Dynamics of Urinary Extracellular DNA in Urosepsis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Study
2.2. Sample Collection
2.3. Biochemical Analysis
2.4. Animal Study
2.5. Bacterial Strain and Growth Condition
2.6. Experimental Design
2.7. Isolation and Quantification of Extracellular DNA
2.8. Statistical Analysis
3. Results
3.1. Sample Collection
3.2. Dynamics of ecDNA and Relation to Inflammatory Parameters
3.3. Animal Study—Dynamics of ecDNA and Relation to Bacterial Burden
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porat, A.; Bhutta, B.S.; Kesler, S. Urosepsis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Wagenlehner, F.M.; Lichtenstern, C.; Rolfes, C.; Mayer, K.; Uhle, F.; Weidner, W.; Weigand, M.A. Diagnosis and Management for Urosepsis. Int. J. Urol. 2013, 20, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, M.; Yumru, A.E.; Salman, S. Assessment of Perioperative, Early, and Late Postoperative Complications of the inside-out Transobturator Tape Procedure in the Treatment of Stress Urinary Incontinence. Clin. Exp. Obstet. Gynecol. 2015, 42, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Jiang, C.; Liang, X.; Zhong, F.; Huang, J.; Lin, Y.; Zhao, Z.; Duan, X.; Zeng, G.; Wu, W. Early and Rapid Prediction of Postoperative Infections Following Percutaneous Nephrolithotomy in Patients with Complex Kidney Stones. BJU Int. 2019, 123, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; He, Y.; Zhao, H.; Jiang, X.; Feng, G.; Yang, W.; Xu, W.; Xie, Q.; Li, X. Mini-Nephroscope Combined with Pressure Suction: An Effective Tool in MPCNL for Intrarenal Stones in Patients with Urinary Tract Infections. Urolithiasis 2016, 44, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Dreger, N.M.; Degener, S.; Ahmad-Nejad, P.; Wöbker, G.; Roth, S. Urosepsis—Ursache, Diagnose Und Therapie. Dtsch. Arztebl. Int. 2015, 112, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Sharapatov, Y.; Turgunov, Y.; Lavrinenko, A. Pathogenic Mechanisms of Acute Obstructive Pyelonephritis. Open Access Maced. J. Med. Sci. 2021, 9, 124–128. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, G.; Huang, Z.; Yang, B.; Yang, T.; Liu, J.; Li, P.; Li, J. Diagnostic and Therapeutic Value of Biomarkers in Urosepsis. Ther. Adv. Urol. 2023, 15, 17562872231151852. [Google Scholar] [CrossRef]
- Pisetsky, D.S. The Origin and Properties of Extracellular DNA: From PAMP to DAMP. Clin. Immunol. 2012, 144, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Han, D.S.C.; Ni, M.; Chan, R.W.Y.; Chan, V.W.H.; Lui, K.O.; Chiu, R.W.K.; Lo, Y.M.D. The Biology of Cell-Free DNA Fragmentation and the Roles of DNASE1, DNASE1L3, and DFFB. Am. J. Hum. Genet. 2020, 106, 202–214. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Y.; Nuñez, G. Sterile Inflammation: Sensing and Reacting to Damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Denning, N.-L.; Aziz, M.; Gurien, S.D.; Wang, P. DAMPs and NETs in Sepsis. Front. Immunol. 2019, 10, 2536. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Aziz, M.; Wang, P. Damage-Associated Molecular Patterns As Double-Edged Swords in Sepsis. Antioxid. Redox Signal. 2021, 35, 1308–1323. [Google Scholar] [CrossRef]
