Voltage-Gated Proton Channels in the Tree of Life
Abstract
:1. Proton Channels in Mammals
1.1. What Are the Pillars of the Respiratory Burst?
1.2. Which Other Physiological Functions Are Affected by HV1?
2. Voltage-Gated Proton Channels in Evolution
2.1. The HV Channel “Tree of Life”
2.1.1. HV Channels in Chordata
2.1.2. HV Channels in Ecdysozoa
2.1.3. HV Channels in Other Metazoa
2.1.4. HV Channels in Lophotrochozoa
2.1.5. HV Channels in Fungi, Ichthyosporea, and Choanoflagelates
2.1.6. HV Channels in Plants
2.1.7. HV Channels in Protists
2.1.8. Summary
2.2. Evolution beyond the Typical Proton Channels
3. Biophysical Properties of Functionally Tested HV Channels among Species
3.1. Proton Selectivity
3.2. Molecule Architecture and the Voltage-Dependent Gating
3.3. The pH-Dependent Gating and Its Physiological Implications
3.4. Summary: Biophyscial Properties of HV Channels
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thomas, R.C.; Meech, R.W. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 1982, 299, 826–828. [Google Scholar] [CrossRef]
- Fogel, M.; Hastings, J.W. Bioluminescence: Mechanism and Mode of Control of Scintillon Activity. Proc. Natl. Acad. Sci. USA 1972, 69, 690–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, L.M.; Chappell, J.B.; Jones, O.T.G. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem. J. 1987, 246, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Baldridge, C.W.; Gerard, R.W. The extra respiration of phagocytosis. Am. J. Physiol. Content 1932, 103, 235–236. [Google Scholar] [CrossRef] [Green Version]
- DeCoursey, T. Hydrogen ion currents in rat alveolar epithelial cells. Biophys. J. 1991, 60, 1243–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCoursey, T.; Cherny, V. Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys. J. 1993, 65, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Bernheim, L.; Krause, R.M.; Baroffio, A.; Hamann, M.; Kaelin, A.; Bader, C.R. A voltage-dependent proton current in cultured human skeletal muscle myotubes. J. Physiol. 1993, 470, 313–333. [Google Scholar] [CrossRef] [Green Version]
- Demaurex, N.; Grinstein, S.; Jaconi, M.; Schlegel, W.; Lew, D.P.; Krause, K.H. Proton currents in human granulocytes: Regulation by membrane potential and intracellular pH. J. Physiol. 1993, 466, 329–344. [Google Scholar]
- Pick, E. Cell-Free NADPH Oxidase Activation Assays: “In Vitro Veritas”. Methods Mol. Biol. 2014, 1124, 339–403. [Google Scholar] [CrossRef]
- DeCoursey, T.E.; Morgan, D.; Cherny, V.V. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 2003, 422, 531–534. [Google Scholar] [CrossRef]
- Ma, J.; Gao, X.; Li, Y.; DeCoursey, T.E.; Shull, G.E.; Wang, H. The HVCN1 voltage-gated proton channel contributes to pH regulation in canine ventricular myocytes. J. Physiol. 2022, 600, 2089–2103. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.; Capasso, M.; Musset, B.; Cherny, V.V.; Ríos, E.; Dyer, M.J.S.; DeCoursey, T.E. Voltage-gated proton channels maintain pH in human neutrophils during phagocytosis. Proc. Natl. Acad. Sci. USA 2009, 106, 18022–18027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Chemaly, A.; Okochi, Y.; Sasaki, M.; Arnaudeau, S.; Okamura, Y.; Demaurex, N. VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification. J. Exp. Med. 2010, 207, 129–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okochi, Y.; Umemoto, E.; Okamura, Y. Hv1/VSOP regulates neutrophil directional migration and ERK activity by tuning ROS production. J. Leukoc. Biol. 2020, 107, 819–831. [Google Scholar] [CrossRef]
- Okochi, Y.; Aratani, Y.; Adissu, H.A.; Miyawaki, N.; Sasaki, M.; Suzuki, K.; Okamura, Y. The voltage-gated proton channel Hv1/VSOP inhibits neutrophil granule release. J. Leukoc. Biol. 2016, 99, 7–19. [Google Scholar] [CrossRef]
