Effects of Prenatal Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, on Offspring’s Health: Evidence from Epidemiological and Experimental Studies
Abstract
:1. Introduction
2. Search Strategy
3. Effects of BPS or BPF Prenatal Exposure on Offspring’s Health Outcomes
3.1. Effects on Fetal Growth
3.2. Effects on Gestational Period and Preterm Births
3.3. Effects on Cognitive Functions and Psychomotor Skills
3.4. Effects on Bone Development
3.5. Effects on Metabolic Parameters
4. Potential Mechanisms Underlying the Effects: Brief Overview
5. Potential Mechanisms of Sex-Specific Effects
6. Strengths and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vom Saal, F.S.; Vandenberg, L.N. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2021, 162, bqaa171. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, A.; Rutkowska, A.; Rachon, D. Health Risk of Exposure to Bisphenol A (BPA). Rocz. Panstw. Zakl. Hig. 2015, 66, 5–11. [Google Scholar] [PubMed]
- Manzoor, M.F.; Tariq, T.; Fatima, B.; Sahar, A.; Tariq, F.; Munir, S.; Khan, S.; Nawaz Ranjha, M.M.A.; Sameen, A.; Zeng, X.-A. An Insight into Bisphenol a, Food Exposure and Its Adverse Effects on Health: A Review. Front. Nutr. 2022, 9, 1047827. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). Bisphenol A (BPA): Use in Food Contact Application. Available online: https://www.fda.gov/ (accessed on 17 October 2023).
- Ye, X.; Wong, L.-Y.; Kramer, J.; Zhou, X.; Jia, T.; Calafat, A.M. Urinary Concentrations of Bisphenol A and Three Other Bisphenols in Convenience Samples of Us Adults During 2000–2014. Environ. Sci. Technol. 2015, 49, 11834–11839. [Google Scholar] [CrossRef]
- Lee, J.; Choi, K.; Park, J.; Moon, H.-B.; Choi, G.; Lee, J.J.; Suh, E.; Kim, H.-J.; Eun, S.-H.; Kim, G.-H. Bisphenol A Distribution in Serum, Urine, Placenta, Breast Milk, and Umbilical Cord Serum in a Birth Panel of Mother–Neonate Pairs. Sci. Total Environ. 2018, 626, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Grandin, F.C.; Lacroix, M.Z.; Gayrard, V.; Gauderat, G.; Mila, H.; Toutain, P.-L.; Picard-Hagen, N. Bisphenol S Instead of Bisphenol A: Toxicokinetic Investigations in the Ovine Materno-Feto-Placental Unit. Environ. Int. 2018, 120, 584–592. [Google Scholar] [CrossRef]
- Connors, L.T.; Zhu, H.-L.; Gill, M.; Walsh, E.; Singh, R.D.; Easson, S.; Ahmed, S.B.; Habibi, H.R.; Cole, W.C.; Thompson, J.A. Prenatal Exposure to a Low Dose of BPS Causes Sex-Dependent Alterations to Vascular Endothelial Function in Adult Offspring. Front. Toxicol. 2022, 4, 126. [Google Scholar] [CrossRef] [PubMed]
- Bellisario, V.; Cocchi, E.; Tassinari, R.; Squillacioti, G.; Musso, T.; Sottemano, S.; Zorzi, M.; Dalmasso, P.; Coscia, A.; Medana, C. Bisphenol A and S in the Urine of Newborns: Plastic for Non-Food Use Still without Rules. Biology 2021, 10, 188. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, H.; Zhou, S.; Zhang, X.; Peng, C.; Zhou, H.; Tong, Y.; Lu, Q. Association of Bisphenol A and Its Alternatives Bisphenol S and F Exposure with Hypertension and Blood Pressure: A Cross-Sectional Study in China. Environ. Pollut. 2020, 257, 113639. [Google Scholar] [CrossRef]
- Rancière, F.; Botton, J.; Slama, R.; Lacroix, M.Z.; Debrauwer, L.; Charles, M.A.; Roussel, R.; Balkau, B.; Magliano, D.J.; Group, D.S. Exposure to Bisphenol A and Bisphenol S and Incident Type 2 Diabetes: A Case–Cohort Study in the French Cohort Desir. Environ. Health Perspect. 2019, 127, 107013. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Fan, S.; Zhong, Y.; Li, J.; Zhao, Y.; Ni, S.; Liu, J.; Wu, Y. A Case-Control Study of Urinary Concentrations of Bisphenol a, Bisphenol F, and Bisphenol S and the Risk of Papillary Thyroid Cancer. Chemosphere 2023, 312, 137162. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Fei, Q.; Liu, S.; Weng, X.; Liang, H.; Wu, Y.; Wen, L.; Hao, G.; Cao, G.; Jing, C. The Bisphenol F and Bisphenol S and Cardiovascular Disease: Results from Nhanes 2013–2016. Environ. Sci. Eur. 2022, 34, 4. [Google Scholar] [CrossRef]
