Branched Chain Amino Acids Are Associated with Physical Performance in Patients with End-Stage Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Analysis
2.3. Severity of Liver Disease
2.4. Metabolic Measurements
2.5. Sarcopenia and Frailty
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haep, N.; Florentino, R.M.; Squires, J.E.; Bell, A.; Soto-Gutierrez, A. The Inside-Out of End-Stage Liver Disease: Hepatocytes are the Keystone. Semin. Liver Dis. 2021, 41, 213–224. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, G.; Garcia-Tsao, G.; Pagliaro, L. Natural history and prognostic indicators of survival in cirrhosis: A systematic review of 118 studies. J. Hepatol. 2006, 44, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Ooi, P.H.; Gilmour, S.M.; Yap, J.; Mager, D.R. Effects of branched chain amino acid supplementation on patient care outcomes in adults and children with liver cirrhosis: A systematic review. Clin. Nutr. ESPEN 2018, 28, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Jeong, W.K.; Baik, S.K.; Cha, S.H.; Kim, M.Y. Impact of sarcopenia on prognostic value of cirrhosis: Going beyond the hepatic venous pressure gradient and MELD score. J. Cachexia Sarcopenia Muscle 2018, 9, 860–870. [Google Scholar] [CrossRef]
- Puri, P.; Dhiman, R.K.; Taneja, S.; Tandon, P.; Merli, M.; Anand, A.C.; Arora, A.; Acharya, S.K.; Benjamin, J.; Chawla, Y.K.; et al. Nutrition in Chronic Liver Disease: Consensus Statement of the Indian National Association for Study of the Liver. J. Clin. Exp. Hepatol. 2021, 11, 97–143. [Google Scholar] [CrossRef]
- Kamath, P.S.; Wiesner, R.H.; Malinchoc, M.; Kremers, W.; Therneau, T.M.; Kosberg, C.L.; D’Amico, G.; Dickson, E.R.; Kim, W.R. A model to predict survival in patients with end-stage liver disease. Hepatology 2001, 33, 464–470. [Google Scholar] [CrossRef]
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef]
- Huo, T.-I.; Lin, H.-C.; Wu, J.-C.; Hou, M.-C.; Lee, F.-Y.; Lee, P.-C.; Chang, F.-Y.; Lee, S.-D. Limitation of the model for end-stage liver disease for outcome prediction in patients with cirrhosis-related complications. Clin. Transplant. 2006, 20, 188–194. [Google Scholar] [CrossRef]
- Neinast, M.; Murashige, D.; Arany, Z. Branched Chain Amino Acids. Annu. Rev. Physiol. 2019, 81, 139–164. [Google Scholar] [CrossRef]
- Tajiri, K.; Shimizu, Y. Branched-chain amino acids in liver diseases. Transl. Gastroenterol. Hepatol. 2018, 3, 47. [Google Scholar] [CrossRef]
- Mann, G.; Mora, S.; Madu, G.; Adegoke, O.A.J. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front. Physiol. 2021, 12, 702826. [Google Scholar] [CrossRef]