- Huang, M.; Cai, S.; Su, J. The Pathogenesis of Sepsis and Potential Therapeutic Targets. Int. J. Mol. Sci. 2019, 20, 5376. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J. Free DNA—New Potential Analyte in Clinical Laboratory Diagnostics? Biochem. Med. 2012, 22, 24–38. [Google Scholar] [CrossRef]
- Bronkhorst, A.J.; Ungerer, V.; Holdenrieder, S. The Emerging Role of Cell-Free DNA as a Molecular Marker for Cancer Management. Biomol. Detect. Quantif. 2019, 17, 100087. [Google Scholar] [CrossRef]
- Ferré-Vallverdú, M.; Latorre, A.M.; Fuset, M.P.; Sánchez, E.; Madrid, I.; Ten, F.; Vallés, J.; Santos, M.T.; Bonanad, S.; Moscardó, A. Neutrophil Extracellular Traps (NETs) in Patients with STEMI. Association with Percutaneous Coronary Intervention and Antithrombotic Treatments. Thromb. Res. 2022, 213, 78–83. [Google Scholar] [CrossRef]
- Shimony, A.; Zahger, D.; Gilutz, H.; Goldstein, H.; Orlov, G.; Merkin, M.; Shalev, A.; Ilia, R.; Douvdevani, A. Cell Free DNA Detected by a Novel Method in Acute ST-Elevation Myocardial Infarction Patients. Acute Cardiac. Care 2010, 12, 109–111. [Google Scholar] [CrossRef]
- Cernat, A.; de Freitas, C.; Majid, U.; Trivedi, F.; Higgins, C.; Vanstone, M. Facilitating Informed Choice about Non-Invasive Prenatal Testing (NIPT): A Systematic Review and Qualitative Meta-Synthesis of Women’s Experiences. BMC Pregnancy Childbirth 2019, 19, 27. [Google Scholar] [CrossRef] [Green Version]
- Schlaberg, R.; Chiu, C.Y.; Miller, S.; Procop, G.W.; Weinstock, G. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection. Arch. Pathol. Lab. Med. 2017, 141, 776–786. [Google Scholar] [CrossRef] [Green Version]
- Nadano, D.; Yasuda, T.; Kishi, K. Measurement of Deoxyribonuclease I Activity in Human Tissues and Body Fluids by a Single Radial Enzyme-Diffusion Method. Clin. Chem. 1993, 39, 448–452. [Google Scholar] [CrossRef] [PubMed]
- García Moreira, V.; Prieto García, B.; de la Cera Martínez, T.; Álvarez Menéndez, F.V. Elevated Transrenal DNA (Cell-Free Urine DNA) in Patients with Urinary Tract Infection Compared to Healthy Controls. Clin. Biochem. 2009, 42, 729–731. [Google Scholar] [CrossRef] [PubMed]
- Botezatu, I.; Serdyuk, O.; Potapova, G.; Shelepov, V.; Alechina, R.; Molyaka, Y.; Ananév, V.; Bazin, I.; Garin, A.; Narimanov, M.; et al. Genetic Analysis of DNA Excreted in Urine: A New Approach for Detecting Specific Genomic DNA Sequences from Cells Dying in an Organism. Clin. Chem. 2000, 46, 1078–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Sampath, H. Mitochondrial DNA Integrity: Role in Health and Disease. Cells 2019, 8, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, A.; Wort, S.J.; Thomas, H.; Collinson, P.; Bennett, E.D. Plasma DNA Concentration as a Predictor of Mortality and Sepsis in Critically Ill Patients. Crit. Care 2006, 10, R60. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhou, W.; Wang, K.; He, S.; Chen, Y. Predictive Value of Circulating Plasma Mitochondrial DNA for Sepsis in the Emergency Department: Observational Study Based on the Sepsis-3 Definition. BMC Emerg. Med. 2020, 20, 25. [Google Scholar] [CrossRef] [Green Version]
