PKD1 Mutation Is a Biomarker for Autosomal Dominant Polycystic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Research Methods
- (1)
- Sample Collection
- (2)
- Use of Existing Data and Information
- (3)
- Genes/Gene Groups to be Analyzed and Analysis Methods
- Targeted Resequencing
- ii.
- Sanger Sequencing
- iii.
- Copy Number Variation Analysis (Multiplex Ligation-Dependent Probe Assay (MLPA) Method)
- iv.
- Total RNA Sequence Analysis
- v.
- Whole-Exome Sequencing Analysis
- vi.
- Bioinformatics Analysis
- vii.
- Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horie, S.; Mochizuki, T.; Muto, S.; Hanaoka, K.; Fukushima, Y.; Narita, I.; Nutahara, K.; Tsuchiya, K.; Tsuruya, K.; Kamura, K.; et al. Evidence-based clinical practice guidelines for polycystic kidney disease 2014. Clin. Exp. Nephrol. 2016, 20, 493–509. [Google Scholar] [CrossRef] [Green Version]
- Horie, S. Autosomal dominant polycystic kidney disease. Nihon Jinzo Gakkai Shi 2011, 53, 6–9. [Google Scholar]
- Torres, V.E.; Harris, P.C.; Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 2007, 369, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- Lanktree, M.B.; Haghighi, A.; Guiard, E.; Iliuta, I.-A.; Song, X.; Harris, P.C.; Paterson, A.D.; Pei, Y. Prevalence Estimates of Polycystic Kidney and Liver Disease by Population Sequencing. J. Am. Soc. Nephrol. 2018, 29, 2593–2600. [Google Scholar] [CrossRef] [Green Version]
- Chebib, F.T.; Torres, V.E. Autosomal Dominant Polycystic Kidney Disease: Core Curriculum 2016. Am. J. Kidney Dis. 2016, 67, 792–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, C.; Guay-Woodford, L.M.; Harris, P.C.; Horie, S.; Peters, D.J.M.; Torres, V.E. Polycystic kidney disease. Nat. Rev. Dis. Prim. 2018, 4, 50. [Google Scholar] [CrossRef] [PubMed]
- Horie, S. ADPKD: Molecular characterization and quest for treatment. Clin. Exp. Nephrol. 2005, 9, 282–291. [Google Scholar] [CrossRef]
- The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 1994, 77, 881–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochizuki, T.; Wu, G.; Hayashi, T.; Xenophontos, S.L.; Veldhuisen, B.; Saris, J.J.; Reynolds, D.M.; Cai, Y.; Gabow, P.A.; Pierides, A.; et al. PKD2, a Gene for Polycystic Kidney Disease That Encodes an Integral Membrane Protein. Science 1996, 272, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.R.; Moore, B.S.; Luo, J.Z.; Sartori, G.; Fang, B.; Jacobs, S.; Abdalla, Y.; Taher, M.; Carey, D.J.; Triffo, W.J.; et al. Exome Sequencing of a Clinical Population for Autosomal Dominant Polycystic Kidney Disease. JAMA 2022, 328, 2412–2421. [Google Scholar] [CrossRef]
- Barua, M.; Cil, O.; Paterson, A.D.; Wang, K.; He, N.; Dicks, E.; Parfrey, P.; Pei, Y. Family History of Renal Disease Severity Predicts the Mutated Gene in ADPKD. J. Am. Soc. Nephrol. 2009, 20, 1833–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gall, E.C.-L.; Audrézet, M.-P.; Chen, J.-M.; Hourmant, M.; Morin, M.-P.; Perrichot, R.; Charasse, C.; Whebe, B.; Renaudineau, E.; Jousset, P.; et al. Type of PKD1 Mutation Influences Renal Outcome in ADPKD. J. Am. Soc. Nephrol. 2013, 24, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Muto, S.; Kawano, H.; Higashihara, E.; Narita, I.; Ubara, Y.; Matsuzaki, T.; Ouyang, J.; Torres, V.E.; Horie, S. The effect of tolvaptan on autosomal dominant polycystic kidney disease patients: A subgroup analysis of the Japanese patient subset from TEMPO 3:4 trial. Clin. Exp. Nephrol. 2015, 19, 867–877. [Google Scholar] [CrossRef]
