Synthesis and Biological Evaluation of Benzo [4,5]- and Naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinone Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Synthesis
2.1.1. Methyl 2-(7-Hydroxy-1-oxobenzo[4,5]imidazo[1,2-c]pyrimidin-2(1H)-yl)acetate 2a
2.1.2. Methyl 2-(5-Hydroxy-11-oxonaphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidin-10(11H)-yl)acetate 2b
2.1.3. General Procedure for the Preparation of Ligands 3 with One Amino-Containing Tether
2.1.4. General Procedure for the Preparation of Intermediates 4
2.1.5. General Procedure for the Preparation of Derivatives 5 with Two Amino-Containing Tethers
2.1.6. General Procedure for the Preparation of Di-Trifluoroacetate Salt of Derivatives 6 Bearing Two Dimethylamino-Containing Tethers
2.1.7. General Procedure for the Preparation of Trifluoroacetate Salt of Derivatives 7 Bearing Two Guanidino-Containing Tethers
2.1.8. Dihydrochloride Salt of N-(2-Aminoethyl)-2-(5-(2-((2-aminoethyl)amino)-2-oxoethoxy)-11-oxonaphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidin-10(11H)-yl)acetamide (5b·2HCl)
2.2. Cell-Based Assays
2.2.1. Cell Lines
2.2.2. MTT Assay
2.2.3. Apoptosis/Necrosis Assay
2.2.4. Cell Cycle Assay
2.3. Oligonucleotide-Based Assays
2.3.1. FRET-Melting Assay
2.3.2. MST Assay
2.4. Dual Luciferase Reporter (DLR) Assay
2.5. Fluorescent Intercalator Displacement (FID) Assay
3. Results and Discussion
3.1. Synthesis of the Compounds
3.2. Cytotoxicity Assays
3.3. Verification of DNA Targets: FRET-Melting and Microscale Thermophoresis (MST) Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattiuzzi, C.; Lippi, G. Current Cancer Epidemiology. J. Epidemiol. Glob. Health 2019, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef] [PubMed]
- Głuszyńska, A. Biological Potential of Carbazole Derivatives. Eur. J. Med. Chem. 2015, 94, 405–426. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yang, R.; Wu, J.; Zhong, B.; Li, Y. Comprehensive Review of α-Carboline Alkaloids: Natural Products, Updated Synthesis, and Biological Activities. Front. Chem. 2022, 10, 988327. [Google Scholar] [CrossRef]
- Sha, F.; Tao, Y.; Tang, C.-Y.; Zhang, F.; Wu, X.-Y. Construction of Benzo[c]Carbazoles and Their Antitumor Derivatives through the Diels–Alder Reaction of 2-Alkenylindoles and Arynes. J. Org. Chem. 2015, 80, 8122–8133. [Google Scholar] [CrossRef]
- Dai, J.; Dan, W.; Zhang, Y.; Wang, J. Recent Developments on Synthesis and Biological Activities of γ-Carboline. Eur. J. Med. Chem. 2018, 157, 447–461. [Google Scholar] [CrossRef]
- Abinaya, R.; Srinath, S.; Soundarya, S.; Sridhar, R.; Balasubramanian, K.K.; Baskar, B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives—An Update. J. Mol. Struct. 2022, 1261, 132750. [Google Scholar] [CrossRef]
- Alekseyev, R.S.; Kurkin, A.V.; Yurovskaya, M.A. γ-Carbolines and Their Hydrogenated Derivatives. 1. Aromatic γ-Carbolines: Methods of Synthesis, Chemical and Biological Properties (Review). Chem. Heterocycl. Compd. 2009, 45, 889–925. [Google Scholar] [CrossRef]
- Chen, J.; Dong, X.; Liu, T.; Lou, J.; Jiang, C.; Huang, W.; He, Q.; Yang, B.; Hu, Y. Design, Synthesis, and Quantitative Structure–Activity Relationship of Cytotoxic γ-Carboline Derivatives. Bioorg. Med. Chem. 2009, 17, 3324–3331. [Google Scholar] [CrossRef]