- Avriel, A.; Paryente Wiessman, M.; Almog, Y.; Perl, Y.; Novack, V.; Galante, O.; Klein, M.; Pencina, M.J.; Douvdevani, A. Admission Cell Free DNA Levels Predict 28-Day Mortality in Patients with Severe Sepsis in Intensive Care. PLoS ONE 2014, 9, e100514. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, R.M.; Stallons, L.J.; Kneff, J.E.; Alge, J.L.; Harmon, J.L.; Rahn, J.J.; Arthur, J.M.; Beeson, C.C.; Chan, S.L.; Schnellmann, R.G. Urinary Mitochondrial DNA Is a Biomarker of Mitochondrial Disruption and Renal Dysfunction in Acute Kidney Injury. Kidney Int. 2015, 88, 1336–1344. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Ren, J.; Wu, J.; Li, G.; Wu, X.; Liu, S.; Wang, G.; Gu, G.; Ren, H.; Hong, Z.; et al. Urinary Mitochondrial DNA Levels Identify Acute Kidney Injury in Surgical Critical Illness Patients. Shock 2017, 48, 11–17. [Google Scholar] [CrossRef]
- Jansen, M.P.B.; Pulskens, W.P.C.; Uil, M.; Claessen, N.; Nieuwenhuizen, G.; Standaar, D.; Hau, C.M.; Nieuwland, R.; Florquin, S.; Bemelman, F.J.; et al. Urinary Mitochondrial DNA Associates with Delayed Graft Function Following Renal Transplantation. Nephrol. Dial. Transpl. 2020, 35, 1320–1327. [Google Scholar] [CrossRef]
- Jančuška, A.; Potočárová, A.; Gaál Kovalčíková, A.; Podracká, Ľ.; Bábíčková, J.; Celec, P.; Tóthová, Ľ. Dynamics of Plasma and Urinary Extracellular DNA in Acute Kidney Injury. Int. J. Mol. Sci. 2022, 23, 3402. [Google Scholar] [CrossRef]
- Mobley, H.L.; Green, D.M.; Trifillis, A.L.; Johnson, D.E.; Chippendale, G.R.; Lockatell, C.v.; Jones, B.D.; Warren, J.W. Pyelonephritogenic Escherichia Coli and Killing of Cultured Human Renal Proximal Tubular Epithelial Cells: Role of Hemolysin in Some Strains. Infect. Immun. 1990, 58, 1281–1289. [Google Scholar] [CrossRef] [Green Version]
- McLellan, L.K.; McAllaster, M.R.; Kim, A.S.; Tóthová, Ľ.; Olson, P.D.; Pinkner, J.S.; Daugherty, A.L.; Hreha, T.N.; Janetka, J.W.; Fremont, D.H.; et al. A Host Receptor Enables Type 1 Pilus-Mediated Pathogenesis of Escherichia Coli Pyelonephritis. PLoS Pathog. 2021, 17, e1009314. [Google Scholar] [CrossRef]
- Saukkonen, K.; Lakkisto, P.; Pettilä, V.; Varpula, M.; Karlsson, S.; Ruokonen, E.; Pulkki, K. Cell-Free Plasma DNA as a Predictor of Outcome in Severe Sepsis and Septic Shock. Clin. Chem. 2008, 54, 1000–1007. [Google Scholar] [CrossRef] [Green Version]
- Elrod, J.; Kiwit, A.; Lenz, M.; Rohde, H.; Börnigen, D.; Alawi, M.; Mohr, C.; Pagerols Raluy, L.; Trochimiuk, M.; Knopf, J.; et al. Midgut Volvulus Adds a Murine, Neutrophil-Driven Model of Septic Condition to the Experimental Toolbox. Cells 2023, 12, 366. [Google Scholar] [CrossRef]