- Horie, S.; Muto, S.; Kawano, H.; Okada, T.; Shibasaki, Y.; Nakajima, K.; Ibuki, T. Preservation of kidney function irrelevant of total kidney volume growth rate with tolvaptan treatment in patients with autosomal dominant polycystic kidney disease. Clin. Exp. Nephrol. 2021, 25, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Petzold, K.; Poster, D.; Krauer, F.; Spanaus, K.; Andreisek, G.; Nguyen-Kim, T.D.L.; Pavik, I.; Ho, T.A.; Serra, A.L.; Rotar, L. Urinary Biomarkers at Early ADPKD Disease Stage. PLoS ONE 2015, 10, e0123555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messchendorp, A.L.; Meijer, E.; Visser, F.W.; Engels, G.E.; Kappert, P.; Losekoot, M.; Peters, D.J.M.; Gansevoort, R.T.; DIPAK-1 study investigators. Rapid Progression of Autosomal Dominant Polycystic Kidney Disease: Urinary Biomarkers as Predictors. Am. J. Nephrol. 2019, 50, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Fick-Brosnahan, G.M.; Belz, M.M.; McFann, K.K.; Johnson, A.M.; Schrier, R.W. Relationship between renal volume growth and renal function in autosomal dominant polycystic kidney disease: A longitudinal study. Am. J. Kidney Dis. 2002, 39, 1127–1134. [Google Scholar] [CrossRef]
- Torres, V.E.; King, B.F.; Chapman, A.B.; Brummer, M.E.; Bae, K.T.; Glockner, J.F.; Arya, K.; Risk, D.; Felmlee, J.P.; Grantham, J.J.; et al. Magnetic Resonance Measurements of Renal Blood Flow and Disease Progression in Autosomal Dominant Polycystic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2007, 2, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Gansevoort, R.T.; van Gastel, M.D.; Chapman, A.B.; Blais, J.D.; Czerwiec, F.S.; Higashihara, E.; Lee, J.; Ouyang, J.; Perrone, R.D.; Stade, K.; et al. Plasma copeptin levels predict disease progression and tolvaptan efficacy in autosomal dominant polycystic kidney disease. Kidney Int. 2019, 96, 159–169. [Google Scholar] [CrossRef]
- Furlano, M.; Loscos, I.; Martí, T.; Bullich, G.; Ayasreh, N.; Rius, A.; Roca, L.; Ballarín, J.; Ars, E.; Torra, R. Autosomal Dominant Polycystic Kidney Disease: Clinical Assessment of Rapid Progression. Am. J. Nephrol. 2018, 48, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, K.; Mochizuki, T.; Shimada, Y.; Nishio, S.; Kataoka, H.; Mitobe, M.; Tsuchiya, K.; Hanaoka, K.; Ubara, Y.; Suwabe, T.; et al. Factors predicting decline in renal function and kidney volume growth in autosomal dominant polycystic kidney disease: A prospective cohort study (Japanese Polycystic Kidney Disease registry: J-PKD). Clin. Exp. Nephrol. 2021, 25, 970–980. [Google Scholar] [CrossRef] [PubMed]
- Kawano, H.; Muto, S.; Ohmoto, Y.; Iwata, F.; Fujiki, H.; Mori, T.; Yan, L.; Horie, S. Exploring urinary biomarkers in autosomal dominant polycystic kidney disease. Clin. Exp. Nephrol. 2014, 19, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Irazabal, M.V.; Rangel, L.J.; Bergstralh, E.J.; Osborn, S.L.; Harmon, A.J.; Sundsbak, J.L.; Bae, K.T.; Chapman, A.B.; Grantham, J.J.; Mrug, M.; et al. Imaging classification of autosomal dominant polycystic kidney disease: A simple model for selecting patients for clinical trials. J. Am. Soc. Nephrol. 2015, 26, 160–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornec-Le Gall, E.; Audrezet, M.P.; Rousseau, A.; Hourmant, M.; Renaudineau, E.; Charasse, C.; Morin, M.P.; Moal, M.C.; Dantal, J.; Wehbe, B.; et al. The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 942–951. [Google Scholar] [CrossRef] [Green Version]