- Chen, J.; Liu, T.; Wu, R.; Lou, J.; Cao, J.; Dong, X.; Yang, B.; He, Q.; Hu, Y. Design, Synthesis, and Biological Evaluation of Novel N-γ-Carboline Arylsulfonamides as Anticancer Agents. Bioorg. Med. Chem. 2010, 18, 8478–8484. [Google Scholar] [CrossRef]
- Huang, F.-C.; Chang, C.-C.; Lou, P.-J.; Kuo, I.-C.; Chien, C.-W.; Chen, C.-T.; Shieh, F.-Y.; Chang, T.-C.; Lin, J.-J. G-Quadruplex Stabilizer 3,6-Bis(1-Methyl-4-Vinylpyridinium)Carbazole Diiodide Induces Accelerated Senescence and Inhibits Tumorigenic Properties in Cancer Cells. Mol. Cancer Res. 2008, 6, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Fossé, P.; René, B.; Saucier, J.-M.; Chi Hung, N.; Bisagni, E.; Paoletti, C. Stimulation by γ-Carboline Derivatives (Simplified Analogues of Antitumor Ellipticines) of Site Specific DNA Cleavage by Calf DNA Topoisomerase II. Biochem. Pharmacol. 1990, 39, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Li, P.-H.; Jiang, H.; Zhang, W.-J.; Li, Y.-L.; Zhao, M.-C.; Zhou, W.; Zhang, L.-Y.; Tang, Y.-D.; Dong, C.-Z.; Huang, Z.-S.; et al. Synthesis of Carbazole Derivatives Containing Chalcone Analogs as Non-Intercalative Topoisomerase II Catalytic Inhibitors and Apoptosis Inducers. Eur. J. Med. Chem. 2018, 145, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.-C.; Chang, C.-C.; Wang, J.-M.; Chang, T.-C.; Lin, J.-J. Induction of Senescence in Cancer Cells by the G-Quadruplex Stabilizer, BMVC4, Is Independent of Its Telomerase Inhibitory Activity: Telomerase-Independent Senescence Induced by BMVC4. Br. J. Pharmacol. 2012, 167, 393–406. [Google Scholar] [CrossRef]
- Panda, D.; Debnath, M.; Mandal, S.; Bessi, I.; Schwalbe, H.; Dash, J. A Nucleus-Imaging Probe That Selectively Stabilizes a Minor Conformation of c-MYC G-Quadruplex and Down-Regulates c-MYC Transcription in Human Cancer Cells. Sci. Rep. 2015, 5, 13183. [Google Scholar] [CrossRef]
- Bisagni, E.; Nguyen Chi, H.; Pierre, A.; Pepin, O.; De Cointet, P.; Gros, P. 1-Amino-Substituted 4-Methyl-5H-Pyrido[4,3-b]Indoles (Gamma-Carbolines) as Tricyclic Analogs of Ellipticines: A New Class of Antineoplastic Agents. J. Med. Chem. 1988, 31, 398–405. [Google Scholar] [CrossRef]
- Janin, Y.L.; Carrez, D.; Riou, J.-F.; Bisagni, E. Synthesis and Biological Properties of New Benz(h)Isoquinoline Derivatives. Chem. Pharm. Bull. 1994, 42, 892–895. [Google Scholar] [CrossRef]
- Hu, L.; Li, Z.; Li, Y.; Qu, J.; Ling, Y.-H.; Jiang, J.; Boykin, D.W. Synthesis and Structure−Activity Relationships of Carbazole Sulfonamides as a Novel Class of Antimitotic Agents Against Solid Tumors. J. Med. Chem. 2006, 49, 6273–6282. [Google Scholar] [CrossRef]
- Chenna, A.; Singer, B. Large Scale Synthesis of P-Benzoquinone-2’-Deoxycytidine and p-Benzoquinone-2’-Deoxyadenosine Adducts and Their Site-Specific Incorporation into DNA Oligodeoxyribonucleotides. Chem. Res. Toxicol. 1995, 8, 865–874. [Google Scholar] [CrossRef]
- Sharma, V.; Gupta, M.; Kumar, P.; Sharma, A. A Comprehensive Review on Fused Heterocyclic as DNA Intercalators: Promising Anticancer Agents. Curr. Pharm. Des. 2021, 27, 15–42. [Google Scholar] [CrossRef]
