The Biological Roles of Puccinia striiformis f. sp. tritici Effectors during Infection of Wheat
Abstract
:1. Introduction
2. Plant PTI and ETI
2.1. Wheat Resistance Genes against Pst
2.2. Pst Avr Gene
2.3. Pst Effectors
2.3.1. Proteinaceous Effectors
Proteinaceous Effectors with Unknown Sequence May Exhibit Structure Specificities
Proteinaceous Effectors with Structural Features May Contribute to Diverse Functions
Proteinaceous Effectors Are Rich in Specific Amino Acids Representing Specific Functions
Proteinaceous Effectors Exhibiting Diversity in Primary AASequences but Conserved Tertiary Structural Motifs
2.3.2. Small RNA Effectors
2.3.3. SMs Effectors
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Wellings, C.; Chen, X.; Kang, Z.; Liu, T. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant. Pathol. 2014, 15, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Line, R.F. Stripe rust of wheat and barley in North America: A retrospective historical review. Annu. Rev. Phytopathol. 2002, 40, 75–118. [Google Scholar] [CrossRef]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases-a field perspective. Mol. Plant. Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Aime, M.C.; McTaggart, A.R. A higher-rank classification for rust fungi, with notes on genera. Fungal. Syst. Evol. 2021, 7, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Hovmoller, M.S.; Sorensen, C.K.; Walter, S.; Justesen, A.F. Diversity of Puccinia striiformis on cereals and grasses. Annu. Rev. Phytopathol. 2011, 49, 197–217. [Google Scholar] [CrossRef]
- Garnica, D.P.; Upadhyaya, N.M.; Dodds, P.N.; Rathjen, J.P. Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PLoS ONE 2013, 8, e67150. [Google Scholar] [CrossRef]
- Yin, C.T.; Hulbert, S. Prospects for functional analysis of effectors from cereal rust fungi. Euphytica 2011, 179, 57–67. [Google Scholar] [CrossRef]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Petit-Houdenot, Y.; Fudal, I. Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. Front. Plant Sci. 2017, 8, 1072. [Google Scholar] [CrossRef]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Chen, X. Review article: High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am. J. Plant Sci. 2013, 4, 608–627. [Google Scholar] [CrossRef]
- Chen, X.; Kang, Z. Introduction: History of research, symptoms, taxonomy of the pathogen, host range, distribution, and impact of stripe rust. In Stripe Rust; Chen, X., Kang, Z., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 1–33. [Google Scholar] [CrossRef]
- Saeed, M.; Ullah, F.; Shah, L.; Ahmad, W.; Ali, M.; Munsif, F.; Zubair, A.; Ibrahim, M.; Shah, S.M.A.; Uddin, H.; et al. Identification of three novel qtls associated with yellow rust resistance in wheat (Triticum aestivum l.) anong-179/khaista-17 f2 population. Sustainability 2022, 14, 7454. [Google Scholar] [CrossRef]
- Farzand, M.; Dhariwal, R.; Hiebert, C.W.; Spaner, D.; Randhawa, H.S. QTL mapping for adult plant field resistance to stripe rust in the aac cameron/p2711 spring wheat population. Crop Sci. 2022, 62, 1088–1106. [Google Scholar] [CrossRef]
