG, Rueca M, Mazzotta V, Gramigna G, Vergori A, Fabeni L, Berno G, Giombini E, Butera O, et al. Treatment-Emergent Cilgavimab Resistance Was Uncommon in Vaccinated Omicron BA.4/5 Outpatients. Biomolecules. 2023; 13(10):1538. https://doi.org/10.3390/biom13101538
Chicago/Turabian StyleGruber, Cesare Ernesto Maria, Fabio Giovanni Tucci, Martina Rueca, Valentina Mazzotta, Giulia Gramigna, Alessandra Vergori, Lavinia Fabeni, Giulia Berno, Emanuela Giombini, Ornella Butera, and et al. 2023. "Treatment-Emergent Cilgavimab Resistance Was Uncommon in Vaccinated Omicron BA.4/5 Outpatients" Biomolecules 13, no. 10: 1538. https://doi.org/10.3390/biom13101538
APA StyleGruber, C. E. M., Tucci, F. G., Rueca, M., Mazzotta, V., Gramigna, G., Vergori, A., Fabeni, L., Berno, G., Giombini, E., Butera, O., Focosi, D., Prandi, I. G., Chillemi, G., Nicastri, E., Vaia, F., Girardi, E., Antinori, A., & Maggi, F. (2023). Treatment-Emergent Cilgavimab Resistance Was Uncommon in Vaccinated Omicron BA.4/5 Outpatients. Biomolecules, 13(10), 1538. https://doi.org/10.3390/biom13101538