- Hao, K.; Luo, J.; Sun, J.; Ge, H.; Wang, Z. Associations of Urinary Bisphenol A and Its Alternatives Bisphenol S and F Concentrations with Depressive Symptoms among Adults. Chemosphere 2021, 279, 130573. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Lin, B.-G.; Zhou, B.; Cao, W.-C.; Chen, P.-P.; Deng, Y.-L.; Hou, J.; Sun, S.-Z.; Zheng, T.-Z.; Lu, W.-Q. Sex-Specific Associations of Prenatal Exposure to Bisphenol A and Its Alternatives with Fetal Growth Parameters and Gestational Age. Environ. Int. 2021, 146, 106305. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhao, H.; Braun, J.M.; Zheng, T.; Zhang, B.; Xia, W.; Zhang, W.; Li, J.; Zhou, Y.; Li, H. Associations of Trimester-Specific Exposure to Bisphenols with Size at Birth: A Chinese Prenatal Cohort Study. Environ. Health Perspect. 2019, 127, 107001. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Yang, P.; Deng, Y.-L.; Zeng, Q.; Lu, W.-Q.; Mei, S.-R. Prenatal Exposure to Bisphenol A and Its Analogues (Bisphenol F and S) and Ultrasound Parameters of Fetal Growth. Chemosphere 2020, 246, 125805. [Google Scholar] [CrossRef] [PubMed]
- Sol, C.M.; van Zwol-Janssens, C.; Philips, E.M.; Asimakopoulos, A.G.; Martinez-Moral, M.-P.; Kannan, K.; Jaddoe, V.W.; Trasande, L.; Santos, S. Maternal Bisphenol Urine Concentrations, Fetal Growth and Adverse Birth Outcomes: A Population-Based Prospective Cohort. Environ. Health 2021, 20, 60. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, S.; Liu, T.; Yang, C.; Wu, Y.; Tan, H.J.J.; Wei, B.; Ma, X.; Feng, B.; Jiang, Q. Association of Prenatal Exposure to Bisphenols and Birth Size in Zhuang Ethnic Newborns. Chemosphere 2020, 252, 126422. [Google Scholar] [CrossRef]
- Kim, S.; Park, E.; Park, E.-K.; Lee, S.; Kwon, J.-A.; Shin, B.-H.; Kang, S.; Park, E.-Y.; Kim, B. Urinary Concentrations of Bisphenol Mixtures During Pregnancy and Birth Outcomes: The Make Study. Int. J. Environ. Res. Public Health 2021, 18, 10098. [Google Scholar] [CrossRef]
- Wang, J.; Mei, H.; Zhou, A.-F.; Huang, L.-L.; Cao, Z.-Q.; Hong, A.-B.; Yang, M.; Xie, Q.-T.; Chen, D.; Yang, S.-P. The Associations of Birth Outcome Differences in Twins with Prenatal Exposure to Bisphenol A and Its Alternatives. Environ. Res. 2021, 200, 111459. [Google Scholar] [CrossRef]
- Aung, M.T.; Ferguson, K.K.; Cantonwine, D.E.; McElrath, T.F.; Meeker, J.D. Preterm Birth in Relation to the Bisphenol A Replacement, Bisphenol S, and Other Phenols and Parabens. Environ. Res. 2019, 169, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, J.; Xu, S.; Zhao, H.; Li, Y.; Zhou, Y.; Fang, J.; Liao, J.; Cai, Z.; Xia, W. Bisphenol A and Bisphenol S Exposures during Pregnancy and Gestational Age—A Longitudinal Study in China. Chemosphere 2019, 237, 124426. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yang, C.; Liu, T.; Tan, H.J.J.; Sheng, Y.; Wei, L.; Tang, P.; Huang, H.; Zeng, X.; Liu, S. Prenatal Exposure to Bisphenols and Risk of Preterm Birth: Findings from Guangxi Zhuang Birth Cohort in China. Ecotoxicol. Environ. Saf. 2021, 228, 112960. [Google Scholar] [CrossRef] [PubMed]
- Bornehag, C.-G.; Engdahl, E.; Hallerbäck, M.U.; Wikström, S.; Lindh, C.; Rüegg, J.; Tanner, E.; Gennings, C. Prenatal Exposure to Bisphenols and Cognitive Function in Children at 7 Years of Age in the Swedish Selma Study. Environ. Res. 2021, 150, 106433. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.; Xu, S.; Zhou, Y.; Zhao, H.; Li, Y.; Xiong, C.; Sun, X.; Liu, H.; Liu, W. Prenatal Exposure to Bisphenol A and Its Alternatives and Child Neurodevelopment at 2 Years. J. Hazard. Mater. 2020, 388, 121774. [Google Scholar] [CrossRef] [PubMed]
- van Zwol-Janssens, C.; Trasande, L.; Asimakopoulos, A.G.; Martinez-Moral, M.-P.; Kannan, K.; Philips, E.M.; Rivadeneira, F.; Jaddoe, V.W.; Santos, S. Fetal Exposure to Bisphenols and Phthalates and Childhood Bone Mass: A Population-Based Prospective Cohort Study. Environ. Res. 2020, 186, 109602. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, L.; Liu, B.; Wu, M.; Liu, Y.; Bi, J.; Liu, Q.; Chen, K.; Cao, Z.; Xu, S. Prenatal Exposure to Bisphenol S and Altered Newborn Mitochondrial DNA Copy Number in a Baby Cohort Study: Sex-Specific Associations. Chemosphere 2021, 263, 128019. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Shao, Y.; Huang, D.; Yang, C.; Liu, T.; Zeng, X.; Li, C.; Tang, Z.; Juan, J.T.H.; Song, Y. Effects of Prenatal Exposure to Bisphenols on Newborn Leucocyte Telomere Length: A Prospective Birth Cohort Study in China. Environ. Sci. Pollut. Res. 2021, 30, 25013–25023. [Google Scholar] [CrossRef]
- Jing, J.; Pu, Y.; Gingrich, J.; Veiga-Lopez, A. Gestational Exposure to Bisphenol A and Bisphenol S Leads to Fetal Skeletal Muscle Hypertrophy Independent of Sex. Toxicol. Sci. 2019, 172, 292–302. [Google Scholar] [CrossRef]
- Mao, J.; Jain, A.; Denslow, N.D.; Nouri, M.-Z.; Chen, S.; Wang, T.; Zhu, N.; Koh, J.; Sarma, S.J.; Sumner, B.W. Bisphenol A and Bisphenol S Disruptions of the Mouse Placenta and Potential Effects on the Placenta–Brain Axis. Proc. Natl. Acad. Sci. USA 2020, 117, 4642–4652. [Google Scholar] [CrossRef]