- Krattinger, S.G.; Lagudah, E.S.; Spielmeyer, W.; Singh, R.P.; Huerta-Espino, J.; McFadden, H.; Bossolini, E.; Selter, L.L.; Keller, B. A putative abc transporter confers durable resistance to multiple fungal pathogens in wheat. Science 2009, 323, 1360–1363. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Uauy, C.; Distelfeld, A.; Blechl, A.; Epstein, L.; Chen, X.; Sela, H.; Fahima, T.; Dubcovsky, J. A kinase-start gene confers temperature-dependent resistance to wheat stripe rust. Science 2009, 323, 1357–1360. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Foessel, S.A.; Lagudah, E.S.; Huerta-Espino, J.; Hayden, M.J.; Bariana, H.S.; Singh, D.; Singh, R.P. New slow-rusting leaf rust and stripe rust resistance genes lr67 and yr46 in wheat are pleiotropic or closely linked. Theor. Appl. Genet. 2011, 122, 239–249. [Google Scholar] [CrossRef]
- Chhetri, M.; Bansal, U.; Toor, A.; Lagudah, E.; Bariana, H. Genomic regions conferring resistance to rust diseases of wheat in a w195/btss mapping population. Euphytica 2016, 209, 637–649. [Google Scholar] [CrossRef]
- Marchal, C.; Zhang, J.P.; Zhang, P.; Fenwick, P.; Steuernagel, B.; Adamski, N.M.; Boyd, L.; McIntosh, R.; Wulff, B.B.H.; Berry, S.; et al. Bed-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat. Plants 2018, 4, 662–668. [Google Scholar] [CrossRef]
- Klymiuk, V.; Yaniv, E.; Huang, L.; Raats, D.; Fatiukha, A.; Chen, S.S.; Feng, L.H.; Frenkel, Z.; Krugman, T.; Lidzbarsky, G.; et al. Cloning of the wheat yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 2018, 9, 3735. [Google Scholar] [CrossRef]
- Athiyannan, N.; Abrouk, M.; Boshoff, W.H.P.; Cauet, S.; Rodde, N.; Kudrna, D.; Mohammed, N.; Bettgenhaeuser, J.; Botha, K.S.; Derman, S.S.; et al. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 2022, 54, 227. [Google Scholar] [CrossRef]
- Zheng, S.G.; Wu, Y.; Zhou, M.; Zeng, L.; Liu, R.; Li, Y.F.; Liu, Z.H.; Zhang, C.H.; Lu, L.; Zhang, L. Characterization and diagnostic marker development for yr28-rga1 conferring stripe rust resistance in wheat. Eur. J. Plant. Pathol. 2020, 156, 623–634. [Google Scholar] [CrossRef]
- Wang, H.; Zou, S.H.; Li, Y.W.; Lin, F.Y.; Tang, D.Z. An ankyrin-repeat and wrky-domain-containing immune receptor confers stripe rust resistance in wheat. Nat. Commun. 2020, 11, 1353. [Google Scholar] [CrossRef]
- Chen, X.M.; Coram, T.; Huang, X.L.; Wang, M.N.; Dolezal, A. Understanding molecular mechanisms of durable and non-durable resistance to stripe rust in wheat using a transcriptomics approach. Curr. Genom. 2013, 14, 111–126. [Google Scholar] [CrossRef]
- Adhikari, L.; Raupp, J.; Wu, S.Y.; Wilson, D.; Evers, B.; Koo, D.H.; Singh, N.; Friebe, B.; Poland, J. Genetic characterization and curation of diploid a-genome wheat species. Plant Physiol. 2022, 188, 2101–2114. [Google Scholar] [CrossRef] [PubMed]
- Petre, B.; Saunders, D.G.O.; Sklenar, J.; Lorrain, C.; Krasileva, K.V.; Win, J.; Duplessis, S.; Kamoun, S. Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat yellow rust pathogen that associates with processing bodies. PLoS ONE 2016, 11, e0149035. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Pedersen, C.; Schultz-Larsen, T.; Aguilar, G.B.; Madriz-Ordenana, K.; Hovmoller, M.S.; Thordal-Christensen, H. The stripe rust fungal effector pec6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases. New Phytol. 2016, 6. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, C.; Wang, X.; Sun, S.; Zhao, J.; Kang, Z.; Wang, X. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nat. Commun. 2019, 10, 5571. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Wu, K.; Yao, J.N.; Li, S.M.; Wang, X.J.; Huang, L.L.; Kang, Z.S. Pstha5a23, a candidate effector from the obligate biotrophic pathogen puccinia striiformis f. Sp tritici, is involved in plant defense suppression and rust pathogenicity. Environ. Microbiol. 2017, 19, 1717–1729. [Google Scholar] [CrossRef]