- Holecek, M. Ammonia and amino acid profiles in liver cirrhosis: Effects of variables leading to hepatic encephalopathy. Nutrition 2015, 31, 14–20. [Google Scholar] [CrossRef]
- Böhler, M.; van den Berg, E.H.; Almanza, M.C.T.; Connelly, M.A.; Bakker, S.J.; de Meijer, V.E.; Dullaart, R.P.; Blokzijl, H.; Hak, E.; Hepkema, B.; et al. Branched chain amino acids are associated with metabolic complications in liver transplant recipients. Clin. Biochem. 2022, 102, 26–33. [Google Scholar] [CrossRef]
- Holecek, M. Branched-chain amino acids and ammonia metabolism in liver disease: Therapeutic implications. Nutrition 2013, 29, 1186–1191. [Google Scholar] [CrossRef]
- Cosentino, R.G.; Churilla, J.R.; Josephson, S.; Molle-Rios, Z.; Hossain, J.; Prado, W.L.; Balagopal, P.B. Branched-chain Amino Acids and Relationship With Inflammation in Youth With Obesity: A Randomized Controlled Intervention Study. J. Clin. Endocrinol. Metab. 2021, 106, 3129–3139. [Google Scholar] [CrossRef]
- Lo, E.K.K.; Felicianna Xu, J.H.; Zhan, Q.; Zeng, Z.; El-Nezami, H. The Emerging Role of Branched-Chain Amino Acids in Liver Diseases. Biomedicines 2022, 10, 1444. [Google Scholar] [CrossRef]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef]
- Eisenga, M.F.; Gomes-Neto, A.W.; Van Londen, M.; Ziengs, A.L.; Douwes, R.M.; Stam, S.P.; Osté, M.C.J.; Knobbe, T.J.; Hessels, N.R.; Buunk, A.M.; et al. Rationale and design of TransplantLines: A prospective cohort study and biobank of solid organ transplant recipients. BMJ Open 2018, 8, e024502. [Google Scholar] [CrossRef]
- Williams, J.R. Revising the Declaration of Helsinki. World Med. J. 2008, 54, 120–122. [Google Scholar]
- Matyus, S.P.; Braun, P.J.; Wolak-Dinsmore, J.; Jeyarajah, E.J.; Shalaurova, I.; Xu, Y.; Warner, S.M.; Clement, T.S.; Connelly, M.A.; Fischer, T.J. NMR measurement of LDL particle number using the Vantera Clinical Analyzer. Clin. Biochem. 2014, 47, 203–210. [Google Scholar] [CrossRef]
- Smallcombe, S.H.; Patt, S.L.; Keifer, P.A. WET Solvent Suppression and Its Applications to LC NMR and High-Resolution NMR Spectroscopy. J. Magn. Reson. Ser. A 1995, 117, 295–303. [Google Scholar] [CrossRef]
- Wolak-Dinsmore, J.; Gruppen, E.G.; Shalaurova, I.; Matyus, S.P.; Grant, R.P.; Gegen, R.; Bakker, S.J.; Otvos, J.D.; Connelly, M.A.; Dullaart, R.P. A novel NMR-based assay to measure circulating concentrations of branched-chain amino acids: Elevation in subjects with type 2 diabetes mellitus and association with carotid intima media thickness. Clin. Biochem. 2018, 54, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, R.; Edwards, E.; Freeman, R.; Harper, A.; Kim, W.R.; Kamath, P.; Kremers, W.; Lake, J.; Howard, T.; Merion, R.M.; et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003, 124, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Vilstrup, H.; Amodio, P.; Bajaj, J.; Cordoba, J.; Ferenci, P.; Mullen, K.D.; Weissenborn, K.; Wong, P. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology 2014, 60, 715–735. [Google Scholar] [CrossRef]