- Gingrich, J.; Pu, Y.; Roberts, J.; Karthikraj, R.; Kannan, K.; Ehrhardt, R.; Veiga-Lopez, A. Gestational Bisphenol S Impairs Placental Endocrine Function and the Fusogenic Trophoblast Signaling Pathway. Arch. Toxicol. 2018, 92, 1861–1876. [Google Scholar] [CrossRef] [PubMed]
- Kaimal, A.; Al Mansi, M.H.; Dagher, J.B.; Pope, C.; Varghese, M.G.; Rudi, T.B.; Almond, A.E.; Cagle, L.A.; Beyene, H.K.; Bradford, W.T. Prenatal Exposure to Bisphenols Affects Pregnancy Outcomes and Offspring Development in Rats. Chemosphere 2021, 276, 130118. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, N.; Iwano, H.; Suda, K.; Tsuji, E.; Tanemura, K.; Inoue, H.; Yokota, H. Adverse Effects of Maternal Exposure to Bisphenol F on the Anxiety-and Depression-like Behavior of Offspring. J. Vet. Med. Sci. 2017, 79, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Kinch, C.D.; Ibhazehiebo, K.; Jeong, J.-H.; Habibi, H.R.; Kurrasch, D.M. Low-Dose Exposure to Bisphenol A and Replacement Bisphenol S Induces Precocious Hypothalamic Neurogenesis in Embryonic Zebrafish. Proc. Natl. Acad. Sci. USA 2015, 112, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhang, J.; Chen, Y.; Wang, H.; Guo, M.; Wang, L.; Wang, Z.; Wu, S.; Shi, L.; Gu, A. Neurobehavioral Effects of Bisphenol S Exposure in Early Life Stages of Zebrafish Larvae (Danio Rerio). Chemosphere 2019, 217, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Lapp, H.; Margolis, A.; Champagne, F. Impact of a Bisphenol a, F, and S Mixture and Maternal Care on the Brain Transcriptome of Rat Dams and Pups. Neurotoxicology 2022, 93, 22–36. [Google Scholar] [CrossRef]
- Meng, Z.; Wang, D.; Liu, W.; Li, R.; Yan, S.; Jia, M.; Zhang, L.; Zhou, Z.; Zhu, W. Perinatal Exposure to Bisphenol S (BPS) Promotes Obesity Development by Interfering with Lipid and Glucose Metabolism in Male Mouse Offspring. Environ. Res. 2019, 173, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Molangiri, A.; Varma, S.; Hridayanka, K.S.N.; Srinivas, M.; Kona, S.R.; Ibrahim, A.; Duttaroy, A.K.; Basak, S. Gestational Exposure to Bisphenol S Induces Microvesicular Steatosis in Male Rat Offspring by Modulating Metaflammation. Sci. Total Environ. 2023, 904, 166775. [Google Scholar] [CrossRef]
- Gong, P.; Bailbé, D.; Tolu, S.; Pommier, G.; Liu, J.; Movassat, J. Preconceptional Exposure of Adult Male Rats to Bisphenol S Impairs Insulin Sensitivity and Glucose Tolerance in Their Male Offspring. Chemosphere 2023, 314, 137691. [Google Scholar] [CrossRef]
- Morimoto, S.; Solís-Lemus, E.; Jiménez-Vivanco, J.; Castellanos-Ruiz, D.; Díaz-Díaz, E.; Mendoza-Rodríguez, C.A. Maternal Perinatal Exposure to Bisphenol S Induces an Estrogenic Like Effect in Glucose Homeostasis in Male Offspring. Environ.Toxicol. 2022, 37, 2189–2200. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, J.; Wang, Y.; Sun, R.; Dong, G.; Wang, X.; Du, G. Prenatal Bisphenol S Exposure Induces Hepatic Lipid Deposition in Male Mice Offspring through Downregulation of Adipose-Derived Exosomal Mir-29a-3p. J. Hazard. Mater. 2023, 453, 131410. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, X.; Qin, J.; Wei, P.; Jia, Y.; Wang, J.; Ru, S. Long-Term Bisphenol S Exposure Induces Fat Accumulation in Liver of Adult Male Zebrafish (Danio Rerio) and Slows Yolk Lipid Consumption in F1 Offspring. Chemosphere 2019, 221, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Malaisé, Y.; Lencina, C.; Cartier, C.; Olier, M.; Ménard, S.; Guzylack-Piriou, L. Bisphenol a, S or F Mother’s Dermal Impregnation Impairs Offspring Immune Responses in a Dose and Sex-Specific Manner in Mice. Sci. Rep. 2021, 11, 1650. [Google Scholar] [CrossRef]
- Brulport, A.; Lencina, C.; Chagnon, M.-C.; Le Corre, L.; Guzylack-Piriou, L. Transgenerational Effects on Intestinal Inflammation Status in Mice Perinatally Exposed to Bisphenol S. Chemosphere 2021, 262, 128009. [Google Scholar] [CrossRef]
- Linillos-Pradillo, B.; Paredes, S.D.; Ortiz-Cabello, M.; Schlumpf, M.; Lichtensteiger, W.; Vara, E.; Tresguerres, J.A.; Rancan, L. Activation of Nlrp3 Inflammasome in Liver of Long Evans Lactating Rats and Its Perinatal Effects in the Offspring after Bisphenol F Exposure. Int. J. Mol. Sci. 2023, 24, 14129. [Google Scholar] [CrossRef]
- Linillos-Pradillo, B.; Rancan, L.; Murias, J.G.; Schlumpf, M.; Lichtensteiger, W.; Tresguerres, J.; Vara, E.; Paredes, S.D. Oxidative Stress Increases in Liver of Lactating Rats after BPF-Low-Dose Exposure: Perinatal Effects in the Offspring. Sci. Rep. 2023; Preprint. [Google Scholar] [CrossRef]
