Novel Insights into the Role of Keratinocytes-Expressed TRPV3 in the Skin
Abstract
:1. Introduction
2. The Characteristics of TRPV3 Channel
3. Physiological and Pathological Functions of Keratinocytes-Expressed TRPV3
3.1. Itch
3.2. Heat Pain
3.3. Hair Development
4. TRPV3 in Human Skin Diseases
5. Potential Target for Skin Regeneration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H. TRP channel classification. Adv. Exp. Med. Biol. 2017, 976, 1–8. [Google Scholar]
- Kung, C.; Martinac, B.; Sukharev, S. Mechanosensitive Channels in Microbes. Annu. Rev. Microbiol. 2010, 64, 313–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Ramsey, I.S.; Kotecha, S.A.; Moran, M.M.; Chong, J.A.; Lawson, D.; Ge, P.; Lilly, J.; Silos-Santiago, I.; Xie, Y.; et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 2002, 418, 181–186. [Google Scholar] [CrossRef]
- Savadipour, A.; Nims, R.J.; Katz, D.B.; Guilak, F. Regulation of chondrocyte biosynthetic activity by dynamic hydrostatic pressure: The role of TRP channels. Connect. Tissue Res. 2022, 63, 69–81. [Google Scholar] [CrossRef]
- Dhaka, A.; Uzzell, V.; Dubin, A.E.; Mathur, J.; Petrus, M.; Bandell, M.; Patapoutian, A. TRPV1 is activated by both acidic and basic pH. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kärki, T.; Tojkander, S. TRPV Protein Family—From Mechanosensing to Cancer Invasion. Biomolecules 2021, 11, 1019. [Google Scholar] [CrossRef] [PubMed]
- Pumroy, R.A.; Fluck, E.C.; Ahmed, T.; Moiseenkova-Bell, V.Y. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 2020, 87, 102168. [Google Scholar] [CrossRef]
- Vennekens, R.; Owsianik, G.; Nilius, B. Vanilloid Transient Receptor Potential Cation Channels: An Overview. Curr. Pharm. Des. 2008, 14, 18–31. [Google Scholar]
- Li, F.; Wang, F. TRPV1 in pain and itch. Adv. Exp. Med. Biol. 2021, 1349, 249–273. [Google Scholar]
- Bagood, M.; Isseroff, R. TRPV1: Role in Skin and Skin Diseases and Potential Target for Improving Wound Healing. Int. J. Mol. Sci. 2021, 22, 6135. [Google Scholar] [CrossRef]
- Bujak, J.K.; Kosmala, D.; Szopa, I.M.; Majchrzak, K.; Bednarczyk, P. Inflammation, Cancer and immunity-implication of TRPV1 channel. Front. Oncol. 2019, 9, 1087. [Google Scholar] [CrossRef]
- Shimada, H.; Kusakizako, T.; Nguyen, T.H.D.; Nishizawa, T.; Hino, T.; Tominaga, M.; Nureki, O. The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism. Nat. Struct. Mol. Biol. 2020, 27, 645–652. [Google Scholar] [CrossRef]
- Asakawa, M.; Yoshioka, T.; Matsutani, T.; Hikita, I.; Suzuki, M.; Oshima, I.; Tsukahara, K.; Arimura, A.; Horikawa, T.; Hirasawa, T.; et al. Association of a Mutation in TRPV3 with Defective Hair Growth in Rodents. J. Investig. Dermatol. 2006, 126, 2664–2672. [Google Scholar] [CrossRef] [Green Version]
- Borbiro, I.; Lisztes, E.; Tóth, B.I.; Czifra, G.; Oláh, A.; Szöllősi, A.G.; Szentandrássy, N.; Nánási, P.P.; Péter, Z.; Paus, R.; et al. Activation of Transient Receptor Potential Vanilloid-3 Inhibits Human Hair Growth. J. Investig. Dermatol. 2011, 131, 1605–1614. [Google Scholar] [CrossRef]