- Hu, Q.; Ren, J.; Ren, H.; Wu, J.; Wu, X.; Liu, S.; Wang, G.; Gu, G.; Guo, K.; Li, J. Urinary Mitochondrial DNA Identifies Renal Dysfunction and Mitochondrial Damage in Sepsis-Induced Acute Kidney Injury. Oxidative Med. Cell Longev. 2018, 2018, 8074936. [Google Scholar] [CrossRef] [Green Version]
- Gaál Kovalčíková, A.; Janovičová, Ľ.; Hodosy, J.; Bábíčková, J.; Vavrincová-Yaghi, D.; Vavrinec, P.; Boor, P.; Podracká, Ľ.; Šebeková, K.; Celec, P.; et al. Extracellular DNA Concentrations in Various Aetiologies of Acute Kidney Injury. Sci. Rep. 2022, 12, 16812. [Google Scholar] [CrossRef]
- Bozkurt, I.H.; Aydogdu, O.; Yonguc, T.; Koras, O.; Sen, V.; Yarimoglu, S.; Degirmenci, T. Predictive Value of Leukocytosis for Infectious Complications After Percutaneous Nephrolithotomy. Urology 2015, 86, 25–29. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, S.; Yu, S.; Ding, G.; Xu, J.; Li, T.; Qiao, L.; Chen, Y.; Yan, J.; Cheng, X.; et al. Early drastic decrease in white blood count can predict uroseptic shock induced by upper urinary tract endoscopic lithotripsy: A translational study. J. Urol. 2015, 193, 2116–2122. [Google Scholar] [CrossRef]
- Russell, C.D.; Parajuli, A.; Gale, H.J.; Bulteel, N.S.; Schuetz, P.; de Jager, C.P.C.; Loonen, A.J.M.; Merekoulias, G.I.; Baillie, J.K. The utility of peripheral blood leucocyte ratios as biomarkers in infectious diseases: A systematic review and meta-analysis. J. Infect. 2019, 78, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Lin, S.H.; Wang, J.; Chu, C.K. Prognostic values of procalcitonin and platelet in the patient with urosepsis. Medicine 2021, 100, e26555. [Google Scholar] [CrossRef] [PubMed]
- Yamamichi, F.; Shigemura, K.; Kitagawa, K.; Takaba, K.; Tokimatsu, I.; Arakawa, S.; Fujisawa, M. Shock due to urosepsis: A multicentre study. Can. Urol. Assoc. J. 2017, 11, E105–E109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guliciuc, M.; Porav-Hodade, D.; Chibelean, B.C.; Voidazan, S.T.; Ghirca, V.M.; Maier, A.C.; Marinescu, M.; Firescu, D. The Role of Biomarkers and Scores in Describing Urosepsis. Medicina 2023, 59, 597. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhu, Z.; Cui, Y.; Zeng, H.; Li, Y.; Huang, F.; Cui, Z.; Zeng, F.; Chen, Z.; Li, Y.; et al. The value of procalcitonin for predicting urosepsis after mini-percutaneous nephrolithotomy or flexible ureteroscopy based on different organisms. World J. Urol. 2022, 40, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Canat, H.L.; Can, O.; Atalay, H.A.; Akkaş, F.; Ötünçtemur, A. Procalcitonin as an early indicator of urosepsis following prostate biopsy. Aging Male 2020, 23, 431–436. [Google Scholar] [CrossRef]
- Zhu, Z.; Cui, Y.; Zeng, H.; Li, Y.; Zeng, F.; Li, Y.; Chen, Z.; Hequn, C. The evaluation of early predictive factors for urosepsis in patients with negative preoperative urine culture following mini-percutaneous nephrolithotomy. World J. Urol. 2020, 38, 2629–2636. [Google Scholar] [CrossRef]