- Rubin, B.S. Bisphenol A: An Endocrine Disruptor with Widespread Exposure and Multiple Effects. J. Steroid Biochem. Mol. Biol. 2011, 127, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef]
- Aker, A.M.; Johns, L.; McElrath, T.F.; Cantonwine, D.E.; Mukherjee, B.; Meeker, J.D. Associations between Maternal Phenol and Paraben Urinary Biomarkers and Maternal Hormones during Pregnancy: A Repeated Measures Study. Environ. Int. 2018, 113, 341–349. [Google Scholar] [CrossRef]
- Bonnin, A.; Levitt, P. Fetal, Maternal, and Placental Sources of Serotonin and New Implications for Developmental Programming of the Brain. Neuroscience 2011, 197, 1–7. [Google Scholar] [CrossRef]
- Ranzil, S.; Walker, D.W.; Borg, A.J.; Wallace, E.M.; Ebeling, P.R.; Murthi, P. The Relationship between the Placental Serotonin Pathway and Fetal Growth Restriction. Biochimie 2019, 161, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Ranzil, S.; Ellery, S.; Walker, D.W.; Vaillancourt, C.; Alfaidy, N.; Bonnin, A.; Borg, A.; Wallace, E.M.; Ebeling, P.R.; Erwich, J.J. Disrupted Placental Serotonin Synthetic Pathway and Increased Placental Serotonin: Potential Implications in the Pathogenesis of Human Fetal Growth Restriction. Placenta 2019, 84, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Pęksa, M.; Kamieniecki, A.; Gabrych, A.; Lew-Tusk, A.; Preis, K.; Świątkowska-Freund, M. Loss of E-Cadherin Staining Continuity in the Trophoblastic Basal Membrane Correlates with Increased Resistance in Uterine Arteries and Proteinuria in Patients with Pregnancy-Induced Hypertension. J. Clin. Med. 2022, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Zi, Y.; Ma, C.; He, S.; Yang, H.; Zhang, M.; Gao, F.; Liu, Y. Effects of Intrauterine Growth Restriction during Late Pregnancy on the Cell Growth, Proliferation, and Differentiation in Ovine Fetal Thymuses. Anim. Biosci. 2022, 35, 989. [Google Scholar] [CrossRef] [PubMed]
- Jonker, S.S.; Kamna, D.; LoTurco, D.; Kailey, J.; Brown, L.D. Iugr Impairs Cardiomyocyte Growth and Maturation in Fetal Sheep. J. Endocrinol. 2018, 239, 253–265. [Google Scholar] [CrossRef]
- Wooding, F. The Role of the Binucleate Cell in Ruminant Placental Structure. J. Reprod. Fertil. 1982, 31, 31–39. [Google Scholar]
- Galan, H.L.; Regnault, T.R.; Le Cras, T.D.; Tyson, R.W.; Anthony, R.V.; Wilkening, R.B.; Abman, S.H. Cotyledon and Binucleate Cell Nitric Oxide Synthase Expression in an Ovine Model of Fetal Growth Restriction. J. Appl. Physiol. 2001, 90, 2420–2426. [Google Scholar] [CrossRef] [PubMed]
- Cable, J.K.; Grider, M.H. Physiology, Progesterone. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Norwitz, E.R.; Caughey, A.B. Progesterone Supplementation and the Prevention of Preterm Birth. Rev. Obstet. Gynecol. 2011, 4, 60. [Google Scholar]
- Norman, J.E. Progesterone and Preterm Birth. Int. J. Gynaecol. Obstet. 2020, 150, 24–30. [Google Scholar] [CrossRef]
- Oliver, R.; Pillarisetty, L.S. Anatomy, Abdomen and Pelvis, Ovary Corpus Luteum. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Zakar, T.; Hertelendy, F. Progesterone Withdrawal: Key to Parturition. Am. J. Obstet. Gynecol. 2007, 196, 289–296. [Google Scholar] [CrossRef]
- Xie, N.; Liu, L.; Li, Y.; Yu, C.; Lam, S.; Shynlova, O.; Gleave, M.; Challis, J.R.; Lye, S.; Dong, X. Expression and Function of Myometrial Psf Suggest a Role in Progesterone Withdrawal and the Initiation of Labor. Mol. Endocrinol. 2012, 26, 1370–1379. [Google Scholar] [CrossRef]
- Behnia, F.; Peltier, M.; Getahun, D.; Watson, C.; Saade, G.; Menon, R. High Bisphenol A (BPA) Concentration in the Maternal, but Not Fetal, Compartment Increases the Risk of Spontaneous Preterm Delivery. J. Matern. Fetal Neonatal Med. 2016, 29, 3583–3589. [Google Scholar] [CrossRef] [PubMed]
- Vidal, M.S., Jr.; Menon, R.; Yu, G.F.B.; Amosco, M.D. Actions of Bisphenol A on Different Feto-Maternal Compartments Contributing to Preterm Birth. Int. J. Mol. Sci. 2022, 23, 2411. [Google Scholar] [CrossRef]
- Basak, S.; Das, M.K.; Duttaroy, A.K. Plastics Derived Endocrine-Disrupting Compounds and Their Effects on Early Development. Birth Defects Res. 2020, 112, 1308–1325. [Google Scholar] [CrossRef]
- Mustieles, V.; Zhang, Y.; Yland, J.; Braun, J.M.; Williams, P.L.; Wylie, B.J.; Attaman, J.A.; Ford, J.B.; Azevedo, A.; Calafat, A.M. Maternal and Paternal Preconception Exposure to Phenols and Preterm Birth. Environ. Int. 2020, 137, 105523. [Google Scholar] [CrossRef] [PubMed]