- Moqrich, A.; Hwang, S.W.; Earley, T.J.; Petrus, M.J.; Murray, A.N.; Spencer, K.S.R.; Andahazy, M.; Story, G.M.; Patapoutian, A. Impaired Thermosensation in Mice Lacking TRPV3, a Heat and Camphor Sensor in the Skin. Science 2005, 307, 1468–1472. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; Kim, H.J.; Choi, Y.W.; Chung, B.Y.; Woo, S.-Y.; Song, D.-K.; Kim, H.O. TRPV3 Channel in Keratinocytes in Scars with Post-Burn Pruritus. Int. J. Mol. Sci. 2017, 18, 2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peier, A.M.; Reeve, A.J.; Andersson, D.A.; Moqrich, A.; Earley, T.J.; Hergarden, A.C.; Story, G.M.; Colley, S.; Hogenesch, J.B.; McIntyre, P.; et al. A Heat-Sensitive TRP Channel Expressed in Keratinocytes. Science 2002, 296, 2046–2049. [Google Scholar] [CrossRef]
- Luo, J.; Hu, H. Thermally Activated TRPV3 Channels. Curr. Top. Membr. 2014, 74, 325–364. [Google Scholar] [PubMed]
- Xu, H.; Delling, M.; Jun, J.C.; Clapham, D.E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci. 2006, 9, 628–635. [Google Scholar] [CrossRef]
- Liebe, H.; Liebe, F.; Sponder, G.; Hedtrich, S.; Stumpff, F. Beyond Ca2+ signalling: The role of TRPV3 in the transport of NH4+. Pflug. Arch. Eur. J. Physiol. 2021, 473, 1859–1884. [Google Scholar] [CrossRef]
- Schrapers, K.T.; Sponder, G.; Liebe, F.; Liebe, H.; Stumpff, F. The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4+. PLoS ONE 2018, 13, e0193519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Luo, A.; Kamau, P.M.; Takomthong, P.; Hu, J.; Boonyarat, C.; Luo, L.; Lai, R. A plant-derived TRPV3 inhibitor suppresses pain and itch. Br. J. Pharmacol. 2021, 178, 1669–1683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, X.; Qi, H.; Ma, Q.; Zhou, Q.; Wang, W.; Wang, K. Pharmacological Inhibition of the Temperature-Sensitive and Ca2+-Permeable Transient Receptor Potential Vanilloid TRPV3 Channel by Natural Forsythoside B Attenuates Pruritus and Cytotoxicity of Keratinocytes. J. Pharmacol. Exp. Ther. 2019, 368, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Wang, G.; Sun, X.; Wang, K. Inhibition of the Warm Temperature–Activated Ca2+-Permeable Transient Receptor Potential Vanilloid TRPV3 Channel Attenuates Atopic Dermatitis. Mol. Pharmacol. 2019, 96, 393–400. [Google Scholar] [CrossRef]
- Wang, G.; Wang, K. The Ca2+-Permeable Cation Transient Receptor Potential TRPV3 Channel: An Emerging Pivotal Target for Itch and Skin Diseases. Mol. Pharmacol. 2017, 92, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelps, C.B.; Wang, R.R.; Choo, S.S.; Gaudet, R. Differential Regulation of TRPV1, TRPV3, and TRPV4 Sensitivity through a Conserved Binding Site on the Ankyrin Repeat Domain. J. Biol. Chem. 2010, 285, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Stewart, R.; Berdeaux, R.; Hu, H. Tonic Inhibition of TRPV3 by Mg2+ in Mouse Epidermal Keratinocytes. J. Investig. Dermatol. 2012, 132, 2158–2165. [Google Scholar] [CrossRef] [Green Version]
- Doerner, J.F.; Hatt, H.; Ramsey, I.S. Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J. Gen. Physiol. 2011, 137, 271–288. [Google Scholar] [CrossRef] [Green Version]
- Yosipovitch, G.; Misery, L.; Proksch, E.; Metz, M.; Ständer, S.; Schmelz, M. Skin Barrier Damage and Itch: Review of Mechanisms, Topical Management and Future Directions. Acta Derm. Venereol. 2019, 99, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Gao, J.; Cao, X.; Chen, L.; Wang, H.; Ding, H. TRPV1 mediates itch-associated scratching and skin barrier dysfunction in DNFB-induced atopic dermatitis mice. Exp. Dermatol. 2022, 31, 398–405. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Rosen, J.D.; Hashimoto, T. Itch: From mechanism to (novel) therapeutic approaches. J. Allergy Clin. Immunol. 2018, 142, 1375–1390. [Google Scholar] [CrossRef] [Green Version]