- Sekine, A.; Hoshino, J.; Fujimaru, T.; Suwabe, T.; Mizuno, H.; Kawada, M.; Hiramatsu, R.; Hasegawa, E.; Yamanouchi, M.; Hayami, N.; et al. Genetics May Predict Effectiveness of Tolvaptan in Autosomal Dominant Polycystic Kidney Disease. Am. J. Nephrol. 2020, 51, 745–751. [Google Scholar] [CrossRef]
- Kinoshita, M.; Higashihara, E.; Kawano, H.; Higashiyama, R.; Koga, D.; Fukui, T.; Gondo, N.; Oka, T.; Kawahara, K.; Rigo, K.; et al. Technical Evaluation: Identification of Pathogenic Mutations in PKD1 and PKD2 in Patients with Autosomal Dominant Polycystic Kidney Disease by Next-Generation Sequencing and Use of a Comprehensive New Classification System. PLoS ONE 2016, 11, e0166288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravine, D.; Gibson, R.N.; Walker, R.G.; Sheffield, L.J.; Kincaid-Smith, P.; Danks, D.M. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease 1. Lancet 1994, 343, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised Equations for Estimated GFR From Serum Creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Lavu, S.; Vaughan, L.E.; Senum, S.R.; Kline, T.L.; Chapman, A.B.; Perrone, R.D.; Mrug, M.; Braun, W.E.; Steinman, T.I.; Rahbari-Oskoui, F.F.; et al. The value of genotypic and imaging information to predict functional and structural outcomes in ADPKD. JCI Insight 2020, 5, e138724. [Google Scholar] [CrossRef]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Perrone, R.D.; Koch, G.; Ouyang, J.; McQuade, R.D.; Blais, J.D.; Czerwiec, F.S.; et al. Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease. N. Engl. J. Med. 2017, 377, 1930–1942. [Google Scholar] [CrossRef]
- Chapman, A.B.; Bost, J.E.; Torres, V.E.; Guay-Woodford, L.; Bae, K.T.; Landsittel, D.; Li, J.; King, B.F.; Martin, D.; Wetzel, L.H.; et al. Kidney Volume and Functional Outcomes in Autosomal Dominant Polycystic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2012, 7, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Mader, G.; Mladsi, D.; Sanon, M.; Purser, M.; Barnett, C.L.; Oberdhan, D.; Watnick, T.; Seliger, S. A disease progression model estimating the benefit of tolvaptan on time to end-stage renal disease for patients with rapidly progressing autosomal dominant polycystic kidney disease. BMC Nephrol. 2022, 23, 334. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transp. 2013, 48, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Audrézet, M.-P.; Gall, E.C.-L.; Chen, J.-M.; Redon, S.; Quéré, I.; Creff, J.; Bénech, C.; Maestri, S.; Le Meur, Y.; Férec, C. Autosomal dominant polycystic kidney disease: Comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum. Mutat. 2012, 33, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, S.; Consugar, M.B.; Chapman, A.B.; Torres, V.E.; Guay-Woodford, L.M.; Grantham, J.J.; Bennett, W.M.; Meyers, C.M.; Walker, D.L.; Bae, K.; et al. Comprehensive Molecular Diagnostics in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2007, 18, 2143–2160. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.-H.; Conklin, J.; Chan, W.; Roslin, N.M.; Liu, J.; He, N.; Wang, K.; Sundsbak, J.L.; Heyer, C.M.; Haider, M.; et al. Refining Genotype-Phenotype Correlation in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 1861–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrera, P.; Calzavara, S.; Magistroni, R.; Dunnen, J.T.D.; Rigo, F.; Stenirri, S.; Testa, F.; Messa, P.; Cerutti, R.; Scolari, F.; et al. Deciphering Variability of PKD1 and PKD2 in an Italian Cohort of 643 Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). Sci. Rep. 2016, 6, 30850. [Google Scholar] [CrossRef] [Green Version]