- Jeyarajah, M.J.; Jaju Bhattad, G.; Kelly, R.D.; Baines, K.J.; Jaremek, A.; Yang, F.-H.P.; Okae, H.; Arima, T.; Dumeaux, V.; Renaud, S.J. The Multifaceted Role of Gcm1 during Trophoblast Differentiation in the Human Placenta. Proc. Natl. Acad. Sci. USA 2022, 119, e2203071119. [Google Scholar] [CrossRef] [PubMed]
- Soustelle, L.; Trousse, F.; Jacques, C.; Ceron, J.; Cochard, P.; Soula, C.; Giangrande, A. Neurogenic Role of Gcm Transcription Factors Is Conserved in Chicken Spinal Cord. Development 2007, 134, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Horackova, H.; Karahoda, R.; Vachalova, V.; Turkova, H.; Abad, C.; Staud, F. Functional Characterization of Dopamine and Norepinephrine Transport across the Apical and Basal Plasma Membranes of the Human Placental Syncytiotrophoblast. Sci. Rep. 2022, 12, 11603. [Google Scholar] [CrossRef]
- Liu, Y.; Han, W.; Xu, Z.; Fan, W.; Peng, W.; Luo, S. Comparative Toxicity of Pristine Graphene Oxide and Its Carboxyl, Imidazole or Polyethylene Glycol Functionalized Products to Daphnia Magna: A Two Generation Study. Environ. Pollut. 2018, 237, 218–227. [Google Scholar] [CrossRef]
- Lu, L.; Zhan, T.; Ma, M.; Xu, C.; Wang, J.; Zhang, C.; Liu, W.; Zhuang, S. Thyroid Disruption by Bisphenol S Analogues Via Thyroid Hormone Receptor Β: In Vitro, In Vivo, and Molecular Dynamics Simulation Study. Environ. Sci. Technol. 2018, 52, 6617–6625. [Google Scholar] [CrossRef]
- Hernandez, A. 3,5-Diiodo-L-Thyronine (T2) in Dietary Supplements: What Are the Physiological Effects? Endocrinology 2015, 156, 5–7. [Google Scholar] [CrossRef]
- Burch, H.B.; Burman, K.D.; Cooper, D.S.; Hennessey, J.V. A 2013 Survey of Clinical Practice Patterns in the Management of Primary Hypothyroidism. J. Clin. Endocrinol. Metab. 2014, 99, 2077–2085. [Google Scholar] [CrossRef] [PubMed]
- Pemberton, H.; Franklyn, J.; Kilby, M. Thyroid Hormones and Fetal Brain Development. Minerva Ginecol. 2005, 57, 367–378. [Google Scholar] [PubMed]
- Kok, D.E.; Dhonukshe-Rutten, R.A.; Lute, C.; Heil, S.G.; Uitterlinden, A.G.; van der Velde, N.; van Meurs, J.B.; van Schoor, N.M.; Hooiveld, G.J.; de Groot, L.C. The Effects of Long-Term Daily Folic Acid and Vitamin B12 Supplementation on Genome-Wide DNA Methylation in Elderly Subjects. Clin. Epigenetics 2015, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Bakulski, K.M.; Dou, J.F.; Feinberg, J.I.; Brieger, K.K.; Croen, L.A.; Hertz-Picciotto, I.; Newschaffer, C.J.; Schmidt, R.J.; Fallin, M.D. Prenatal Multivitamin Use and Mthfr Genotype Are Associated with Newborn Cord Blood DNA Methylation. Int. J. Environ. Res. Public Health 2020, 17, 9190. [Google Scholar] [CrossRef] [PubMed]
- García-Recio, E.; Costela-Ruiz, V.J.; Illescas-Montes, R.; Melguizo-Rodríguez, L.; García-Martínez, O.; Ruiz, C.; De Luna-Bertos, E. Modulation of Osteogenic Gene Expression by Human Osteoblasts Cultured in the Presence of Bisphenols BPF, BPS, or BPAF. Int. J. Mol. Sci. 2023, 24, 4256. [Google Scholar] [CrossRef] [PubMed]
- García-Recio, E.; Costela-Ruiz, V.J.; Melguizo-Rodríguez, L.; Ramos-Torrecillas, J.; Illescas-Montes, R.; De Luna-Bertos, E.; Ruiz, C. Effects of Bisphenol F, Bisphenol S, and Bisphenol Af on Cultured Human Osteoblasts. Arch. Toxicol. 2023, 97, 1899–1905. [Google Scholar] [CrossRef] [PubMed]
- Reimann, B.; Janssen, B.G.; Alfano, R.; Ghantous, A.; Espín-Pérez, A.; de Kok, T.M.; Saenen, N.D.; Cox, B.; Robinson, O.; Chadeau-Hyam, M. The Cord Blood Insulin and Mitochondrial DNA Content Related Methylome. Front. Genet. 2019, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Vriens, A.; Plusquin, M.; Baeyens, W.; Bruckers, L.; Den Hond, E.; Loots, I.; Nelen, V.; Schoeters, G.; Janssen, B.G.; Nawrot, T.S. Cord Blood Leptin and Insulin Levels in Association with Mitochondrial DNA Content. J. Transl. Med. 2018, 16, 224. [Google Scholar] [CrossRef]
- Cheng, F.; Carroll, L.; Joglekar, M.V.; Januszewski, A.S.; Wong, K.K.; Hardikar, A.A.; Jenkins, A.J.; Ma, R.C. Diabetes, Metabolic Disease, and Telomere Length. Lancet Diabetes Endocrinol. 2021, 9, 117–126. [Google Scholar] [CrossRef]
- Kirchner, H.; Shaheen, F.; Kalscheuer, H.; Schmid, S.M.; Oster, H.; Lehnert, H. The Telomeric Complex and Metabolic Disease. Genes 2017, 8, 176. [Google Scholar] [CrossRef] [PubMed]