- Sutaria, N.; Adawi, W.; Goldberg, R.; Roh, Y.S.; Choi, J.; Kwatra, S.G. Itch: Pathogenesis and treatment. J. Am. Acad. Dermatol. 2022, 86, 17–34. [Google Scholar] [CrossRef]
- Asakawa, M.; Yoshioka, T.; Hikita, I.; Matsutani, T.; Hirasawa, T.; Arimura, A.; Sakata, T.; Horikawa, T. WBN/Kob-Ht Rats Spontaneously Develop Dermatitis under Conventional Conditions: Another Possible Model for Atopic Dermatitis. Exp. Anim. 2005, 54, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, A.; Takeuchi, M.; Nagata, M.; Nakamura, K.; Nakao, H.; Yamashita, H.; Makino, S.; Harada, M.; Hirasawa, T. Role of the Nh (Non-hair) Mutation in the Development of Dermatitis and Hyperproduction of IgE in DS-Nh Mice. Exp. Anim. 2003, 52, 419–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshioka, T.; Imura, K.; Asakawa, M.; Suzuki, M.; Oshima, I.; Hirasawa, T.; Sakata, T.; Horikawa, T.; Arimura, A. Impact of the Gly573Ser Substitution in TRPV3 on the Development of Allergic and Pruritic Dermatitis in Mice. J. Investig. Dermatol. 2009, 129, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Cheol, K.J.; Gyeong, K.Y.; Suk, K.I. Itching Caused by TRPV3 (Transient Receptor Potential Vanilloid-3) Activator Application to Skin of Burn Patients. Medicina 2020, 56, 560. [Google Scholar] [CrossRef]
- Yang, Y.; Cho, S.; Choi, M.; Choi, Y.; Kwak, I.; Park, C.; Kim, H. Increased Expression of Three Types of Transient Receptor Potential Channels (TRPA1, TRPV4 and TRPV3) in Burn Scars with Post-burn Pruritus. Acta Derm. Venereol. 2015, 95, 20–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, R.; Tian, J.; Tang, J.; Zhu, M.X. The TRPV3 mutation associated with the hairless phenotype in rodents is constitutively active. Cell Calcium 2008, 43, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Chiu, F.P.C.; Salas-Alanis, J.C.; Amaya-Guerra, M.; Cepeda-Valdes, R.; McGrath, J.A.; Hsu, C.K. Novel p.Ala675Thr missense mutation in TRPV3 in Olmsted syndrome. Clin. Exp. Dermatol. 2020, 45, 796–798. [Google Scholar] [CrossRef]
- Yadav, M.; Goswami, C. TRPV3 mutants causing Olmsted Syndrome induce impaired cell adhesion and nonfunctional lysosomes. Channels 2017, 11, 196–208. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.H.; Kim, S.; Kim, S.-E.; Chung, S.; Lee, S.E. Enhanced Thermal Sensitivity of TRPV3 in Keratinocytes Underlies Heat-Induced Pruritogen Release and Pruritus in Atopic Dermatitis. J. Investig. Dermatol. 2020, 140, 2199–2209.e6. [Google Scholar] [CrossRef] [PubMed]
- Larkin, C.; Chen, W.; Szabó, I.L.; Shan, C.; Dajnoki, Z.; Szegedi, A.; Buhl, T.; Fan, Y.; O’Neill, S.; Walls, D.; et al. Novel insights into the TRPV3-mediated itch in atopic dermatitis. J. Allergy Clin. Immunol. 2021, 147, 1110–1114.e5. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Moriyama, M.; Feld, M.; Buddenkotte, J.; Buhl, T.; Szöllösi, A.; Zhang, J.; Miller, P.; Ghetti, A.; Fischer, M.; et al. New mechanism underlying IL-31–induced atopic dermatitis. J. Allergy Clin. Immunol. 2018, 141, 1677–1689.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, F.; Kopp, J.; Fischer, J.; Tantcheva-Poór, I. Mutation in TRPV3 causes painful focal plantar keratoderma. J. Eur. Acad. Dermatol. Venereol. JEADV 2020, 34, e620–e622. [Google Scholar] [CrossRef]