- Arroyo, V.; Ginès, P.; Gerbes, A.L.; Dudley, F.J.; Gentilini, P.; Laffi, G.; Reynolds, T.B.; Ring-Larsen, H.; Schölmerich, J. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology 1996, 23, 164–176. [Google Scholar] [CrossRef]
- Flores-Guerrero, J.L.; Osté, M.C.J.; Kieneker, L.M.; Gruppen, E.G.; Wolak-Dinsmore, J.; Otvos, J.D.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Plasma Branched-Chain Amino Acids and Risk of Incident Type 2 Diabetes: Results from the PREVEND Prospective Cohort Study. J. Clin. Med. 2018, 7, 513. [Google Scholar] [CrossRef]
- Weismüller, T.J.; Negm, A.; Becker, T.; Barg-Hock, H.; Klempnauer, J.; Manns, M.P.; Strassburg, C.P. The introduction of MELD-based organ allocation impacts 3-month survival after liver transplantation by influencing pretransplant patient characteristics. Transpl. Int. 2009, 22, 970–978. [Google Scholar] [CrossRef]
- Bobbert, M.; Ganten, T.M. Liver allocation: Urgency of need or prospect of success? Ethical considerations. Clin. Transplant. 2013, 27 (Suppl. S25), 34–39. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Werlang, M.; Panjawatanan, P.; Kroner, P.T.; Cheungpasitporn, W.; Lukens, F.J.; Pungpapong, S.; Ungprasert, P. Association between sarcopenia and hepatic encephalopathy: A systematic review and meta-analysis. Ann. Hepatol. 2020, 19, 245–250. [Google Scholar] [CrossRef]
- Hayashi, M.; Ohnishi, H.; Kawade, Y.; Muto, Y.; Takahashi, Y. Augmented utilization of branched-chain amino acids by skeletal muscle in decompensated liver cirrhosis in special relation to ammonia detoxication. Gastroenterol. Jpn. 1981, 16, 64–70. [Google Scholar] [CrossRef]
- Kim, T.Y.; Kim, M.Y.; Sohn, J.H.; Kim, S.M.; Ryu, J.A.; Lim, S.; Kim, Y. Sarcopenia as a useful predictor for long-term mortality in cirrhotic patients with ascites. J. Korean Med. Sci. 2014, 29, 1253–1259. [Google Scholar] [CrossRef]
- van Vugt, J.L.A.; Alferink, L.J.M.; Buettner, S.; Gaspersz, M.P.; Bot, D.; Murad, S.D.; Feshtali, S.; van Ooijen, P.M.A.; Polak, W.G.; Porte, R.J.; et al. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: A competing risk analysis in a national cohort. J. Hepatol. 2018, 68, 707–714. [Google Scholar] [CrossRef]
- Montano-Loza, A.J.; Duarte-Rojo, A.; Meza-Junco, J.; Baracos, V.E.; Sawyer, M.B.; Pang, J.X.Q.; Beaumont, C.; Esfandiari, N.; Myers, R.P. Inclusion of Sarcopenia Within MELD (MELD-Sarcopenia) and the Prediction of Mortality in Patients With Cirrhosis. Clin. Transl. Gastroenterol. 2015, 6, e102. [Google Scholar] [CrossRef]