- Khalangot, M.; Krasnienkov, D.; Vaiserman, A. Telomere Length in Different Metabolic Categories: Clinical Associations and Modification Potential. Exp. Biol. Med. 2020, 245, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Von Zglinicki, T. Oxidative Stress Shortens Telomeres. Trends Biochem. Sci. 2002, 27, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Kupsco, A.; Sanchez-Guerra, M.; Amarasiriwardena, C.; Brennan, K.J.; Estrada-Gutierrez, G.; Svensson, K.; Schnaas, L.; Pantic, I.; Téllez-Rojo, M.M.; Baccarelli, A.A. Prenatal Manganese and Cord Blood Mitochondrial DNA Copy Number: Effect Modification by Maternal Anemic Status. Environ. Int. 2019, 126, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Du, J.; Xiao, Z.; Jiang, Y.; Jin, L.; Weng, Q. Association between the Peripartum Maternal and Fetal Telomere Lengths and Mitochondrial DNA Copy Numbers and Preeclampsia: A Prospective Case–Control Study. BMC Pregnancy Childbirth 2022, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Hardbower, D.M.; de Sablet, T.; Chaturvedi, R.; Wilson, K.T. Chronic Inflammation and Oxidative Stress: The Smoking Gun for Helicobacter Pylori-Induced Gastric Cancer? Gut Microbes 2013, 4, 475–481. [Google Scholar] [CrossRef]
- Kander, M.C.; Cui, Y.; Liu, Z. Gender Difference in Oxidative Stress: A New Look at the Mechanisms for Cardiovascular Diseases. J. Cell. Mol. Med. 2017, 21, 1024–1032. [Google Scholar] [CrossRef]
- Rosenfeld, C.S. Sex-Specific Placental Responses in Fetal Development. Endocrinology 2015, 156, 3422–3434. [Google Scholar] [CrossRef]
Study Design/Location | BPs Exposure Level MUC (µg/L)/DR (%) | Main Outcomes | Reference |
---|---|---|---|
Participant Characteristics | |||
Cohort/China n = 1197 mother–newborn pairs (mothers’ age > 18 years; during the late gestation period, 35–47 weeks; singleton pregnancy) | BPS: 0.40 */47.9 BPF: 0.57 */77.1 | BPF in the 3rd TM was associated with: ↓ birth length by 0.21 cm in female newborns; [95% CI: −0.36, −0.07; p < 0.01]. ↑ ponderal index by 0.04 g/cm3 × 100; [95% CI: 0.01, 0.08; p = 0.02]. BPS in the 3rd TM was associated with: ↓ gestational age by 0.20 weeks (linear dose ↓ dependent association in women carrying ↓ female fetuses); [95% CI: −0.37, −0.03; p = 0.02]. | [15] |
Cohort/China n = 845 mother–infant pairs (mothers’ median age in years, < 25 (12.4%), 26–35 (83%), and ≥ 36 (4.9%); during full gestation; singleton pregnancy) | In the 1st, 2nd, and 3rd TMs, respectively/average DR: BPS: 0.3, 0.4, and 0.4/86.8 BPF: 0.6, 0.7, and 0.7/98.3 | BPF in the 1st TM was associated with: ↓ birth weight (grams); [β: −27; 95% CI: −55, 0; p < 0.05]. BPF in the 3rd TM was associated with: ↓ ponderal index (kg/m3 × 100); [β: −0:17; 95% CI: −0.32, −0.02; p < 0.05] with each increase in exposure quartiles. BPS in the 1st TM was associated with: ↓ birth weight (grams); [β: −38; 95% CI: −65, −11; p < 0.05]. ↓ ponderal index (kg/m3 × 100); [β: −0:18; 95% CI: −0.34, −0.02; p < 0.05]. BPS in the 2nd TM was associated with: ↓ birth weight (grams); [β: −43; 95% CI: −71, −15; p < 0.05]. ↓ birth length (cm); [β: −0.12; 95% CI: −0.23, −0.02; p < 0.05]. | [16] |
Cohort/China n = 322 mother–newborn pairs (mothers’ age ≥ 18 years; during the late gestation period, ≥35 weeks; singleton pregnancy) | BPS: 0.03/52.5 BPF: 0.08/79.8 | BPS and BPF in the 3rd TM: No significant associations with fetal growth parameters were observed compared to BPA exposure. | [17] |
Cohort/Netherlands n = 1379 mother–newborn pairs (mothers’ median age 30.5 years; during full gestation; singleton pregnancy) | In the 1st, 2nd, and 3rd TMs, respectively: BPS: 0.17, 0.03, and ND/- BPF: 0.13, ND, and 0.13/- | BPS across all three TMs was associated with: ↑ fetal head circumference (mm); [difference: 0.18; 95% CI: 0.01, 0.34; p < 0.05]. BPS in the 1st TM was associated with: ↑ fetal head circumference (mm) in 2nd and 3rd TMs; [difference: 0.15; 95% CI: 0.05, 0.26 and 0.12; 95% CI: 0.02, 0.23, respectively; p < 0.02]. ↑ fetal weight (g) in 2nd and 3rd TMs; [difference: 0.12; 95% CI: 0.02, 0.22 and 0.16; 95% CI: 0.06, 0.26, respectively; p < 0.02]. | [18] |
Cohort/China n = 2023 mother–infant pairs (mothers’ median age 28.2 years; during full gestation; singleton pregnancy) | BPS: 0.09 **/86.9 BPF: 0.44 **/61.8 | BPF mean serum concentrations were associated with: ↓ birth weight (grams) in boys; [β: −72.51; 95% CI: −136.59, −8.43; p = 0.031]. ↓ ponderal index (kg/m3 × 100) with BPF, observed more in boys; [β: −0.71; 95% CI: −1.31, −0.10; p = 0.021]. BPS exposure had no significant associations. | [19] |