- Heyer, C.M.; Sundsbak, J.L.; Abebe, K.Z.; Chapman, A.B.; Torres, V.E.; Grantham, J.J.; Bae, K.T.; Schrier, R.W.; Perrone, R.D.; Braun, W.E.; et al. Predicted Mutation Strength of Nontruncating PKD1 Mutations Aids Genotype-Phenotype Correlations in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 2872–2884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grantham, J.J.; Torres, V.E.; Chapman, A.B.; Guay-Woodford, L.M.; Bae, K.T.; King, B.F., Jr.; Wetzel, L.H.; Baumgarten, D.A.; Kenney, P.J.; Harris, P.C.; et al. Volume Progression in Polycystic Kidney Disease. N. Engl. J. Med. 2006, 354, 2122–2130. [Google Scholar] [CrossRef] [Green Version]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Grantham, J.J.; Higashihara, E.; Perrone, R.D.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S.; et al. Tolvaptan in Patients with Autosomal Dominant Polycystic Kidney Disease. N. Engl. J. Med. 2012, 367, 2407–2418. [Google Scholar] [CrossRef] [Green Version]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Perrone, R.D.; Dandurand, A.; Ouyang, J.; Czerwiec, F.S.; Blais, J.D.; TEMPO 4:4 Trial Investigators. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: The TEMPO 4:4 Trial. Nephrol. Dial. Transp. 2017, 33, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Horie, S.; Muto, S. Kidney volume and renal function in ADPKD. Nihon Jinzo Gakkai Shi 2012, 54, 501–505. [Google Scholar]
- Perrone, R.D.; Mouksassi, M.-S.; Romero, K.; Czerwiec, F.S.; Chapman, A.B.; Gitomer, B.Y.; Torres, V.E.; Miskulin, D.C.; Broadbent, S.; Marier, J.F. Total Kidney Volume Is a Prognostic Biomarker of Renal Function Decline and Progression to End-Stage Renal Disease in Patients With Autosomal Dominant Polycystic Kidney Disease. Kidney Int. Rep. 2017, 2, 442–450. [Google Scholar] [CrossRef] [Green Version]
- Yu, A.S.; Shen, C.; Landsittel, D.P.; Harris, P.C.; Torres, V.E.; Mrug, M.; Bae, K.T.; Grantham, J.J.; Rahbari-Oskoui, F.F.; Flessner, M.F.; et al. Baseline total kidney volume and the rate of kidney growth are associated with chronic kidney disease progression in Autosomal Dominant Polycystic Kidney Disease. Kidney Int. 2018, 93, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Erickson, K.F.; Chertow, G.M.; Goldhaber-Fiebert, J.D. Cost-Effectiveness of Tolvaptan in Autosomal Dominant Polycystic Kidney Disease. Ann. Intern. Med. 2013, 159, 382. [Google Scholar] [CrossRef] [Green Version]
- Gabow, P.A.; Johnson, A.M.; Kaehny, W.D.; Kimberling, W.J.; Lezotte, D.C.; Duley, I.T.; Jones, R.H. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int. 1992, 41, 1311–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Ma, Y.; Wang, X.; Yu, S.; Li, L.; Dai, B.; Mao, Z.; Sun, L.; Xu, C.; Rong, S.; et al. Clinical Characteristics and Disease Predictors of a Large Chinese Cohort of Patients with Autosomal Dominant Polycystic Kidney Disease. PLoS ONE 2014, 9, e92232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, V.E.; Grantham, J.J.; Chapman, A.B.; Mrug, M.; Bae, K.T.; King, B.F., Jr.; Wetzel, L.H.; Martin, D.; Lockhart, M.E.; Bennett, W.M.; et al. Potentially Modifiable Factors Affecting the Progression of Autosomal Dominant Polycystic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Tsubakihara, Y.; Akizawa, T.; Iwasaki, M.; Shimazaki, R. High Hemoglobin Levels Maintained by an Erythropoiesis-Stimulating Agent Improve Renal Survival in Patients with Severe Renal Impairment. Ther. Apher. Dial. 2015, 19, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Koh, J.; Park, S.K.; Oh, K.H.; Kim, Y.H.; Kim, Y.; Ahn, C.; Oh, Y.K. Baseline characteristics of the autosomal-dominant polycystic kidney disease sub-cohort of the KoreaN cohort study for outcomes in patients with chronic kidney disease. Nephrology 2019, 24, 422–429. [Google Scholar] [CrossRef] [PubMed]
Irazabal Equation Coefficients for Estimating Future eGFR | ||
---|---|---|
Variable | Description | Value |
α | Intercept | 21.18 |
β | Sex (reference is male) | −1.26 |
γ | Age at HtTKV0 (years) | −0.26 |
δ | eGFR at HtTKV0 (mL/min per 1.73 m2) | 0.90 |
θb | Subclass 1B | 0.58 |
θc | Subclass 1C | −1.14 |
θd | Subclass 1D | −1.93 |
θe | Subclass 1E | −6.26 |
ξ | Years from HtTKV0 | −0.23 |
λ | Sex, years from HtTKV0 | 0.19 |
μ | Age at HtTKV, years from HtTKV0 | −0.02 |
σc | Subclass 1C, years from HtTKV0 | −2.63 |
σd | Subclass 1D, years from HtTKV0 | −3.48 |
σe | Subclass 1E, years from HtTKV0 | −4.78 |
Total | PKD1 Truncated | PKD1 Non-Truncated | PKD2 Truncated | PKD2 Non-Truncated | p-Value | |
---|---|---|---|---|---|---|
Patients, n (%) | 309 (100) | 139 (45.0) | 86 (27.8) | 68 (22.0) | 16 (5.2) | |
Age, median (IQR) | 48 (41–55) | 46 (38–50) | 46 (41–54) | 52 (46–62) | 54 (48–59) | <0.001 |
Sex | 0.78 | |||||
Female | 176 | 79 | 49 | 37 | 11 | |
Male | 133 | 60 | 37 | 31 | 5 | |
Height, m, median (IQR) | 1.65 (1.58–1.72) | 1.66 (1.60–1.73) | 1.65 (1.60–1.72) | 1.64 (1.56–1.70) | 1.62 (1.57–1.66) | 0.021 |
BMI, kg/m2, median (IQR) | 22.0 (20.2–24.6) | 21.7 (20.0–24.0) | 22.7 (20.7–25.3) | 21.9 (20.6–25.1) | 23.0 (21.3–24.1) | 0.304 |
TKV, mL, median (IQR) | 1224.0 (808.0–1720.5) | 1277.0 (840.0–1760.8) | 1108.5 (755.2–1566.5) | 1240.5 (809.8–1695.1) | 1344 (900.8–3048.3) | 0.016 |
HtTKV, mL/m, median (IQR) | 748.0 (483.3–1002.2) | 761.0 (525.5–1016.4) | 694.1 (440.0–929.7) | 753.9 (490.3–1033.6) | 877.4 (575.6–1957.0) | 0.011 |
ΔeGFR/year, mL/min/1.73 m2, median (IQR) | −3.10 (−5.69 to −1.0) | −3.65 (−6.39 to −1.35) | −3.41 (−5.69 to −1.66) | −2.04 (−5.01 to −0.60) | −2.22 (−5.00 to −0.58) | 0.166 |
Hypertension before 35 years of age | 0.118 | |||||
Yes | 41 | 24 | 12 | 4 | 1 | |
No | 268 | 115 | 74 | 64 | 15 | |
Urologic event before 35 years of age | 0.201 | |||||
Yes | 117 | 44 | 37 | 31 | 5 | |
No | 192 | 95 | 49 | 37 | 11 | |
Mayo subclass | 0.01 | |||||
Class 1A | 19 | 4 | 7 | 7 | 1 | |
Class 1B | 103 | 39 | 29 | 29 | 6 | |
Class 1C | 121 | 58 | 28 | 30 | 5 | |
Class 1D | 54 | 29 | 20 | 2 | 3 | |
Class 1E | 12 | 9 | 2 | 0 | 1 |
ΔeGFR/Year (mL/min/1.73 m2/Year) | p-Value | |
---|---|---|
Age | 0.334 | |
<48 | −3.41 [−5.88 to −1.03] | |
≥48 | −2.81 [−5.50 to −0.90] | |
Sex | 0.956 | |
Female | −2.91 [−5.92 to −1.03] | |
Male | −3.40 [−5.30 to −0.99] | |
Height | 0.867 | |
<1.65 | −2.86 [−5.7 to −1.24] | |
≥1.65 | −3.41 [−5.63 to −0.98] | |
BMI | 0.046 | |