- Hu, Y.S.; Su, C.; Zhang, Y.; Li, Y.X.; Chen, X.M.; Shang, H.S.; Hu, X.P. A Puccinia striiformis f. sp. tritici effector inhibits high-temperature seedling-plant resistance in wheat. Plant J. 2022, 112, 249–267. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhai, T.; Zhang, X.M.; Tang, C.L.; Zhuang, R.; Zhao, H.B.; Xu, Q.; Cheng, Y.L.; Wang, J.F.; Duplessis, S.; et al. Two stripe rust effectors impair wheat resistance by suppressing import of host fe-s protein into chloroplasts. Plant Physiol. 2021, 187, 2530–2543. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Du, Y.; Cai, K.; Wang, Y.; Guo, J.; Bai, X.; Kang, Z.; Guo, J. A stripe rust fungal effector pstsie1 targets tasgt1 to facilitate pathogen infection. Plant J. 2022, 112, 1413–1428. [Google Scholar] [CrossRef]
- Bi, W.S.; Zhao, S.Q.; Zhao, J.J.; Su, J.; Yu, X.M.; Liu, D.Q.; Kang, Z.S.; Wang, X.J.; Wang, X.D. Rust effector pnpi interacting with wheat tapr1a attenuates plant defense response. Phytopathol. Res. 2020, 2, 34. [Google Scholar] [CrossRef]
- Yang, Q.; Huai, B.Y.; Lu, Y.X.; Cai, K.Y.; Guo, J.; Zhu, X.G.; Kang, Z.S.; Guo, J. A stripe rust effector pst18363 targets and stabilises tanudx23 that promotes stripe rust disease. New Phytol. 2020, 225, 880–895. [Google Scholar] [CrossRef]
- Ramachandran, S.R.; Yin, C.T.; Kud, J.; Tanaka, K.; Mahoney, A.K.; Xiao, F.M.; Hulbert, S.H. Effectors from wheat rust fungi suppress multiple plant defense responses. Phytopathology 2017, 107, 75–83. [Google Scholar] [CrossRef]
- Dagvadorj, B.; Ozketen, A.C.; Andac, A.; Duggan, C.; Bozkurt, T.O.; Akkaya, M.S. A puccinia striiformis f. Sp tritici secreted protein activates plant immunity at the cell surface. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Guo, J.; Liu, P.; He, F.X.; Wan, C.P.; Islam, M.A.; Tyler, B.M.; Kang, Z.S.; Guo, J. Stripe rust effector pstgsre1 disrupts nuclear localization of ros-promoting transcription factor talol2 to defeat ros-induced defense in wheat. Mol. Plant 2019, 12, 1624–1638. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.Q.; Wang, Y.F.; Du, Y.Y.; Song, C.; Song, P.; Yang, Q.; He, F.X.; Bai, X.X.; Huang, L.L.; et al. Glycine-serine-rich effector pstgsre4 in Puccinia striiformis f. sp. tritici inhibits the activity of copper zinc superoxide dismutase to modulate immunity in wheat. PLoS Pathog. 2022, 18, e1010702. [Google Scholar]
- Wan, C.P.; Liu, Y.; Tian, S.X.; Guo, J.; Bai, X.X.; Zhu, H.C.; Kang, Z.S.; Guo, J. A serine-rich effector from the stripe rust pathogen targets a raf-like kinase to suppress host immunity. Plant Physiol. 2022, 190, 762–778. [Google Scholar] [CrossRef]
- Tang, C.L.; Xu, Q.; Zhao, J.R.; Yue, M.X.; Wang, J.F.; Wang, X.D.; Kang, Z.S.; Wang, X.J. A rust fungus effector directly binds plant pre-mrna splice site to reprogram alternative splicing and suppress host immunity. Plant Biotechnol. J. 2022, 20, 1167–1181. [Google Scholar] [CrossRef]
- Fang, H.; Zhi, D.; Zhao, H.; Wang, X.; Kang, Z.; Tao, H. Expression, purification and characterization of effector protein PST-1374 from wheat stripe rust. J. Anhui Agric. Univ. 2019, 46, 1010–1015. [Google Scholar] [CrossRef]