Cohort/South Korea n = 180 mother–infant pairs (mothers’ median age < 30 years (22.8%) and ≥ 30 years (77.2%); 96% during late gestation period, ≥37 weeks; singleton pregnancy) | BPS: 0.1 */- BPF: 0.2 */- | BPS exposure was associated with: ↓ birth weight (grams) for each 10-fold increase in adjusted models ***; [β: −44.2; 95% CI: −92.7, 4.4; p = 0.07]. BPF exposure was associated with: ↑ birth weight (grams); [β: 125.5; 95% CI: 45.0, 205.9; p = 0.003]. | [20] |
Cohort/China n = 289 mother–twin pairs (mothers’ median age 30.06 years; during full gestation; twin pregnancy) | BPS: 0.80/- BPF: 2.52/- | BPF in the 2nd TM was associated with: ↑ birth weight (grams); [difference: 72.77; 95% CI: 0.84, 144.7; p < 0.05]. BPS exposure had no significant associations. | [21] |
Case–control/United States n = 130 preterm birth cases and 350 random control pregnancy (mothers’ median age 25–35 years; during late gestation ≥ 37 weeks; singleton pregnancy) | In the 3rd TM: BPS: -/20 | BPS was associated with: ↑ odds of overall preterm birth (spontaneous and placental); [OR: 2.05; 95% CI: 1.09, 3.89; p = 0.03]. | [22] |
Cohort/China n = 850 mother–infant pairs (mothers’ median age 25–35 years; 97.5% during late pregnancy, ≥ 37 weeks; singleton pregnancy) | In the 1st, 2nd, and 3rd TMs, respectively: BPS: 0.45, 0.44, and 0.50 */62 – 68 ^ | BPS had a nonsignificant association with gestation period or preterm birth (in adjusted models). | [23] |
Cohort/China n = 2023 mother–infant pairs (mothers’ median age 29 years; during full gestation; singleton pregnancy) | BPS: 0.10/- BPF: 0.60/- | BPs mixture was associated with: ↑ preterm birth; [OR: 1.52; 95% CI: 1.04, 2.21; p < 0.05]. % of contribution: BPF (43.7%), BPS (29.6%) and BPA (26.8%). | [24] |
Cohort/Sweden n = 803 mother–child pairs (mothers’ median age, 31.4 years; during full gestation; singleton pregnancy) | BPS: 0.07/- BPF: 0.13/- | BPF was associated with: ↓ in full IQ scale, more noted in boys; [β: −2.86; 95% CI: −4.54, −1.18; p = 0.001]. BPS exposure had no significant associations. | [25] |
Cohort/China n = 463 mother–child pairs (mothers’ median age 25–34 years; gestational median age, 39 weeks; 87.7% singleton pregnancy) | BPS: 0.37/81–88 ^ BPF: 0.68/98–98.5 ^ | BPS highest exposure level vs. lowest was associated with: ↓ in psychomotor development index; [β: −5.52; 95% CI: −10.06, −0.99; p = 0.02] observed more in boys; [β: −7.61; 95% CI: −13.99, −1.24; p = 0.02]. BPF exposure had no significant associations. | [26] |
Cohort/Netherlands n = 1362 mother–child pairs (mothers’ median age 30.6 years; during full gestation; singleton pregnancy) | In 1st, 2nd, and 3rd TMs: BPS: 0.17, 0.03, and 0.03/- BPF: 0.13, ND, and 0.13/- | BPS in the 1st TM was associated with: ↓ bone mineral density at 10 years old; [β: −6.08; 95% CI: −9.97, −2.19; p < 0.01]. | [27] |
Cohort/China n = 762 mother–newborn pairs (mothers’ median age 28.6 years; during full gestation; singleton pregnancy) | In 1st, 2nd, and 3rd TMs: BPS: 0.32, 0.34, and 0.36/- | BPS in the 1st TM was associated with: ↓ mtDNAcn of male newborns by 59%; [95% CI: −75.16, −32.58; p < 0.001]. | [28] |
Cohort/China n = 801 mother–infant pairs (mothers’ median age 28.3 years; gestational age < 13 weeks; singleton pregnancy) | BPS: 0.10 */90.9 BPF: 0.46 */65.4 | BPS was associated with: ↓ cord blood telomere length by 3.19%; [95% CI: −6.08, −0.21; p < 0.05]. | [29] |
Model System | BPs Exposure System | Main Outcomes | Reference |
---|---|---|---|
Dose/Period | |||
Pregnant sheep | Subcutaneous injections BPA or BPS (0.5 mg kg−1 BW)/daily from gestational day 30 to 100 | BPA- and BPS-exposed fetal skeletal muscle showed: ↑ muscle fiber hypertrophy ↑ expression of myogenic regulatory factors | [30] |
Mouse dams | Oral administration to dams before pregnancy BPA or BPS (200 μg kg−1 BW)/daily for 2 weeks and after breeding until embryonic day 12.5 | Both BPA- and BPS-exposed placentas showed: ↓ serotonin ↑ dopamine | [31] |
Pregnant sheep | Injection to pregnant sheep BPS or BPA (0.5 mg kg−1 BW, internal fetal doses ~2.6 ng mL−1 of BPA and ~7.7 ng mL−1 of BPS)/daily from gestational day 30 to 100 | BPS-exposed placentas showed: ↓ E-cadherin protein expression by 50%. ↓ binucleate cells by ~20%. ↑ glial cell missing-1 protein expression by ~3 folds | [32] |
Pregnant rats | Oral administration to dams during pregnancy BPA, BPS, and BPF (1 or 5 mg kg−1 BW)/daily from gestational days 6 to 21 | BPS- and BPF-exposed dams showed: ↑ spontaneous abortions (over 80% of dams, BPF only) ↓ number of corpora lutea | [33] |