- Duarte, A.R.; Cadoni, E.; Ressurreição, A.S.; Moreira, R.; Paulo, A. Design of Modular G-quadruplex Ligands. ChemMedChem 2018, 13, 869–893. [Google Scholar] [CrossRef] [PubMed]
- Schwergold, C.; Depecker, G.; Giorgio, C.D.; Patino, N.; Jossinet, F.; Ehresmann, B.; Terreux, R.; Cabrol-Bass, D.; Condom, R. Cyclic PNA Hexamer-Based Compound: Modelling, Synthesis and Inhibition of the HIV-1 RNA Dimerization Process. Tetrahedron 2002, 58, 5675–5687. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Paquette, L.A.; Mitzel, T.M.; Isaac, M.B.; Crasto, C.F.; Schomer, W.W. Diastereoselection during 1,2-Addition of the Allylindium Reagent to α-Thia and α-Amino Aldehydes in Aqueous and Organic Solvents. J. Org. Chem. 1997, 62, 4293–4301. [Google Scholar] [CrossRef]
- Bernatowicz, M.S.; Wu, Y.; Matsueda, G.R. 1H-Pyrazole-1-Carboxamidine Hydrochloride an Attractive Reagent for Guanylation of Amines and Its Application to Peptide Synthesis. J. Org. Chem. 1992, 57, 2497–2502. [Google Scholar] [CrossRef]
- Maier, M.A.; Barber-Peoc’h, I.; Manoharan, M. Postsynthetic Guanidinylation of Primary Amino Groups in the Minor and Major Grooves of Oligonucleotides. Tetrahedron Lett. 2002, 43, 7613–7616. [Google Scholar] [CrossRef]
- Lizunova, S.A.; Tsvetkov, V.B.; Skvortsov, D.A.; Kamzeeva, P.N.; Ivanova, O.M.; Vasilyeva, L.A.; Chistov, A.A.; Belyaev, E.S.; Khrulev, A.A.; Vedekhina, T.S.; et al. Anticancer Activity of G4-Targeting Phenoxazine Derivatives in Vitro. Biochimie 2022, 201, 43–54. [Google Scholar] [CrossRef]
- Müller, S.; Sanders, D.A.; Di Antonio, M.; Matsis, S.; Riou, J.-F.; Rodriguez, R.; Balasubramanian, S. Pyridostatin Analogues Promote Telomere Dysfunction and Long-Term Growth Inhibition in Human Cancer Cells. Org. Biomol. Chem. 2012, 10, 6537. [Google Scholar] [CrossRef]
- Shchekotikhin, A.E.; Glazunova, V.A.; Dezhenkova, L.G.; Luzikov, Y.N.; Sinkevich, Y.B.; Kovalenko, L.V.; Buyanov, V.N.; Balzarini, J.; Huang, F.-C.; Lin, J.-J.; et al. Synthesis and Cytotoxic Properties of 4,11-Bis[(Aminoethyl)Amino]Anthra[2,3-b]Thiophene-5,10-Diones, Novel Analogues of Antitumor Anthracene-9,10-Diones. Bioorg. Med. Chem. 2009, 17, 1861–1869. [Google Scholar] [CrossRef]
- Krasnovskaya, O.O.; Akasov, R.A.; Spector, D.V.; Pavlov, K.G.; Bubley, A.A.; Kuzmin, V.A.; Kostyukov, A.A.; Khaydukov, E.V.; Lopatukhina, E.V.; Semkina, A.S.; et al. Photoinduced Reduction of Novel Dual-Action Riboplatin Pt(IV) Prodrug. ACS Appl. Mater. Interfaces 2023, 15, 12882–12894. [Google Scholar] [CrossRef]
- Skvortsov, D.A.; Kalinina, M.A.; Zhirkina, I.V.; Vasilyeva, L.A.; Ivanenkov, Y.A.; Sergiev, P.V.; Dontsova, O.A. From Toxicity to Selectivity: Coculture of the Fluorescent Tumor and Non-Tumor Lung Cells and High-Throughput Screening of Anticancer Compounds. Front. Pharmacol. 2021, 12, 713103. [Google Scholar] [CrossRef] [PubMed]
- Novotortsev, V.K.; Kukushkin, M.E.; Tafeenko, V.A.; Skvortsov, D.A.; Kalinina, M.A.; Timoshenko, R.V.; Chmelyuk, N.S.; Vasilyeva, L.A.; Tarasevich, B.N.; Gorelkin, P.V.; et al. Dispirooxindoles Based on 2-Selenoxo-Imidazolidin-4-Ones: Synthesis, Cytotoxicity and ROS Generation Ability. Int. J. Mol. Sci. 2021, 22, 2613. [Google Scholar] [CrossRef] [PubMed]