- Flores-Guerrero, J.L.; Groothof, D.; Connelly, M.A.; Otvos, J.D.; Bakker, S.J.L.; Dullaart, R.P.F. Concentration of Branched-Chain Amino Acids Is a Strong Risk Marker for Incident Hypertension. Hypertension 2019, 74, 1428–1435. [Google Scholar] [CrossRef]
- Morgan, M.Y.; Marshall, A.W.; Milsom, J.P.; Sherlock, S. Plasma amino-acid patterns in liver disease. Gut 1982, 23, 362–370. [Google Scholar] [CrossRef]
- Suzuki, H.; Mamata, Y.; Mizuno, H.; Tominaga, T.; Suga, M.; Suemori, S.; Sato, A.; Suzuki, M. Influence of alcohol on branched-chain amino acid/tyrosine molar ratio in patients with cirrhosis. Alcohol. Clin. Exp. Res. 1998, 22 (Suppl. S3), 137S–140S. [Google Scholar] [CrossRef]
- Enomoto, H.; Sakai, Y.; Aizawa, N.; Iwata, Y.; Tanaka, H.; Ikeda, N.; Hasegawa, K.; Yoh, K.; Ishii, A.; Takashima, T.; et al. Association of amino acid imbalance with the severity of liver fibrosis and esophageal varices. Ann. Hepatol. 2013, 12, 471–478. [Google Scholar] [CrossRef]
- Nava, G.M.; Madrigal Perez, L.A. Metabolic profile of the Warburg effect as a tool for molecular prognosis and diagnosis of cancer. Expert Rev. Mol. Diagn. 2022, 22, 439–447. [Google Scholar] [CrossRef]
- Kinny-Köster, B.; Bartels, M.; Becker, S.; Scholz, M.; Thiery, J.; Ceglarek, U.; Kaiser, T. Plasma Amino Acid Concentrations Predict Mortality in Patients with End-Stage Liver Disease. PLoS ONE 2016, 11, e0159205. [Google Scholar] [CrossRef]
- Campollo, O.; Sprengers, D.; McIntyre, N. The BCAA/AAA ratio of plasma amino acids in three different groups of cirrhotics. Rev. Investig. Clin. 1992, 44, 513–518. [Google Scholar]
Total | T1 | T2 | T3 | p-Value | |
---|---|---|---|---|---|
Men (n) | 60 | 20 | 20 | 20 | |
Total BCAA (µmol/L) | 307.0 (289.5–356.8) | 216.0 (192.9–233.0) | 307.0 (295.0–314.3) | 423.0 (385.8–517.8) | <0.001 |
Valine (µmol/L) | 157.5 (149.8–187.6) | 110.5 (99.7–116.2) | 157.5 (151.2–161.4) | 222.5 (204.1–279.5) | <0.001 |
Leucine (µmol/L) | 98.0 (88.0–115.9) | 55.5 (49.7–64.2) | 98.0 (92.1–100.7) | 130.5 (123.4–181.8) | <0.001 |
Isoleucine (µmol/L) | 52.0 (47.8–57.2) | 34.0 (30.3–36.7) | 52.0 (50.3–54.1) | 67.5 (65.5–78.3) | <0.001 |
Alanine (µmol/L) | 297 (284.0–342.1) | 202.5 (181.4–212.1) | 297.0 (280.3–313.5) | 426.5 (416.0–475.1) | <0.001 |
Women (n) | 32 | 11 | 10 | 11 | |
Total BCAA (µmol/L) | 213.5 (211.1–274.5) | 174.0 (160.6–181.6) | 213.5 (202.4–223.4) | 334.0 (288.8–394.471) | <0.001 |
Valine (µmol/L) | 117 (112.9–146.4) | 84.0 (81.0–96.1) | 117.0 (111.8–127.2) | 177.0 (152.0–208.0) | <0.001 |