- Gopinath, P.; Wan, E.; Holdcroft, A.; Facer, P.; Davis, J.B.; Smith, G.D.; Bountra, C.; Anand, P. Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain. BMC Women’s Health 2005, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.H.; Carstens, M.I.; Carstens, E. Eugenol and carvacrol induce temporally desensitizing patterns of oral irritation and enhance innocuous warmth and noxious heat sensation on the tongue. Pain 2013, 154, 2078–2087. [Google Scholar] [CrossRef] [Green Version]
- Bang, S.; Yoo, S.; Yang, T.-J.; Cho, H.; Hwang, S.W. Farnesyl Pyrophosphate Is a Novel Pain-producing Molecule via Specific Activation of TRPV3. J. Biol. Chem. 2010, 285, 19362–19371. [Google Scholar] [CrossRef] [Green Version]
- Bang, S.; Yoo, S.; Yang, T.-J.; Cho, H.; Hwang, S.W. Isopentenyl pyrophosphate is a novel antinociceptive substance that inhibits TRPV3 and TRPA1 ion channels. Pain 2011, 152, 1156–1164. [Google Scholar] [CrossRef]
- Horishita, R.; Ogata, Y.; Fukui, R.; Yamazaki, R.; Moriwaki, K.; Ueno, S.; Yanagihara, N.; Uezono, Y.; Yokoyama, Y.; Minami, K.; et al. Local Anesthetics Inhibit Transient Receptor Potential Vanilloid Subtype 3 Channel Function in Xenopus Oocytes. Obstet. Anesth. Dig. 2021, 132, 1756–1767. [Google Scholar] [CrossRef]
- Huang, S.M.; Li, X.; Yu, Y.; Wang, J.; Caterina, M.J. TRPV3 and TRPV4 Ion Channels are Not Major Contributors to Mouse Heat Sensation. Mol. Pain 2011, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Fatima, M.; Slade, H.; Horwitz, L.; Shi, A.; Liu, J.; McKinstry, D.; Villani, T.; Xu, H.; Duan, B. Abnormal Somatosensory Behaviors Associated With a Gain-of-Function Mutation in TRPV3 Channels. Front. Mol. Neurosci. 2021, 14, 790435. [Google Scholar] [CrossRef]
- Song, Z.; Chen, X.; Zhao, Q.; Stanic, V.; Lin, Z.; Yang, S.; Chen, T.; Chen, J.; Yang, Y. Hair Loss Caused by Gain-of-Function Mutant TRPV3 Is Associated with Premature Differentiation of Follicular Keratinocytes. J. Investig. Dermatol. 2021, 141, 1964–1974. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Sun, X.; Wang, G.; Liu, Y.; Wang, K. Pharmacological Activation of Thermo–Transient Receptor Potential Vanilloid 3 Channels Inhibits Hair Growth by Inducing Cell Death of Hair Follicle Outer Root Sheath. Experiment 2019, 370, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Magerl, M.; Tobin, D.J.; Müller-Röver, S.; Hagen, E.; Lindner, G.; McKay, I.A.; Paus, R. Patterns of Proliferation and Apoptosis during Murine Hair Follicle Morphogenesis. J. Investig. Dermatol. 2001, 116, 947–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesler, A.L.; Veniaminova, N.A.; Lull, M.V.; Wong, S.Y. Hair Follicle Terminal Differentiation Is Orchestrated by Distinct Early and Late Matrix Progenitors. Cell Rep. 2017, 19, 809–821. [Google Scholar] [CrossRef]
- Imura, K.; Yoshioka, T.; Hikita, I.; Tsukahara, K.; Hirasawa, T.; Higashino, K.; Gahara, Y.; Arimura, A.; Sakata, T. Influence of TRPV3 mutation on hair growth cycle in mice. Biochem. Biophys. Res. Commun. 2007, 363, 479–483. [Google Scholar] [CrossRef]