Pregnant mice | Oral administration to dams during pregnancy BPA or BPF (0 or 10 mg kg−1 BW)/daily from gestational day 11.5 to 18.5 | Prenatal BPF-exposed offspring showed: ↑ anxiety and depressive state | [34] |
Zebrafish embryos | Exposed in a test solution BPA or BPS (0.0068 μM)/daily until day 5 postfertilization | BPA and BPS exposure showed: ↑ neurogenesis within the hypothalamus by 180% for BPA and 240% for BPS (resulted in later hyperactive behaviors in the zebrafish larvae) | [35] |
Zebrafish embryos | Exposed in a test solution BPS (0, 0.03, 0.3 and 3.0 mg L)/daily until day 6 postfertilization | BPS exposure showed: ↓ locomotor behavior ↑ oxidative stress ∆ neurodevelopment genes expression | [36] |
Pregnant rats | Oral administration to dams Mixture of BPA, BPS, and BPF (150 µg kg−1 BW)/daily from gestational day 8 to day of birth | Prenatal bisphenols-exposed offspring showed: ∆ expression of over 2000 genes (amygdala was the most affected region). ↑ genes expression in the hypothalamus | [37] |
Pregnant mice | Oral administration to dams during pregnancy BPS (100 μg kg−1 BW)/daily from gestational day 7 to postnatal day 21 | Perinatal BPS-exposed male offspring showed: ↑ body weight ↑ epididymal white adipose tissue ↑ liver triglyceride and cholesterol ↑ liver lipid accumulation | [38] |
Pregnant rats | Oral administration to dams BPA or BPS (0.0, 0.4, 4.0 μg kg−1 BW)/daily from gestational day 4 to 21 | Prenatal BPS-exposed male offspring showed: ∆ feed efficiency ∆ leptin signaling ↑ adipocyte hypertrophy ↑ fatty liver ↑ adipose tissue inflammation ↑ oxidative stress in adipose tissue | [39] |
Adult rats | Administration through dams’ drinking water BPS (4 and 40 μg kg−1 BW)/daily for 2 months before mating | Prenatal BPS-exposed male offspring showed (lower dose): ↑ body weight ↓ glucose tolerance ↓ insulin sensitivity | [40] |
Pregnant mice | Oral administration to dams during pregnancy and lactation BPS (0.05 or 20 mg kg−1 BW)/daily from gestational day 6 to postnatal day 21 | Perinatal BPF-exposed offspring showed: ↓ body weight ↑ glucose tolerance ↑ pancreatic β-cell proliferation | [41] |
Pregnant mice | Oral administration to dams BPS (50 μg kg−1 BW)/daily during gestation | Prenatal BPS-exposed male offspring showed: ↑ body weight ∆ lipid metabolism ↑ liver triglyceride ↑ adipocyte hypertrophy ↑ hepatic lipid deposition | [42] |
Zebrafish | Exposed in a test solution BPS (1, 10, 100, and 1000 mg L−1)/daily for 120 days | Prenatal BPS-exposed offspring showed: ∆ lipid metabolism | [43] |
Mice dams | Dermal exposure to dams BPA, BPS, or BPF (5 or 50 μg kg−1 BW)/daily from gestation day 15 to postnatal day 21 | Perinatal BPF-exposed offspring showed: ∆ immune responses | [44] |
Pregnant mice | Exposed to drinking water from dams BPS (1.5 µg kg−1 BW)/daily from gestational day 0 until weaning of offspring | Perinatal BPS-exposed offspring showed: ↑ inflammatory response (observed in F1 and F2) | [45] |
Lactating rats | Oral administration to dams BPF (0.0365 and 3.65 mg kg−1 BW)/daily | Perinatal BPF-exposed female and male offspring showed: ↑ liver inflammation | [46] |
Lactating rats | Oral administration to dams BPF (0.0365 and 3.65 mg kg−1 BW)/daily until postnatal day 6 | Perinatal BPF-exposed female and male offspring showed: ↑ lipid peroxidation ↑ oxidative stress | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algonaiman, R.; Almutairi, A.S.; Al Zhrani, M.M.; Barakat, H. Effects of Prenatal Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, on Offspring’s Health: Evidence from Epidemiological and Experimental Studies. Biomolecules 2023, 13, 1616. https://doi.org/10.3390/biom13111616
Algonaiman R, Almutairi AS, Al Zhrani MM, Barakat H. Effects of Prenatal Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, on Offspring’s Health: Evidence from Epidemiological and Experimental Studies. Biomolecules. 2023; 13(11):1616. https://doi.org/10.3390/biom13111616
Chicago/Turabian StyleAlgonaiman, Raya, Abdulkarim S. Almutairi, Muath M. Al Zhrani, and Hassan Barakat. 2023. "Effects of Prenatal Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, on Offspring’s Health: Evidence from Epidemiological and Experimental Studies" Biomolecules 13, no. 11: 1616. https://doi.org/10.3390/biom13111616
APA StyleAlgonaiman, R., Almutairi, A. S., Al Zhrani, M. M., & Barakat, H. (2023). Effects of Prenatal Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, on Offspring’s Health: Evidence from Epidemiological and Experimental Studies. Biomolecules, 13(11), 1616. https://doi.org/10.3390/biom13111616