Leucine (µmol/L) | 61.0 (57.2–82.6) | 36.0 (32.0–43.4) | 61.0 (55.6–66.6) | 114.0 (91.6–128.6) | <0.001 |
Isoleucine (µmol/L) | 37.5 (36.2–50.1) | 28.0 (23.5–30.7) | 37.5 (35.0–39.6) | 61.0 (53.1–76.0) | <0.001 |
Alanine (µmol/L) | 243.5 (234.2–334) | 176.0 (138.8–200.6) | 243.5 (230.8–256.4) | 426.0 (350.7–519.6) | <0.001 |
Demographics | |||||
Age at screening | 56.8 ± 9.7 | 58.2 ± 7.8 | 56.6 ± 9.9 | 55.7 ± 11.3 | 0.59 |
Current smoker, n (%) | 20 (21.7) | 9 (29.0) | 4 (13.3) | 7 (22.6) | 0.37 |
Anthropometry | |||||
Height (cm) | 174.5 ± 9.6 | 174.9 ± 7.7 | 175.0 ± 9.34 | 173.6 ± 11.7 | 0.82 |
Weight (kg) | 85.4 ± 18.6 | 88.0 ± 17.7 | 84.7 ± 17.0 | 83.6 ± 21.2 | 0.63 |
BMI (kg/m2) | 27.9 ± 4.9 | 28.7 ± 5.2 | 27.6 ± 4.6 | 27.4 ± 5.1 | 0.52 |
Comorbidities, n (%) | |||||
High blood pressure | 63 (68.5) | 21 (67.7) | 21 (70.0) | 21 (67.7) | 1.000 |
Diabetes | 50 (58.8) | 13 (46.4) | 19 (67.9) | 18 (62.1) | 0.26 |
Circulation | |||||
Heart rate (bpm) | 73 ± 12 | 74 ± 10 | 71 ± 14 | 74 ± 12 | 0.45 |
SBP (mmHg) | 120 ± 20 | 122 ± 20 | 116 ± 17 | 124 ± 21 | 0.25 |
DBP (mmHg) | 66 ± 11 | 65 ± 12 | 63 ± 10 | 69 ± 11 | 0.06 |
Laboratory measurements | |||||
Total cholesterol (mmol/L) | 3.6 ± 1.4 | 3.5 ± 1.2 | 3.1 ± 1.2 | 3.9 ± 1.7 | 0.06 |
Triglycerides (mmol/L) | 1.1 (0.7–1.4) | 0.8 (0.6–1.3) | 1.0 (0.7–1.4) | 1.2 (1.0–1.7) | <0.001 |
Glucose (mmol/L) | 8.2 ± 6.3 | 7.1 ± 2.5 | 7.7 ± 2.9 | 9.6 ± 10.0 | 0.52 |
HbA1c (mmol/mol) | 33.5 ± 11.8 | 30.8 ± 7.6 | 33.2 ± 9.6 | 36.9 ± 16.4 | 0.19 |
Hemoglobin (mmol/L) | 6.9 ± 1.3 | 6.7 ± 1.4 | 6.8 ± 1.1 | 7.3 ± 1.3 | 0.12 |
Albumin (g/L) | 32.7 ± 6.5 | 31.2 ± 5.3 | 31.7 ± 5.6 | 35.1 ± 7.8 | 0.04 |
CRP (mg/L) | 9.5 (4.2–26.5) | 8.0 (3.2–23.0) | 11.0 (5.7–28.8) | 7.0 (3.9–32.0) | 0.63 |
AST (U/L) | 54.0 (43.3–83.0) | 48.0 (43.0–65.0) | 54.5 (45.0–85.8) | 58.0 (37.0–83.0) | 0.44 |
ALT (U/L) | 39.5 (28.3–55.8) | 31.0 (25.0–48.0) | 41.0 (31.5–55.3) | 43.0 (33.0–63.0) | 0.04 |
ALP (U/L) | 153.0 (156.7–197.3) | 150.0 (147.7–233.5) | 168.0 (149.9–201.0) | 142.0 (132.6–202.3) | 0.62 |
Bilirubin (μmol/L) | 41.0 (18.3–86.0) | 39.0 (17.0–57.0) | 48.0 (22.8–91.0) | 30.0 (10.0–111.0) | 0.56 |
Thrombocytes (109/L) | 121.4 ± 63.8 | 127.0 ± 66.0 | 112.6 ± 67.1 | 124.4 ± 59.0 | 0.65 |
Leucocytes (109/L) | 5.6 ± 3.3 | 6.7 ± 4.1 | 5.0 ± 3.3 | 5.2 ± 1.9 | 0.09 |
Serum creatinine (µmol/L) | 77.0 (62.0–100.0) | 70.0 (61.0–118.0) | 88.0 (69.0–101.0) | 72.0 (59.0–84.0) | 0.21 |
Creatinine excretion (mmol/24 h) | 8.2 ± 3.8 | 8.1 ± 3.3 | 8.6 ± 4.3 | 7.9 ± 3.8 | 0.76 |
Creatinine clearance (mL/min) | 89.8 (56.5–122.2) | 77.0 (55.0–125.0) | 89.1 (49.3–115.5) | 102.3 (81.0–123.2) | 0.21 |
Ammonia (µmol/L) | 68.8 ± 33.4 | 78.1 ± 34.5 | 75.5 ± 37.2 | 51.6 ± 19.5 | 0.003 |