- Scott, V.E.; Patel, H.; Wetter, J.; Edlmayer, R.; Neelands, T.; Miller, L.; Huang, S.; Gauld, S.; Todorovic, V.; Gomtsian, A.; et al. Defining a mechanistic link between TRPV3 activity and psoriasis through IL-1 alpha and EGFR signaling pathways. J. Investig. Dermatol. 2016, 136, S94. [Google Scholar] [CrossRef]
- Sulk, M.; Seeliger, S.; Aubert, J.; Schwab, V.D.; Cevikbas, F.; Rivier, M.; Nowak, P.; Voegel, J.J.; Buddenkotte, J.; Steinhoff, M. Distribution and Expression of Non-Neuronal Transient Receptor Potential (TRPV) Ion Channels in Rosacea. J. Investig. Dermatol. 2012, 132, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- Agarwala, M.; George, R.; Pramanik, R.; McGrath, J. Olmsted syndrome in an Indian male with a new de novo mutation in TRPV3. Br. J. Dermatol. 2016, 174, 209–211. [Google Scholar] [CrossRef]
- Duchatelet, S.; Guibbal, L.; Veer, S.; Fraitag, S.; Nitschké, P.; Zarhrate, M.; Bodemer, C.; Hovnanian, A. Olmsted syndrome with erythromelalgia caused by recessive transient receptor potential vanilloid 3 mutations. Br. J. Dermatol. 2014, 171, 675–678. [Google Scholar] [CrossRef]
- Eytan, O.; Fuchs-Telem, D.; Mevorach, B.; Indelman, M.; Bergman, R.; Sarig, O.; Goldberg, I.; Adir, N.; Sprecher, E. Olmsted Syndrome Caused by a Homozygous Recessive Mutation in TRPV3. J. Investig. Dermatol. 2014, 134, 1752–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchatelet, S.; Hovnanian, A. Olmsted syndrome: Clinical, molecular and therapeutic aspects. Orphanet J. Rare Dis. 2015, 10, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Chen, Q.; Lee, M.; Cao, X.; Zhang, J.; Ma, D.; Chen, L.; Hu, X.; Wang, H.; Wang, X.; et al. Exome Sequencing Reveals Mutations in TRPV3 as a Cause of Olmsted Syndrome. Am. J. Hum. Genet. 2012, 90, 558–564. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.; Hu, L.; Cao, X.; Zhao, J.; Zhang, X.; Lee, M.; Wang, H.; Zhang, J.; Chen, Q.; Feng, C.; et al. Genotype-Phenotype Correlation of TRPV3-Related Olmsted Syndrome. J. Investig. Dermatol. 2021, 141, 545–554. [Google Scholar] [CrossRef]
- He, Y.; Zeng, K.; Zhang, X.; Chen, Q.; Wu, J.; Li, H.; Zhou, Y.; Glusman, G.; Roach, J.; Etheridge, A.; et al. A Gain-of-Function Mutation in TRPV3 Causes Focal Palmoplantar Keratoderma in a Chinese Family. J. Investig. Dermatol. 2015, 135, 907–909. [Google Scholar] [CrossRef] [Green Version]
- Nagai, H.; Takaoka, Y.; Sugano, A.; Nakamachi, Y.; Kawano, S.; Nishigori, C. Identification of a heterozygous p.Gly568Val missense mutation in the TRPV3 gene in a Japanese patient with Olmsted syndrome: In silico analysis of TRPV3. J. Dermatol. 2017, 44, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Yan, M.; Zhang, J.; Cheng, R.; Liang, J.; Deng, D.; Wang, Z.; Li, M.; Yao, Z. A novel mutation in TRPV3 gene causes atypical familial Olmsted syndrome. Sci. Rep. 2016, 6, 21815. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Wang, H.; Li, Y.; Lee, M.; Jiang, L.; Zhou, Y.; Feng, C.; Lin, Z.; Yang, Y. Semidominant Inheritance in Olmsted Syndrome. J. Investig. Dermatol. 2016, 136, 1722–1725. [Google Scholar] [CrossRef] [Green Version]
- Lai-Cheong, J.E.; Sethuraman, G.; Ramam, M.; Stone, K.; Simpson, M.A.; McGrath, J.A. Recurrent heterozygous missense mutation, p.Gly573Ser, in the TRPV3 gene in an Indian boy with sporadic Olmsted syndrome. Br. J. Dermatol. 2012, 167, 440–442. [Google Scholar] [CrossRef]