- Zhan, X.; Liu, D.; Dong, Y.; Gao, Y.; Xu, X.; Xie, T.; Zhou, H.; Wang, G.; Zhang, H.; Wu, P.; et al. Early Changes and Predictive Value of Serum Histone H3 Concentration in Urosepsis: A Prospective Observational Study. Adv. Ther. 2022, 39, 1310–1323. [Google Scholar] [CrossRef]
- Tan, D.; Zhao, L.; Peng, W.; Wu, F.H.; Zhang, G.B.; Yang, B.; Huo, W.Q. Value of urine IL-8, NGAL and KIM-1 for the early diagnosis of acute kidney injury in patients with ureteroscopic lithotripsy related urosepsis. Chin. J. Traumatol. 2022, 25, 27–31. [Google Scholar] [CrossRef]
- Luo, X.; Yang, X.; Li, J.; Zou, G.; Lin, Y.; Qing, G.; Yang, R.; Yao, W.; Ye, X. The procalcitonin/albumin ratio as an early diagnostic predictor in discriminating urosepsis from patients with febrile urinary tract infection. Medicine 2018, 97, e11078. [Google Scholar] [CrossRef]
- Chimenz, R.; Chirico, V.; Cuppari, C.; Sallemi, A.; Cardile, D.; Baldari, S.; Ascenti, G.; Monardo, P.; Lacquaniti, A. Febrile Urinary Tract Infections in Children: The Role of High Mobility Group Box-1. Children 2022, 10, 47. [Google Scholar] [CrossRef]
- Ticinesi, A.; Lauretani, F.; Nouvenne, A.; Porro, E.; Fanelli, G.; Maggio, M.; Meschi, T. C-Reactive Protein (CRP) Measurement in Geriatric Patients Hospitalized for Acute Infection. Eur. J. Intern. Med. 2017, 37, 7–12. [Google Scholar] [CrossRef]
- Tan, M.; Lu, Y.; Jiang, H.; Zhang, L. The Diagnostic Accuracy of Procalcitonin and C-reactive Protein for Sepsis: A Systematic Review and Meta-analysis. J. Cell Biochem. 2019, 120, 5852–5859. [Google Scholar] [CrossRef]
- Chalupa, P.; Beran, O.; Herwald, H.; Kaspříková, N.; Holub, M. Evaluation of Potential Biomarkers for the Discrimination of Bacterial and Viral Infections. Infection 2011, 39, 411–417. [Google Scholar] [CrossRef]
- Lee, H. Procalcitonin as a Biomarker of Infectious Diseases. Korean J. Intern. Med. 2013, 28, 285–291. [Google Scholar] [CrossRef]
- Li, D.; Sha, M.-L.; Chen, L.; Xiao, Y.-L.; Zhuo, J.; Lu, J.; Shao, Y. Is the Preoperative Level of Procalcitonin a Valid Indicator for Predicting Postoperative Fever After Percutaneous Nephrolithotomy? J. Endourol. 2018, 32, 192–197. [Google Scholar] [CrossRef]
- Paudel, R.; Dogra, P.; Montgomery-Yates, A.A.; Coz Yataco, A. Procalcitonin: A Promising Tool or Just Another Overhyped Test? Int. J. Med. Sci. 2020, 17, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Yang, X.-L.; Shen, Z.-B.; Sun, X.-M.; Guo, Q.; Ren, Y.-H.; Zhang, G.-C. [Significance of Neutrophil Extracellular Trap and Its Markers in the Early Diagnosis of Community-Acquired Pneumonia in Children]. Zhongguo Dang Dai Er Ke Za Zhi 2019, 21, 868–875. [Google Scholar] [CrossRef]
- Ragnarsdóttir, B.; Lutay, N.; Grönberg-Hernandez, J.; Köves, B.; Svanborg, C. Genetics of Innate Immunity and UTI Susceptibility. Nat. Rev. Urol. 2011, 8, 449–468. [Google Scholar] [CrossRef]
- Wagenlehner, F.M.E.; Weidner, W.; Naber, K.G. Pharmacokinetic Characteristics of Antimicrobials and Optimal Treatment of Urosepsis. Clin. Pharmacokinet. 2007, 46, 291–305. [Google Scholar] [CrossRef]