Primary liver disease, n (%) | |||||
Viral hepatitis | 7 (7.6) | 0 | 2 (6.7) | 5 (16.1) | 0.047 |
Autoimmune | 24 (26.1) | 5 (16.1) | 10 (33.3) | 9 (29.0) | 0.28 |
MAFLD | 28 (30.4) | 11 (35.5) | 7 (23.3) | 10 (32.3) | 0.57 |
Alcohol cirrhosis | 20 (21.7) | 10 (32.3) | 8 (26.7) | 2 (6.5) | 0.03 |
Storage disorder | 2 (2.2) | 0 | 0 | 2 (6.5) | 0.13 |
Malignancy | 3 (3.3) | 2 (6.5) | 1 (3.3) | 0 | 0.36 |
Other | 8 (8.7) | 3 (9.7) | 2 (6.7) | 3 (9.7) | 0.89 |
Severity of liver disease | |||||
CPT-score | 8 ± 2 | 9 ± 2 | 8 ± 2 | 7 ± 2 | 0.015 |
MELD score | 15 ± 6 | 16 ± 6 | 16 ± 4 | 13 ± 7 | 0.14 |
Complications of liver disease, n (%) | |||||
Mortality on wait-list | 18 (19.6) | 6 (19.4) | 10 (33.3) | 2 (6.5) | 0.03 |
Hepatic encephalopathy | 48 (52.2) | 19 (61.3) | 20 (66.7) | 9 (29.0) | 0.006 |
Use of lactulose | 40 (43.5) | 16 (51.6) | 16 (53.3) | 8 (25.8) | 0.051 |
Ascites on admission | 60 (65.2) | 22 (71.0) | 24 (80.0) | 14 (45.2) | 0.012 |
Varices on admission | 70 (76.1) | 23 (74.2) | 25 (83.3) | 22 (71.0) | 0.503 |
Variceal bleeding | 23 (25.0) | 7 (22.6) | 11 (36.7) | 5 (16.1) | 0.167 |
Hepatocellular carcinoma | 27 (29.3) | 7 (22.6) | 6 (20.0) | 14 (45.2) | 0.064 |
Hepatorenal syndrome | 19 (20.7) | 8 (25.8) | 7 (23.3) | 4 (12.9) | 0.409 |
Medication, n (%) | |||||
Statins | 14 (15.2) | 5 (16.1) | 5 (16.7) | 4 (12.9) | 0.937 |
Antihypertensives | 63 (68.5) | 21 (67.7) | 21 (70.0) | 21 (67.7) | 1.000 |
Glucose-lowering drugs | 27 (29.3) | 5 (16.1) | 9 (30.0) | 13 (41.9) | 0.085 |
Proton pump inhibitors | 58 (63.0) | 22 (71.0) | 18 (60.0) | 18 (58.1) | 0.588 |
Vitamin K antagonists | 8 (8.7) | 3 (9.7) | 3 (10.0) | 2 (6.5) | 0.906 |
Amino Acid Titles (µmol/L) | Overall (n = 92) | CPT A (n = 22) | CPT B (n = 46) | CPT C (n = 24) | p-Value |
---|---|---|---|---|---|
Total BCAA | 276.0 (269.7–320.6) | 364.5 (319.9–416.9) | 262.5 (239.8–291.6) | 248.5 (215.1–354) | <0.001 |
Valine | 142.0 (141.2–169.1) | 193.5 (172.0–225.5) | 128.0 (123.7–148.8) | 138.0 (112–190.4) | <0.001 |
Leucine | 83.5 (80.4–101.3) | 113.0 (94.8–128.3) | 75.5 (69.4–94.1) | 76.5 (59.8–118.7) | 0.015 |
Isoleucine | 48.0 (45.3–53.2) | 58.5 (49.0–67.8) | 44.5 (42.1–53.2) | 48.0 (37.7–50.3) | 0.037 |
Alanine | 277.7 (270.5–328.3) | 354.5 (298.6–398.1) | 270.5 (261.3–335.6) | 227.5 (220.5–319.5) | 0.088 |
Overall | T1 | T2 | T3 | p-Value | |
---|---|---|---|---|---|
Hand grip strength (kg) | |||||
Subjects n = 77 | 32.2 ± 10.4 | 30.0 ± 8.6 | 32.2 ± 10.1 | 34.0 ± 11.8 | 0.370 |
Men n = 49 | 38.0 ± 7.9 | 34.0 ± 7.2 | 38.8 ± 5.1 | 40.7 ± 9.3 | 0.038 |
Women n = 28 | 22.1 ± 5.2 | 22.9 ± 5.9 | 19.9 ± 2.8 | 23.1 ± 5.9 | 0.377 |
4 m walking test (s) | |||||