- Danso-Abeam, D.; Zhang, J.; Dooley, J.; A Staats, K.; Van Eyck, L.; Van Brussel, T.; Zaman, S.; Hauben, E.; Van de Velde, M.; Morren, M.-A.; et al. Olmsted syndrome: Exploration of the immunological phenotype. Orphanet J. Rare Dis. 2013, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Zhi, Y.P.; Liu, J.; Han, J.W.; Huang, Y.P.; Gao, Z.Q.; Yang, Y.; Wu, R.N. Two familial cases of Olmsted-like syndrome with a G573V mutation of the TRPV3 gene. Clin. Exp. Dermatol. 2016, 41, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Duchatelet, S.; Pruvost, S.; de Veer, S.; Fraitag, S.; Nitschké, P.; Bole-Feysot, C.; Bodemer, C.; Hovnanian, A. A new TRPV3 missense mutation in a patient with Olmsted syndrome and erythromelalgia. JAMA Dermatol. 2014, 150, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Kariminejad, A.; Barzegar, M.; Abdollahimajd, F.; Pramanik, R.; McGrath, J.A. Olmsted syndrome in an Iranian boy with a new de novo mutation in TRPV3. Clin. Exp. Dermatol. 2014, 39, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Greco, C.; Leclerc-Mercier, S.; Chaumon, S.; Doz, F.; Hadj-Rabia, S.; Molina, T.; Boucheix, C.; Bodemer, C. Use of Epidermal Growth Factor Receptor Inhibitor Erlotinib to Treat Palmoplantar Keratoderma in Patients With Olmsted Syndrome Caused by TRPV3 Mutations. JAMA Dermatol. 2020, 156, 191–195. [Google Scholar] [CrossRef]
- Aijima, R.; Wang, B.; Takao, T.; Mihara, H.; Kashio, M.; Ohsaki, Y.; Zhang, J.-Q.; Mizuno, A.; Suzuki, M.; Yamashita, Y.; et al. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2015, 29, 182–192. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Xue, C.; Chen, H.; Xue, Y.; Zhao, F.; Zhu, M.X.; Cao, Z. TRPV3 enhances skin keratinocyte proliferation through EGFR-dependent signaling pathways. Cell Biol. Toxicol. 2021, 37, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cao, Y.; Luo, Q.; Wang, P.; Shi, P.; Song, C.; E, M.; Ren, J.; Fu, B.; Sun, H. The transient receptor potential vanilloid-3 regulates hypoxia-mediated pulmonary artery smooth muscle cells proliferation via PI3K/AKT signaling pathway. Cell Prolif. 2018, 51, e12436. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Jin, J.; Hu, L.; Shen, D.; Dong, X.-P.; Samie, M.A.; Knoff, J.; Eisinger, B.; Liu, M.-L.; Huang, S.M.; et al. TRP Channel Regulates EGFR Signaling in Hair Morphogenesis and Skin Barrier Formation. Cell 2010, 141, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Hajjo, R.; Sweidan, K. Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr. Top. Med. Chem. 2020, 20, 815–834. [Google Scholar]
- Pastore, S.; Mascia, F.; Mariani, V.; Girolomoni, G. The Epidermal Growth Factor Receptor System in Skin Repair and Inflammation. J. Investig. Dermatol. 2008, 128, 1365–1374. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Qian, J.; Xiao, Z.; Chen, Y.; He, X.; Sun, C.; Zhao, Z. MicroRNA-133b Inhibition Restores EGFR Expression and Accelerates Diabetes-Impaired Wound Healing. Oxidative Med. Cell. Longev. 2021, 2021, 9306760. [Google Scholar] [CrossRef] [PubMed]
- Shanmugapriya, K.; Kim, H.; Kang, H.W. EGFR-conjugated hydrogel accelerates wound healing on ulcer-induced burn wounds by targeting collagen and inflammatory cells using photoimmunomodulatory inhibition. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111541. [Google Scholar] [CrossRef]