- Wang, N.; Tang, C.L.; Fan, X.; He, M.Y.; Gan, P.F.; Zhang, S.; Hu, Z.Y.; Wang, X.D.; Yan, T.; Shu, W.X.; et al. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell 2022, 185, 2961. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.P.; Wang, X.D.; Hu, Z.Y.; Wang, X.J.; Wang, J.L.; Wang, J.F.; Huang, X.L.; Kang, Z.S.; Tang, C.L. The Puccinia striiformis effector hasp98 facilitates pathogenicity by blocking the kinase activity of wheat tamapk4. J. Integr. Plant Biol. 2023, 65, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, J.; Zhao, J.; Xu, J.; Sun, S.; Zhang, H.; Wu, J.; Tang, C.; Kang, Z.; Wang, X. A polysaccharide deacetylase from Puccinia striiformis f. sp. tritici is an important pathogenicity gene that suppresses plant immunity. Plant Biotechnol. J. 2020, 18, 1830–1842. [Google Scholar] [CrossRef]
- Bai, X.; Peng, H.; Goher, F.; Islam, M.A.; Xu, S.; Guo, J.; Kang, Z.; Guo, J. A candidate effector protein pstcfem1 contributes to virulence of stripe rust fungus and impairs wheat immunity. Stress Biol. 2022, 2, 21. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Y.; Song, N.; Zhao, M.; Liu, R.; Feng, H.; Wang, X.; Kang, Z. Puccinia striiformis f. sp. tritici microrna-like rna 1 (pst-milr1), an important pathogenicity factor of pst, impairs wheat resistance to pst by suppressing the wheat pathogenesis-related 2 gene. New Phytol. 2017, 215, 338–350. [Google Scholar] [CrossRef]
- Upadhyaya, N.M.; Mago, R.; Panwar, V.; Hewitt, T.; Luo, M.; Chen, J.; Sperschneider, J.; Nguyen-Phuc, H.; Wang, A.; Ortiz, D.; et al. Genomics accelerated isolation of a new stem rust avirulence gene-wheat resistance gene pair. Nat. Plants 2021, 7, 1220–1228. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, D.; Zuo, S.; Chen, X.; Zhuang, H.; Huang, L.; Kang, Z.; Zhao, J. Inheritance and linkage of virulence genes in chinese predominant race cyr32 of the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici. Front Plant Sci. 2018, 9, 120. [Google Scholar] [CrossRef]
- Xia, C.; Lei, Y.; Wang, M.; Chen, W.; Chen, X. An avirulence gene cluster in the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) identified through genetic mapping and whole-genome sequencing of a sexual population. mSphere 2020, 5, e00128-20. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, M.N.; Xia, C.J.; See, D.R.; Chen, X.M. Identification of secreted protein gene-based snp markers associated with virulence phenotypes of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. Int. J. Mol. Sci. 2022, 23. [Google Scholar]
- Ali, S.; Laurie, J.D.; Linning, R.; Cervantes-Chavez, J.A.; Gaudet, D.; Bakkeren, G. An immunity-triggering effector from the barley smut fungus Ustilago hordei resides in an ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLoS Pathog. 2014, 10, e1004223. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Si, J.; Han, Z.; Chen, D. Action mechanisms of effectors in plant-pathogen interaction. Int. J. Mol. Sci. 2022, 23, 6758. [Google Scholar] [CrossRef]
- Varden, F.A.; De la Concepcion, J.C.; Maidment, J.H.; Banfield, M.J. Taking the stage: Effectors in the spotlight. Curr. Opin. Plant Biol. 2017, 38, 25–33. [Google Scholar] [CrossRef]
- Collemare, J.; O’Connell, R.; Lebrun, M.H. Nonproteinaceous effectors: The terra incognita of plant-fungal interactions. New Phytol. 2019, 223, 590–596. [Google Scholar] [CrossRef]
- Schwessinger, B.; Sperschneider, J.; Cuddy, W.S.; Garnica, D.P.; Miller, M.E.; Taylor, J.M.; Dodds, P.N.; Figueroa, M.; Park, R.F.; Rathjen, J.P. A near-complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high interhaplotype diversity. mBio 2018, 9, e00275. [Google Scholar] [CrossRef]
- Xia, C.J.; Wang, M.N.; Yin, C.T.; Cornejo, O.E.; Hulbert, S.H.; Chen, X.M. Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. Sp. Hordei). BMC Genom. 2018, 19, 664. [Google Scholar]