Subjects n = 42 | 3.9 ± 1.3 | 4.4 ± 1.5 | 3.7 ± 1.1 | 3.6 ± 1.1 | 0.242 |
Men n = 26 | 3.7 ± 1.1 | 3.9 ± 1.0 | 3.5 ± 0.8 | 3.7 ± 1.4 | 0.821 |
Women n = 16 | 4.2 ± 1.6 | 5.0 ± 1.9 | 4.0 ± 1.6 | 3.4 ± 0.6 | 0.208 |
Sit-to-stand test (s) | |||||
Subjects n = 40 | 14.3 ± 4.7 | 15.5 ± 2.9 | 16.4 ± 6.5 | 12.2 ± 4.0 | 0.043 |
Men n = 27 | 14.2 ± 4.5 | 15.5 ± 3.3 | 15.4 ± 5.4 | 12.0 ± 4.3 | 0.159 |
Women n = 13 | 14.5 ± 5.3 | 15.3 ± 2.3 | 20.2 ± 11.7 | 12.4 ± 3.8 | 0.181 |
Timed up and go test (s) | |||||
Subjects n = 40 | 8.5 (7.9–9.8) | 8.5 (8.0–12.9) | 9.0 (8.1–9.7) | 7.6 (6.6–8.4) | 0.043 |
Men n = 25 | 8.5 (5.6–11.4) | 9.3 (7.2–11.4) | 8.9 (6.7–10.2) | 7.5 (5.6–10.4) | 0.159 |
Women n = 15 | 9.5 (5.6–22.3) | 12.5 (7.4–22.2) | 8.7 (8.2–9.0) | 7.6 (5.6–9.9) | 0.181 |
Standing balance test (points) | |||||
Subjects n = 36 | 2.0 ± 2.6 | 1.8 ± 1.9 | 2.4 ± 2.8 | 1.9 ± 3.0 | 0.850 |
Men n = 22 | 1.7 ± 2.4 | 1.8 ± 1.7 | 1.4 ± 1.5 | 1.8 ± 3.8 | 0.945 |
Women n = 14 | 2.5 ± 2.8 | 1.8 ± 2.5 | 4.0 ± 4.1 | 2.0 ± 2.0 | 0.487 |
Clinical Frailty Scale (0–9) | |||||
Subjects n = 80 | 4.1 ± 1.5 | 4.2 ± 1.6 | 4.2 ± 1.7 | 3.8 ± 1.2 | 0.297 |
Men n = 52 | 4.0 ± 1.6 | 4.5 ± 1.9 | 3.5 ± 1.3 | 3.9 ± 1.6 | 0.222 |
Women n = 28 | 4.1 ± 1.2 | 4.2 ± 1.2 | 4.2 ± 1.2 | 4 ± 1.4 | 0.908 |
Total BCAA (µmol/L) | Valine (µmol/L) | Leucine (µmol/L) | Isoleucine (µmol/L) | |
---|---|---|---|---|
Hand grip strength (kg) | ||||
Men, n = 49 | 0.261 | 0.162 | 0.322 * | 0.329 * |
Women, n = 28 | 0.013 | −0.040 | 0.010 | −0.014 |
4 m walking test (s), n = 42 | −0.245 | −0.245 | −0.208 | −0.209 |
Sit-to-stand test (s), n = 40 | −0.352 * | −0.337 * | −0.316 * | −0.170 |
Timed up and go test (s), n = 40 | −0.472 ** | −0.420 ** | −0.420 ** | −0.344 * |
Standing balance test (points), n = 36 | −0.068 | −0.031 | −0.134 | 0.010 |
Clinical Frailty Scale (0–9), n = 80 | −0.098 | −0.110 | −0.090 | −0.117 |
Overall | T1 | T2 | T3 | p-Value | |
---|---|---|---|---|---|
Total (n) | 92 | 31 | 30 | 31 | |
Men (n) | 60 | 20 | 20 | 20 | |
Women (n) | 32 | 11 | 10 | 11 | |
Laboratory measurements | |||||
AST (U/L) | 54.0 (43.3–83.0) | 56.5 (55.0–90.5) | 57.5 (54.4–108.0) | 47.5 (39.4–101.6) | 0.755 |
ALT (U/L) | 39.5 (28.3–55.8) | 39.5 (36.0–67.2) | 42.0 (36.6–69.2) | 39.5 (30.3–65.2) | 0.770 |
ALP (U/L) | 153.0 (156.7–197.3) | 168.0 (161.6–235.8) | 149.0 (140.0–201.6) | 140.0 (122.5–202.2) | 0.134 |
Bilirubin (μmol/L) | 41.0 (18.3–86.0) | 56.0 (48.5–159.2) | 43.5 (39.7–125.4) | 44.5 (27.9–152.5) | 0.237 |
Ammonia (µmol/L) | 68.8 ± 33.4 | 71.1 ± 35.6 | 68.6 ± 31.2 | 68.8 ± 33.4 | 0.884 |
Primary liver disease, n (%) | |||||
Viral hepatitis | 7 (7.5) | 1 (3.2) | 2 (6.7) | 4 (12.9) | 0.494 |