- Nanba, D.; Toki, F.; Asakawa, K.; Matsumura, H.; Shiraishi, K.; Sayama, K.; Matsuzaki, K.; Toki, H.; Nishimura, E.K. EGFR-mediated epidermal stem cell motility drives skin regeneration through COL17A1 proteolysis. J. Cell Biol. 2021, 220, e202012073. [Google Scholar] [CrossRef] [PubMed]
- Vyklicka, L.; Boukalova, S.; Macikova, L.; Chvojka, S.; Vlachova, V. The human transient receptor potential vanilloid 3 channel is sensitized via the ERK pathway. J. Biol. Chem. 2017, 292, 21083–21091. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.S.; Tannert, A.; Schaefer, M. Cholesterol sensitises the transient receptor potential channel TRPV3 to lower temperatures and activator concentrations. Cell Calcium 2014, 55, 59–68. [Google Scholar] [CrossRef]
- Teng, Y.; Fan, Y.; Ma, J.; Lu, W.; Liu, N.; Chen, Y.; Pan, W.; Tao, X. The PI3K/Akt Pathway: Emerging Roles in Skin Homeostasis and a Group of Non-Malignant Skin Disorders. Cells 2021, 10, 1219. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Ren, K.-K.; Zhang, W.-J.; Xiao, L.; Wu, H.-Y.; Liu, Q.-Y.; Ding, T.; Zhang, X.-C.; Nie, W.-J.; Ke, Y.; et al. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Res. Ther. 2019, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Qi, B.; Xiaoxiang, W.; Xu, J.; Liu, X. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed. Pharmacother. 2017, 90, 677–685. [Google Scholar] [CrossRef]
- Ranjani, S.; Kowshik, J.; Sophia, J.; Nivetha, R.; Baba, A.B.; Veeravarmal, V.; Joksić, G.; Rutqvist, L.E.; Nilsson, R.; Nagini, S. Activation of PI3K/Akt/NF-kB signaling mediates swedish snus induced proliferation and apoptosis evasion in the rat forestomach: Modulation by blueberry. Anti Cancer Agents Med. Chem. 2020, 20, 59–69. [Google Scholar] [CrossRef]
- Schwentker, A.; Vodovotz, Y.; Weller, R.; Billiar, T.R. Nitric oxide and wound repair: Role of cytokines? Nitric Oxide Biol. Chem. 2002, 7, 1–10. [Google Scholar] [CrossRef]
- Krischel, V.; Bruch-Gerharz, D.; Suschek, C.; Kröncke, K.-D.; Ruzicka, T.; Kolb-Bachofen, V. Biphasic Effect of Exogenous Nitric Oxide on Proliferation and Differentiation in Skin Derived Keratinocytes but Not Fibroblasts. J. Investig. Dermatol. 1998, 111, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Cals-Grierson, M.M.; Ormerod, A.D. Nitric oxide function in the skin. Nitric Oxide Biol. Chem. 2004, 10, 179–193. [Google Scholar] [CrossRef]
- Miyamoto, T.; Petrus, M.J.; Dubin, A.E.; Patapoutian, A. TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat. Commun. 2011, 2, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, M.; Olthoff, S.; Hill, K.; Zosel, C.; Magauer, T.; Wein, L.A.; Schaefer, M. KS0365, a novel activator of the transient receptor potential vanilloid 3 (TRPV3) channel, accelerates keratinocyte migration. Br. J. Pharmacol. 2022, 179, 5290–5304. [Google Scholar] [CrossRef] [PubMed]
- Um, J.-Y.; Kang, S.Y.; Kim, H.J.; Chung, B.Y.; Park, C.W.; Kim, H.O. Transient receptor potential vanilloid-3 (TRPV3) channel induces dermal fibrosis via the TRPV3/TSLP/Smad2/3 pathways in dermal fibroblasts. J. Dermatol. Sci. 2020, 97, 117–124. [Google Scholar] [CrossRef] [PubMed]
Authors | Year | Results | Summary |
---|---|---|---|
Asakawa et al. [33] | 2005 | WBN/Kob-Ht rats spontaneously developed dermatitis under conventional conditions | In rodents, mutations in genes caused increased TRPV3 activity, leading to pruritus and dermatitis |