- Loo, W.T.Y.; Sasano, H.; Chow, L.W.C. Evaluation of Therapeutic Efficacy of Capecitabine on Human Breast Carcinoma Tissues and Cell Lines in Vitro. Biomed. Pharmacother. 2007, 61, 553–557. [Google Scholar] [CrossRef]
- Pagliaricci, N.; Pettinari, R.; Marchetti, F.; Pettinari, C.; Cappellacci, L.; Tombesi, A.; Cuccioloni, M.; Hadiji, M.; Dyson, P.J. Potent and Selective Anticancer Activity of Half-Sandwich Ruthenium and Osmium Complexes with Modified Curcuminoid Ligands. Dalton Trans. 2022, 51, 13311–13321. [Google Scholar] [CrossRef] [PubMed]
- Suberu, J.O.; Romero-Canelón, I.; Sullivan, N.; Lapkin, A.A.; Barker, G.C. Comparative Cytotoxicity of Artemisinin and Cisplatin and Their Interactions with Chlorogenic Acids in MCF7 Breast Cancer Cells. ChemMedChem 2014, 9, 2791–2797. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, D.; Zhang, W.; Zhao, J.; Zhi, L.; Huang, F.; Ji, H.; Zhang, J.; Liu, H.; Zou, L.; et al. Modulation of Alternative Splicing Induced by Paclitaxel in Human Lung Cancer. Cell Death Dis. 2018, 9, 491. [Google Scholar] [CrossRef]
- Shu, C.-H.; Yang, W.K.; Shih, Y.-L.; Kuo, M.-L.; Huang, T.-S. Cell Cycle G2/M Arrest and Activation of Cyclin-Dependent Kinases Associated with Low-Dose Paclitaxel-Induced Sub-G1 Apoptosis. Apoptosis 1997, 2, 463–470. [Google Scholar] [CrossRef]
- Cimino-Reale, G.; Zaffaroni, N.; Folini, M. Emerging Role of G-Quadruplex DNA as Target in Anticancer Therapy. Curr. Pharm. Des. 2017, 22, 6612–6624. [Google Scholar] [CrossRef]
- Tsvetkov, V.B.; Varizhuk, A.M.; Lizunova, S.A.; Nikolenko, T.A.; Ivanov, I.A.; Severov, V.V.; Belyaev, E.S.; Shitikov, E.A.; Pozmogova, G.E.; Aralov, A.V. Phenoxazine-Based Scaffold for Designing G4-Interacting Agents. Org. Biomol. Chem. 2020, 18, 6147–6154. [Google Scholar] [CrossRef]
- Dai, J.; Carver, M.; Punchihewa, C.; Jones, R.A.; Yang, D. Structure of the Hybrid-2 Type Intramolecular Human Telomeric G-Quadruplex in K+ Solution: Insights into Structure Polymorphism of the Human Telomeric Sequence. Nucleic Acids Res. 2007, 35, 4927–4940. [Google Scholar] [CrossRef]
- Phan, A.T.; Modi, Y.S.; Patel, D.J. Propeller-Type Parallel-Stranded G-Quadruplexes in the Human c-Myc Promoter. J. Am. Chem. Soc. 2004, 126, 8710–8716. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.T.; Kuryavyi, V.; Burge, S.; Neidle, S.; Patel, D.J. Structure of an Unprecedented G-Quadruplex Scaffold in the Human c-Kit Promoter. J. Am. Chem. Soc. 2007, 129, 4386–4392. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Xu, M.; Yuan, G. Study of STAT3 G-Quadruplex Folding Patterns by CD Spectroscopy and Molecular Modeling. Chin. Chem. Lett. 2012, 23, 329–331. [Google Scholar] [CrossRef]
- Turaev, A.V.; Tsvetkov, V.B.; Tankevich, M.V.; Smirnov, I.P.; Aralov, A.V.; Pozmogova, G.E.; Varizhuk, A.M. Benzothiazole-Based Cyanines as Fluorescent “Light-up” Probes for Duplex and Quadruplex DNA. Biochimie 2019, 162, 216–228. [Google Scholar] [CrossRef]
- Varizhuk, A.; Ischenko, D.; Tsvetkov, V.; Novikov, R.; Kulemin, N.; Kaluzhny, D.; Vlasenok, M.; Naumov, V.; Smirnov, I.; Pozmogova, G. The Expanding Repertoire of G4 DNA Structures. Biochimie 2017, 135, 54–62. [Google Scholar] [CrossRef]