- Prauchner, C.A. Oxidative Stress in Sepsis: Pathophysiological Implications Justifying Antioxidant Co-Therapy. Burns 2017, 43, 471–485. [Google Scholar] [CrossRef]
- Kingsley, S.M.; Bhat, B.V. Differential Paradigms in Animal Models of Sepsis. Curr. Infect. Dis. Rep. 2016, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Bai, C.; Si, P.; Yan, X.; Zhang, P.; Yisha, Z.; Lu, P.; Tuoheti, K.; Guo, L.; Chen, Z.; et al. A novel model of urosepsis in rats developed by injection of Escherichia coli into the renal pelvis. Front. Immunol. 2023, 13, 1074488. [Google Scholar] [CrossRef] [PubMed]
- Skowron, B.; Baranowska, A.; Dobrek, L.; Ciesielczyk, K.; Kaszuba-Zwoinska, J.; Wiecek, G.; Malska-Wozniak, A.; Strus, M.; Gil, K. Urinary neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, uromodulin, and cystatin C concentrations in an experimental rat model of ascending acute kidney injury induced by pyelonephritis. J. Physiol. Pharmacol. 2018, 69. [Google Scholar] [CrossRef]
- Herout, R.; Vappala, S.; Hanstock, S.; Moskalev, I.; Chew, B.H.; Kizhakkedathu, J.N.; Lange, D. Development of a High-Throughput Urosepsis Mouse Model. Pathogens 2023, 12, 604. [Google Scholar] [CrossRef]
Marker | Admission | 24 h of ATB | p | 48 h of ATB | p | Follow-Up | p |
---|---|---|---|---|---|---|---|
CRP (mg/L) | 143 ± 88 | 151 ± 91 | ns | 132 ± 86 | ns | 20 ± 29 | *** |
Procalcitonin (μg/L) | 5 ± 13 | 11 ± 29 | ns | 7 ± 15 | ns | 0.1 ± 0.3 | *** |
Hemoglobin (g/L) | 125 ± 17 | 112 ± 14 | *** | 111 ± 15 | *** | 127 ± 13 | ns |
Urea (mmol/L) | 11 ± 8 | 11 ± 7 | ns | 9 ± 7 | *** | 7 ± 4 | *** |
Creatinine (μmol/L) | 191 ± 176 | 175 ± 163 | ns | 148 ± 119 | *** | 113 ± 57 | *** |
WBC (×109/L) | 13 ± 4 | 11 ± 5 | * | 10 ± 4 | *** | 9 ± 3 | *** |
Platelets (×109/L) | 252 ± 91 | 220 ± 80 | ** | 233 ± 87 | ns | 289 ± 94 | ns |
Lactate (mmol/L) | 2 ± 1 | 2 ± 1 | * | 2 ± 1 | ns | 2 ± 1 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihaľová, M.; Šupčíková, N.; Kovalčíková, A.G.; Breza, J., Jr.; Tóthová, Ľ.; Celec, P.; Breza, J., Sr. Dynamics of Urinary Extracellular DNA in Urosepsis. Biomolecules 2023, 13, 1008. https://doi.org/10.3390/biom13061008
Mihaľová M, Šupčíková N, Kovalčíková AG, Breza J Jr., Tóthová Ľ, Celec P, Breza J Sr. Dynamics of Urinary Extracellular DNA in Urosepsis. Biomolecules. 2023; 13(6):1008. https://doi.org/10.3390/biom13061008
Chicago/Turabian StyleMihaľová, Michaela, Nadja Šupčíková, Alexandra Gaál Kovalčíková, Ján Breza, Jr., Ľubomíra Tóthová, Peter Celec, and Ján Breza, Sr. 2023. "Dynamics of Urinary Extracellular DNA in Urosepsis" Biomolecules 13, no. 6: 1008. https://doi.org/10.3390/biom13061008
APA StyleMihaľová, M., Šupčíková, N., Kovalčíková, A. G., Breza, J., Jr., Tóthová, Ľ., Celec, P., & Breza, J., Sr. (2023). Dynamics of Urinary Extracellular DNA in Urosepsis. Biomolecules, 13(6), 1008. https://doi.org/10.3390/biom13061008