- Ozketen, A.C.; Andac-Ozketen, A.; Dagvadorj, B.; Demiralay, B.; Akkaya, M.S. In-depth secretome analysis of Puccinia striiformis f. sp. tritici in infected wheat uncovers effector functions. Biosci. Rep. 2020, 40, 12. [Google Scholar]
- Seong, K.; Krasileva, K.V. Computational structural genomics unravels common folds and novel families in the secretome of fungal phytopathogen Magnaporthe oryzae. Mol. Plant Microbe Interact. 2021, 34, 1267–1280. [Google Scholar] [CrossRef]
- Wang, X.D.; Yang, B.J.; Li, K.; Kang, Z.S.; Cantu, D.; Dubcovsky, J. A conserved Puccinia striiformis protein interacts with wheat npr1 and reduces induction of pathogenesis-related genes in response to pathogens. Mol. Plant Microbe Interact. 2016, 29, 977–989. [Google Scholar] [CrossRef]
- Kemen, E.; Kemen, A.C.; Rafiqi, M.; Hempel, U.; Mendgen, K.; Hahn, M.; Voegele, R.T. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol. Plant Microbe Interact. 2005, 18, 1130–1139. [Google Scholar] [CrossRef]
- Kemen, E.; Kemen, A.; Ehlers, A.; Voegele, R.; Mendgen, K. A novel structural effector from rust fungi is capable of fibril formation. Plant J. 2013, 75, 767–780. [Google Scholar] [CrossRef]
- Pretsch, K.; Kemen, A.; Kemen, E.; Geiger, M.; Mendgen, K.; Voegele, R. The rust transferred proteins-a new family of effector proteins exhibiting protease inhibitor function. Mol. Plant Pathol. 2013, 14, 96–107. [Google Scholar] [CrossRef]
- de Wit, P.J.G.M.; Mehrabi, R.; van den Burg, H.A.; Stergiopoulos, I. Fungal effector proteins: Past, present and future. Mol. Plant Pathol. 2009, 10, 735–747. [Google Scholar] [CrossRef]
- Chi, M.H.; Park, S.Y.; Kim, S.; Lee, Y.H. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 2009, 5, e1000401. [Google Scholar] [CrossRef]
- Nishimura, T.; Mochizuki, S.; Ishii-Minami, N.; Fujisawa, Y.; Kawahara, Y.; Yoshida, Y.; Okada, K.; Ando, S.; Matsumura, H.; Terauchi, R.; et al. Magnaporthe oryzae glycine-rich secretion protein, rbf1 critically participates in pathogenicity through the focal formation of the biotrophic interfacial complex. PLoS Pathog. 2016, 12, e1005921. [Google Scholar] [CrossRef]
- Dodds, P.N.; Rafiqi, M.; Gan, P.H.P.; Hardham, A.R.; Jones, D.A.; Ellis, J.G. Effectors of biotrophic fungi and oomycetes: Pathogenicity factors and triggers of host resistance. New Phytol. 2009, 183, 993–999. [Google Scholar] [CrossRef]
- de Guillen, K.; Ortiz-Vallejo, D.; Gracy, J.; Fournier, E.; Kroj, T.; Padilla, A. Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLoS Pathog. 2015, 11, e1005228. [Google Scholar] [CrossRef]
- Schwessinger, B.; Jones, A.; Albekaa, M.; Hu, Y.H.; Mackenzie, A.; Tam, R.; Nagar, R.; Milgate, A.; Rathjen, J.P.; Periyannan, S. A chromosome scale assembly of an australian Puccinia striiformis f. sp. tritici isolate of the psts1 lineage. Mol. Plant Microbe Interact. 2022, 35, 293–296. [Google Scholar] [CrossRef]
- Axtell, M.J. Classification and comparison of small rnas from plants. Annu. Rev. Plant Biol. 2013, 64, 137–159. [Google Scholar] [CrossRef]
- Katiyar-Agarwal, S.; Jin, H.L. Role of small rnas in host-microbe interactions. Annu. Rev. Phytopathol. 2010, 48, 225–246. [Google Scholar] [CrossRef]
- Romano, N.; Macino, G. Quelling: Transient inactivation of gene expression in neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 1992, 6, 3343–3353. [Google Scholar] [CrossRef]
- Mueth, N.A.; Hulbert, S.H. Small rna from the wheat stripe rust fungus Puccinia striiformis f.sp. tritici. Phytopathology 2015, 105, 98. [Google Scholar] [CrossRef]