<22.0 | −2.73 [−5.35 to −0.81] | |
≥22.0 | −3.61 [−6.09 to −1.38] | |
HtTKV | 0.020 | |
<750 | −2.64 [−5.12 to −0.83] | |
≥750 | −3.65 [−6.58 to −1.37] | |
Mayo classification | 0.035 | |
1A, 1B | −2.38 [−4.98 to −0.98] | |
1C, 1D, 1E | −3.61 [−6.39 to 1.15] | |
Germline mutations | ||
PKD1 | −3.50 [−6.31 to −1.40] | 0.006 |
PKD2 | −2.04 [−5.01 to −0.60] | |
PKD1 truncated | −3.65 [−6.39 to −1.35] | 0.955 |
PKD1 non-truncated | −3.41 [−5.69 to −1.66] | |
PKD1 truncated (aged ≥ 65 years) | −6.56 [−6.58 to −4.80] | 0.049 |
PKD1 non-truncated (aged ≥ 65 years) | −2.16 [−3.37 to −1.58] | |
Hypertension before 35 years of age | 0.207 | |
Yes | −3.76 [−6.46 to −1.20] | |
No | −2.95 [−5.57 to −0.99] | |
Urologic event before 35 years of age | 0.715 | |
Yes | −3.03 [−5.62 to −0.80] | |
No | −3.13 [−5.69 to −1.03] |
PKD1 | PKD2 | p-Value | PKD1 Truncated | PKD1 Non-Truncated | p Value | PKD1 Truncated Aged ≥65 Years | PKD1 Non-Truncated Aged ≥65 Years | p-Value | |
---|---|---|---|---|---|---|---|---|---|
BMI | 0.676 | 0.134 | 0.676 | ||||||
<22.0 | 115 | 40 | 77 | 38 | 2 | 5 | |||
≥22.0 | 110 | 44 | 62 | 48 | 3 | 7 | |||
HtTKV | 0.626 | 0.253 | 0.626 | ||||||
<750 | 116 | 40 | 67 | 49 | 3 | 9 | |||
≥750 | 109 | 44 | 72 | 37 | 2 | 3 | |||
Mayo classification | 0.015 | 0.127 | 0.131 | ||||||
1A, 1B | 79 | 43 | 43 | 36 | 4 | 12 | |||
1C, 1D, 1E | 146 | 41 | 96 | 50 | 1 | 0 |
Univariate Analysis | Multivariate Analysis | Multivariate Analysis (PSM Data) | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age: ≥48 vs. <48 years | 0.82 [0.52–1.28] | 0.382 | ||||
Sex: male vs. female | 1.01 [0.64–1.59] | 0.968 | ||||
Height: ≥1.65 vs. <1.65 m | 1.10 [0.70–1.72] | 0.676 | ||||
BMI: ≥22.0 vs. <22.0 | 1.50 [0.96–2.35] | 0.078 | ||||
HtTKV: ≥750 vs. <750 | 1.62 [1.03–2.54] | 0.027 | 1.67 [1.06–2.63] | 0.029 | 2.44 [1.23–4.82] | 0.011 |
PKD1 vs. PKD2 | 1.81 [1.08–3.05] | 0.025 | 1.87 [1.11–3.16] | 0.020 | 2.58 [1.30–5.13] | 0.007 |
PKD1: truncated vs. non-truncated | 1.17 [0.68–2.00] | 0.575 | ||||
Hypertension before 35 years of age | 1.33 [0.69–2.58] | 0.390 | ||||
Urologic event before 35 years of age | 0.78 [0.49–1.26] | 0.307 | ||||
U-pro | 2.03 [0.97–4.24] | 0.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimura, T.; Kawano, H.; Muto, S.; Muramoto, N.; Takano, T.; Lu, Y.; Eguchi, H.; Wada, H.; Okazaki, Y.; Ide, H.; et al. PKD1 Mutation Is a Biomarker for Autosomal Dominant Polycystic Kidney Disease. Biomolecules 2023, 13, 1020. https://doi.org/10.3390/biom13071020
Kimura T, Kawano H, Muto S, Muramoto N, Takano T, Lu Y, Eguchi H, Wada H, Okazaki Y, Ide H, et al. PKD1 Mutation Is a Biomarker for Autosomal Dominant Polycystic Kidney Disease. Biomolecules. 2023; 13(7):1020. https://doi.org/10.3390/biom13071020
Chicago/Turabian StyleKimura, Tomoki, Haruna Kawano, Satoru Muto, Nobuhito Muramoto, Toshiaki Takano, Yan Lu, Hidetaka Eguchi, Hiroo Wada, Yasushi Okazaki, Hisamitsu Ide, and et al. 2023. "PKD1 Mutation Is a Biomarker for Autosomal Dominant Polycystic Kidney Disease" Biomolecules 13, no. 7: 1020. https://doi.org/10.3390/biom13071020
APA StyleKimura, T., Kawano, H., Muto, S., Muramoto, N., Takano, T., Lu, Y., Eguchi, H., Wada, H., Okazaki, Y., Ide, H., & Horie, S. (2023). PKD1 Mutation Is a Biomarker for Autosomal Dominant Polycystic Kidney Disease. Biomolecules, 13(7), 1020. https://doi.org/10.3390/biom13071020