Watanabe et al. [34] | 2003 | DS-Nh mice spontaneously developed dermatitis under conventional conditions | |
Asakawa et al. [13] | 2006 | TRPV3 (Gly573Ser) mutation was detected in Nh mice, and TRPV3 (Gly573Cys) mutation in Ht rats | |
Yoshioka et al. [35] | 2009 | Artificially constructed TRPV3 (Gly573Ser) transgenic mice showed spontaneous scratching behavior, separately from the development of dermatitis | |
Xiao et al. [38] | 2008 | Gly573Ser and Gly573Cys are gain-of-function mutations leading to increased TRPV3 channel activity | |
Yang et al. [37] | 2015 | Application of TRPV3 activator carvacrol to burn scars caused itching | In humans, activation of TRPV3 causes itching in burn scars |
Kim et al. [36] | 2020 | Enhanced expression of TRPV3 was detected in the epidermis of burn scars with pruritus |
Mutation | Mode of Inheritance | Severity | Reference |
---|---|---|---|
p.Asn415_Arg416insLeuAsn | Autosomal dominant | Severe | Agarwala et al. [59], 2016 |
p.Arg416Gln | Autosomal dominant | Moderate | Zhong et al. [64], 2021 |
p.Arg416Trp | Autosomal dominant | Moderate | Zhong et al. [64], 2021 |
p.Trp521Ser | Autosomal recessive | Severe | Eytan et al. [61], 2014 |
p.Gly568Cys | Autosomal recessive | Severe | Duchatelet et al. [60], 2014 |
p.Gly568Asp | Autosomal dominant | Moderate | Peters et al. [44], 2020 |
p.Gly568Cys/p.Gly215Vfs*82 | Autosomal semidominant | Severe | Cao et al. [68], 2016 |
p.Gly568Val | Autosomal dominant | Severe | Nagai et al. [66], 2017 |
p.Gly573Ser | Autosomal dominant | Severe | Lai-Cheong et al. [69], 2012 and Lin et al. [63], 2012 |
p.Gly573Cys | Autosomal dominant | Moderate | Lin et al. [63], 2012 |
p.Gly573Ala | Autosomal dominant | Severe | Danso-Abeam et al. [70], 2013 |
p.Gly573Val | Autosomal dominant | Severe | Zhi et al. [71], 2016 |
p.Gln580Pro | Autosomal dominant | Moderate | He et al. [65], 2015 |
p.Leu655Pro | Autosomal dominant | Moderate | Zhong et al. [64], 2021 |
p.Met672IIe | Autosomal dominant | Severe | Ni et al. [67], 2016 |
p.Leu673Phe | Autosomal dominant | Moderate | Duchatelet et al. [72], 2014 |
p.Ala675Thr | Autosomal dominant | Severe | Chiu et al. [39], 2020 |
p.Trp692Gly | Autosomal dominant | Moderate | Lin et al. [63], 2012 |
p.Trp692Cys | Autosomal dominant | Severe | Kariminejad et al. [73], 2014 |
p.Trp692Ser | Autosomal dominant | Moderate | Zhong et al. [64], 2021 |
p.Leu694Pro | Autosomal dominant | Mild | Zhong et al. [64], 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Song, Y.; Liu, W.; Wang, T.; Ma, X.; Yu, Z. Novel Insights into the Role of Keratinocytes-Expressed TRPV3 in the Skin. Biomolecules 2023, 13, 513. https://doi.org/10.3390/biom13030513
Guo Y, Song Y, Liu W, Wang T, Ma X, Yu Z. Novel Insights into the Role of Keratinocytes-Expressed TRPV3 in the Skin. Biomolecules. 2023; 13(3):513. https://doi.org/10.3390/biom13030513
Chicago/Turabian StyleGuo, Yaotao, Yajuan Song, Wei Liu, Tong Wang, Xianjie Ma, and Zhou Yu. 2023. "Novel Insights into the Role of Keratinocytes-Expressed TRPV3 in the Skin" Biomolecules 13, no. 3: 513. https://doi.org/10.3390/biom13030513
APA StyleGuo, Y., Song, Y., Liu, W., Wang, T., Ma, X., & Yu, Z. (2023). Novel Insights into the Role of Keratinocytes-Expressed TRPV3 in the Skin. Biomolecules, 13(3), 513. https://doi.org/10.3390/biom13030513