- Jiang, N.; Yang, Y.P.; Janbon, G.; Pan, J.; Zhu, X.D. Identification and functional demonstration of mirnas in the fungus Cryptococcus neoformans. PLoS ONE 2012, 7, e0052734. [Google Scholar] [CrossRef]
- Nunes, C.C.; Gowda, M.; Sailsbery, J.; Xue, M.F.; Chen, F.; Brown, D.E.; Oh, Y.; Mitchell, T.K.; Dean, R.A. Diverse and tissue-enriched small rnas in the plant pathogenic fungus, Magnaporthe oryzae. BMC Genom. 2011, 12, 288. [Google Scholar] [CrossRef]
- Huang, J.; Yang, M.L.; Lu, L.; Zhang, X.M. Diverse functions of small rnas in different plant-pathogen communications. Front. Microbiol. 2016, 7, 1522. [Google Scholar] [CrossRef]
- Dubey, H.; Kiran, K.; Jaswal, R.; Jain, P.; Kayastha, A.M.; Bhardwaj, S.C.; Mondal, T.K.; Sharma, T.R. Discovery and profiling of small rnas from Puccinia triticina by deep sequencing and identification of their potential targets in wheat. Funct. Integr. Genom. 2019, 19, 391–407. [Google Scholar] [CrossRef]
- Macheleidt, J.; Mattern, D.J.; Fischer, J.; Netzker, T.; Weber, J.; Schroeckh, V.; Valiante, V.; Brakhage, A.A. Regulation and role of fungal secondary metabolites. Annu. Rev. Genet. 2016, 50, 371–392. [Google Scholar] [CrossRef]
- Gilbert, R.D.; Johnson, A.M.; Dean, R.A. Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol. Mol. Plant Pathol. 1996, 48, 335–346. [Google Scholar] [CrossRef]
- Ma, Z.H.; Michailides, T.J. Genetic structure of Botrytis cinerea populations from different host plants in california. Plant Dis. 2005, 89, 1083–1089. [Google Scholar] [CrossRef]
- Deighton, N.; Muckenschnabel, I.; Colmenares, A.J.; Collado, I.G.; Williamson, B. Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 2001, 57, 689–692. [Google Scholar] [CrossRef]
- Collemare, J.; Griffiths, S.; Iida, Y.; Jashni, M.K.; Battaglia, E.; Cox, R.J.; de Wit, P.J.G.M. Secondary metabolism and biotrophic lifestyle in the tomato pathogen Cladosporium fulvum. PLoS ONE 2014, 9, e0085877. [Google Scholar] [CrossRef]
- de Wit, P.J.G.M.; van der Burgt, A.; Ökmen, B.; Stergiopoulos, I.; Abd-Elsalam, K.A.; Aerts, A.L.; Bahkali, A.H.; Beenen, H.G.; Chettri, P.; Cox, M.P.; et al. Correction: The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. 2015, 11, e1005775. [Google Scholar] [CrossRef]
- Spanu, P.D.; Abbott, J.C.; Amselem, J.; Burgis, T.A.; Soanes, D.M.; Stuber, K.; van Themaat, E.V.L.; Brown, J.K.M.; Butcher, S.A.; Gurr, S.J.; et al. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 2010, 330, 1543–1546. [Google Scholar] [CrossRef]
- Tao, F.; Hu, Y.S.; Su, C.; Li, J.; Guo, L.L.; Xu, X.M.; Chen, X.M.; Shang, H.S.; Hu, X.P. Revealing differentially expressed genes and identifying effector proteins of Puccinia striiformis f. sp. tritici in response to high-temperature seedling plant resistance of wheat based on transcriptome sequencing. Msphere 2020, 5, e00096. [Google Scholar] [CrossRef]
- Tariqjaveed, M.; Mateen, A.; Wang, S.Z.; Qiu, S.S.; Zheng, X.H.; Zhang, J.; Bhadauria, V.; Sun, W.X. Versatile effectors of phytopathogenic fungi target host immunity. J. Integr. Plant Biol. 2021, 63, 1856–1867. [Google Scholar] [CrossRef]
- Khang, C.H.; Berruyer, R.; Giraldo, M.C.; Kankanala, P.; Park, S.Y.; Czymmek, K.; Kang, S.; Valent, B. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 2010, 22, 1388–1403. [Google Scholar] [CrossRef]
- Mosquera, G.; Giraldo, M.C.; Khang, C.H.; Coughlan, S.; Valent, B. Interaction transcriptome analysis identifies Magnaporthe oryzae bas1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 2009, 21, 1273–1290. [Google Scholar] [CrossRef]