- Lim, K.W.; Alberti, P.; Guédin, A.; Lacroix, L.; Riou, J.-F.; Royle, N.J.; Mergny, J.-L.; Phan, A.T. Sequence Variant (CTAGGG)n in the Human Telomere Favors a G-Quadruplex Structure Containing a G·C·G·C Tetrad. Nucleic Acids Res. 2009, 37, 6239–6248. [Google Scholar] [CrossRef]
- Xu, B.; Jacobs, M.I.; Kostko, O.; Ahmed, M. Guanidinium Group Remains Protonated in a Strongly Basic Arginine Solution. ChemPhysChem 2017, 18, 1503–1506. [Google Scholar] [CrossRef]
Compound | IC50abs, µM | SI | ||||
---|---|---|---|---|---|---|
HEK293T | MCF7′ | A549 | VA13 | VA13/MCF7 | VA13/A549 | |
2a | >100 | >100 | >100 | ~100 | ND | ND |
3a | >100 | >100 | >100 | >100 | ND | ND |
4a | >100 | >100 | >100 | >100 | ND | ND |
5a | ~100 | >100 | >100 | >100 | ND | ND |
6a | >100 | >100 | >100 | >100 | ND | ND |
7a | ~100 | >100 | >100 | >100 | ND | ND |
2b | 6.1 ± 0.3 | 30 ± 1 | 34 ± 2 | 60 ± 6 | 2.0 | 1.7 |
3b | 32 ± 1 | 95 ± 3 | 94 ± 5 | 73 ± 2 | 0.8 | 0.8 |
4b | 44 ± 1.9 | ~100 | ~100 | ~100 | ND | ND |
5b | 2.6 ± 0.2 | 20 ± 2 | 3.6 ± 0.5 | 62 ± 5 | 3.0 | 17.3 |
6b | ~100 | >100 | >100 | >100 | ND | ND |
7b | 41 ± 4 | ~100 | 76 ± 6 | ~100 | ND | ND |
Dox | 0.02 ± 0.01 2 | 0.04 ± 0.02 2 | 0.014 ± 0.005 2 | 0.11 ± 0.04 2 | 3.0 | 7.9 |
5F-Uracil | ND | 10.0 ± 0.2 3 | 4 ± 1 1 | 13.6 ± 0.6 1 | 1.4 | 3.4 |
Cisplatin | 3.4 ± 1.7 4 | 5.75 ± 0.02 5 | 2.69 ± 0.05 1 | 2.04 ± 0.08 1 | 0.4 | 0.8 |
Sample | G1, % | S, % | G2, % |
---|---|---|---|
5b | 58 | 6 | 36 |
92504 (cause G1-stop) | 91 | 3 | 6 |
Paclitaxel (cause G2-stop) | 10 | 8 | 82 |
Untreated cells | 72 | 17 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamzeeva, P.; Dagaev, N.; Lizunova, S.; Khodarovich, Y.; Sogomonyan, A.; Kolchanova, A.; Pokrovsky, V.; Alferova, V.; Chistov, A.; Eshtukov-Shcheglov, A.; et al. Synthesis and Biological Evaluation of Benzo [4,5]- and Naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinone Derivatives. Biomolecules 2023, 13, 1669. https://doi.org/10.3390/biom13111669
Kamzeeva P, Dagaev N, Lizunova S, Khodarovich Y, Sogomonyan A, Kolchanova A, Pokrovsky V, Alferova V, Chistov A, Eshtukov-Shcheglov A, et al. Synthesis and Biological Evaluation of Benzo [4,5]- and Naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinone Derivatives. Biomolecules. 2023; 13(11):1669. https://doi.org/10.3390/biom13111669
Chicago/Turabian StyleKamzeeva, Polina, Nikolai Dagaev, Sofia Lizunova, Yuri Khodarovich, Anna Sogomonyan, Anastasia Kolchanova, Vadim Pokrovsky, Vera Alferova, Alexey Chistov, Artur Eshtukov-Shcheglov, and et al. 2023. "Synthesis and Biological Evaluation of Benzo [4,5]- and Naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinone Derivatives" Biomolecules 13, no. 11: 1669. https://doi.org/10.3390/biom13111669
APA StyleKamzeeva, P., Dagaev, N., Lizunova, S., Khodarovich, Y., Sogomonyan, A., Kolchanova, A., Pokrovsky, V., Alferova, V., Chistov, A., Eshtukov-Shcheglov, A., Eshtukova-Shcheglova, E., Belyaev, E., Skvortsov, D., Varizhuk, A., & Aralov, A. (2023). Synthesis and Biological Evaluation of Benzo [4,5]- and Naphtho[2′,1′:4,5]imidazo[1,2-c]pyrimidinone Derivatives. Biomolecules, 13(11), 1669. https://doi.org/10.3390/biom13111669