Autoimmune | 24 (26.1) | 9 (29.0) | 9 (30.0) | 6 (19.4) | 0.575 |
MAFLD | 28 (30.4) | 8 (25.8) | 8 (25.8) | 12 (38.7) | 0.468 |
Alcohol cirrhosis | 20 (21.7) | 6 (19.4) | 9 (30.0) | 5 (16.1) | 0.450 |
Storage disorder | 2 (2.2) | 0 | 2 (6.7) | 0 | 0.326 |
Malignancy | 3 (3.3) | 3 (9.7) | 0 | 0 | 0.032 * |
Other | 8 (8.7) | 3 (9.7) | 1 (3.3) | 4 (12.9) | 0.432 |
Severity of liver disease | |||||
MELD score | 15 ± 6 | 16 ± 6 | 15 ± 5 | 13 ± 6 | 0.107 |
CPT score | 8 ± 2 | 9 ± 2 | 8 ± 2 | 7 ± 2 | 0.090 |
Complications of liver disease, n (%) | |||||
Mortality | 18 (19.6) | 6 (19.4) | 9 (30.0) | 3 (9.7) | 0.157 |
Hepatic encephalopathy | 48 (52.2) | 16 (51.6) | 13 (43.3) | 19 (61.3) | 0.309 |
Use of Lactulose | 40 (43.5) | 12 (38.7) | 12 (40.0) | 16 (51.6) | 0.530 |
Ascites on admission | 60 (65.2) | 20 (64.5) | 23 (76.7) | 17 (54.8) | 0.298 |
Varices on admission | 70 (76.1) | 21 (67.7) | 25 (83.3) | 24 (77.4) | 0.608 |
Variceal bleeding | 23 (25.0) | 5 (16.1) | 10 (33.3) | 8 (25.8) | 0.369 |
Hepatocellular carcinoma | 27 (29.7) | 6 (19.4) | 7 (23.3) | 14 (45.2) | 0.064 |
Hepatorenal syndrome | 19 (21.3) | 8 (26.7) | 5 (16.6) | 6 (19.4) | 0.661 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trillos-Almanza, M.C.; Wessel, H.; Martínez-Aguilar, M.; van den Berg, E.H.; Douwes, R.M.; Moshage, H.; Connelly, M.A.; Bakker, S.J.L.; de Meijer, V.E.; Dullaart, R.P.F.; et al. Branched Chain Amino Acids Are Associated with Physical Performance in Patients with End-Stage Liver Disease. Biomolecules 2023, 13, 824. https://doi.org/10.3390/biom13050824
Trillos-Almanza MC, Wessel H, Martínez-Aguilar M, van den Berg EH, Douwes RM, Moshage H, Connelly MA, Bakker SJL, de Meijer VE, Dullaart RPF, et al. Branched Chain Amino Acids Are Associated with Physical Performance in Patients with End-Stage Liver Disease. Biomolecules. 2023; 13(5):824. https://doi.org/10.3390/biom13050824
Chicago/Turabian StyleTrillos-Almanza, Maria Camila, Hanna Wessel, Magnolia Martínez-Aguilar, Eline H. van den Berg, Rianne M. Douwes, Han Moshage, Margery A. Connelly, Stephan J. L. Bakker, Vincent E. de Meijer, Robin P. F. Dullaart, and et al. 2023. "Branched Chain Amino Acids Are Associated with Physical Performance in Patients with End-Stage Liver Disease" Biomolecules 13, no. 5: 824. https://doi.org/10.3390/biom13050824
APA StyleTrillos-Almanza, M. C., Wessel, H., Martínez-Aguilar, M., van den Berg, E. H., Douwes, R. M., Moshage, H., Connelly, M. A., Bakker, S. J. L., de Meijer, V. E., Dullaart, R. P. F., & Blokzijl, H. (2023). Branched Chain Amino Acids Are Associated with Physical Performance in Patients with End-Stage Liver Disease. Biomolecules, 13(5), 824. https://doi.org/10.3390/biom13050824