- Kim, S.; Kim, C.Y.; Park, S.Y.; Kim, K.T.; Jeon, J.; Chung, H.; Choi, G.; Kwon, S.; Choi, J.; Jeon, J.; et al. Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nat. Commun. 2020, 11, 5845. [Google Scholar] [CrossRef]
- Giraldo, M.C.; Dagdas, Y.F.; Gupta, Y.K.; Mentlak, T.A.; Yi, M.; Martinez-Rocha, A.L.; Saitoh, H.; Terauchi, R.; Talbot, N.J.; Valent, B. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat. Commun. 2013, 4, 1–12. [Google Scholar] [CrossRef]
- Jiang, C.; Hei, R.N.; Yang, Y.; Zhang, S.J.; Wang, Q.H.; Wang, W.; Zhang, Q.; Yan, M.; Zhu, G.R.; Huang, P.P.; et al. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of tasnrk1 alpha. Nat. Commun. 2020, 11, 4382. [Google Scholar] [CrossRef]
Candidate Effectors | Subcellular Localizations | Known Domain/Amino Acid Enrichment | Host Targets | References |
---|---|---|---|---|
Protein | ||||
PST02549 | Processing bodies | Nd | Enhancer of mRNA decapping protein 4 (edc4) | [26] |
PEC6 Pst_12806 | Nucleus Chloroplast | Nd Chloroplast-targeting sequence | Adenosine kinases Taisp | [27,28] |
PSTha5a23 | Cytosol | Nd | Nd | [29] |
PstCEP1 | Cytoplasm | Nd | Nd | [30] |
PSTG_01766 | Cytoplasm | Nd | Taplcp1 | [30] |
Pst_4 | Cytoplasm | Nd | Cytochrome b6–f complex iron–sulfur subunit | [31] |
Pst_5 | Cytoplasm | Nd | Cytochrome b6–f complex iron–sulfur subunit | [31] |
PstSIE1 | Cytoplasm | Nd | Tasgt1 | [32] |
PNPi | Apoplast | Rxlr-deer, dpbb_1 | Npr1, pr1 | [33] |
Pst18363 | Nd | Two aggregation domains, seven highly conserved β strands | Nudix hydrolase 23 | [34] |
PSTG_14695 | Nd | Cysteine-rich | Nd | [35] |
PstSCR1 | Nd | Cysteine-rich | Nd | [36] |
PstGSRE1 | Nucleus | Glycine- and serine-rich | Transcription factor (lol2) | [37] |
PstGSRE4 | Cytoplasm | Glycine- and serine-rich | Taczsod2 | [38] |
Pst27791 | Cytoplasm and nucleus | Serine-rich | Taraf46 | [39] |
Pst_A23 | Nuclear speckles | Arginine-rich | Cis-element of xa21-h and wrky53 | [40] |
Pst-1374 | Chloroplast | Nd | Thiogen-reducing protein (trxm) | [41] |
PsSpg1 | Cytoplasm | Nd | Tapsipk1 | [42] |
Hasp98 | Cytoplasm | Nd | Tamapk4 | [43] |
Pst_13661 | Apoplast | Polysaccharide deacetylase | Nd | [44] |
PstCFEM1 | Nd | Common in fungal extracellular membrane domain | Nd | [45] |
Small RNA | ||||
PstmilR1 | Cytoplasm | Nd | Pr2 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chen, T.; Tang, Y.; Zhang, S.; Xu, M.; Liu, M.; Zhang, J.; Loake, G.J.; Jiang, J. The Biological Roles of Puccinia striiformis f. sp. tritici Effectors during Infection of Wheat. Biomolecules 2023, 13, 889. https://doi.org/10.3390/biom13060889
Wang J, Chen T, Tang Y, Zhang S, Xu M, Liu M, Zhang J, Loake GJ, Jiang J. The Biological Roles of Puccinia striiformis f. sp. tritici Effectors during Infection of Wheat. Biomolecules. 2023; 13(6):889. https://doi.org/10.3390/biom13060889
Chicago/Turabian StyleWang, Junjuan, Tongtong Chen, Yawen Tang, Sihan Zhang, Mengyao Xu, Meiyan Liu, Jian Zhang, Gary J. Loake, and Jihong Jiang. 2023. "The Biological Roles of Puccinia striiformis f. sp. tritici Effectors during Infection of Wheat" Biomolecules 13, no. 6: 889. https://doi.org/10.3390/biom13060889
APA StyleWang, J., Chen, T., Tang, Y., Zhang, S., Xu, M., Liu, M., Zhang, J., Loake, G. J., & Jiang, J. (2023). The Biological Roles of Puccinia striiformis f. sp. tritici Effectors during Infection of Wheat. Biomolecules, 13(6), 889. https://doi.org/10.3390/biom13060889