- Musset, B.; Morgan, D.; Cherny, V.V.; MacGlashan, D.W.; Thomas, L.L.; Ríos, E.; DeCoursey, T.E. A pH-stabilizing role of voltage-gated proton channels in IgE-mediated activation of human basophils. Proc. Natl. Acad. Sci. USA 2008, 105, 11020–11025. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Mose, E.; Zimmermann, N. Proton channel HVCN1 is required for effector functions of mouse eosinophils. BMC Immunol. 2013, 14, 24. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, S.; Li, S.J. Zn2+ induces apoptosis in human highly metastatic SHG-44 glioma cells, through inhibiting activity of the voltage-gated proton channel Hv1. Biochem. Biophys. Res. Commun. 2013, 438, 312–317. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Li, Q.; Zhang, S.; Li, S.J. Human Voltage-Gated Proton Channel Hv1: A New Potential Biomarker for Diagnosis and Prognosis of Colorectal Cancer. PLoS ONE 2013, 8, e70550. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, S.J.; Pan, J.; Che, Y.; Yin, J.; Zhao, Q. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis. Biochem. Biophys. Res. Commun. 2011, 412, 353–359. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.J.; Wu, X.; Che, Y.; Li, Q. Clinicopathological and Biological Significance of Human Voltage-gated Proton Channel Hv1 Protein Overexpression in Breast Cancer. J. Biol. Chem. 2012, 287, 13877–13888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Liu, R.; Yu, Z.; He, D.; Zong, W.; Wang, M.; Xie, M.; Wang, W.; Luo, X. Microglial Hv1 exacerbates secondary damage after spinal cord injury in mice. Biochem. Biophys. Res. Commun. 2020, 525, 208–215. [Google Scholar] [CrossRef]
- Kawai, T.; Kayama, K.; Tatsumi, S.; Akter, S.; Miyawaki, N.; Okochi, Y.; Abe, M.; Sakimura, K.; Yamamoto, H.; Kihara, S.; et al. Regulation of hepatic oxidative stress by voltage-gated proton channels (Hv1/VSOP) in Kupffer cells and its potential relationship with glucose metabolism. FASEB J. 2020, 34, 15805–15821. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Li, J.; Du, H.; Gao, Y.; Lv, J.; Liu, Y.; Li, S.J. Loss of voltage-gated proton channel Hv1 leads to diet-induced obesity in mice. BMJ Open Diabetes Res. Care 2020, 8, e000951. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.-T.; Jiang, D.; Wang, Y.; Du, H.; Lv, J.; Li, S.J. Hv1-deficiency protects β cells from glucotoxicity through regulation of NOX4 level. Biochem. Biophys. Res. Commun. 2019, 513, 434–438. [Google Scholar] [CrossRef]
- Capasso, M.; Bhamrah, M.K.; Henley, T.; Boyd, R.S.; Langlais, C.; Cain, K.; Dinsdale, D.; Pulford, K.; Khan, M.; Musset, B.; et al. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat. Immunol. 2010, 11, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Hondares, E.; Brown, M.A.; Musset, B.; Morgan, D.; Cherny, V.V.; Taubert, C.; Bhamrah, M.K.; Coe, D.; Marelli-Berg, F.; Gribben, J.G.; et al. Enhanced activation of an amino-terminally truncated isoform of the voltage-gated proton channel HVCN1 enriched in malignant B cells. Proc. Natl. Acad. Sci. USA 2014, 111, 18078–18083. [Google Scholar] [CrossRef] [Green Version]
- Montes-Cobos, E.; Huscher, B.; Engler, J.B.; Woo, M.S.; Binkle, L.; Bauer, S.; Kursawe, N.; Moles, M.; Friese, M.A.; Ufer, F. Voltage-Gated Proton Channel Hv1 Controls TLR9 Activation in Plasmacytoid Dendritic Cells. J. Immunol. 2020, 205, 3001–3010. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Tojo, A.; Okochi, Y.; Miyawaki, N.; Kamimura, D.; Yamaguchi, A.; Murakami, M.; Okamura, Y. Autoimmune disorder phenotypes in Hvcn1-deficient mice. Biochem. J. 2013, 450, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, R.; Cherny, V.V.; Morgan, D.; DeCoursey, T.E. Voltage-gated proton channels help regulate pHiin rat alveolar epithelium. Am. J. Physiol. Cell Mol. Physiol. 2005, 288, L398–L408. [Google Scholar] [CrossRef] [Green Version]
- Schwarzer, C.; Machen, T.E.; Illek, B.; Fischer, H. NADPH Oxidase-dependent Acid Production in Airway Epithelial Cells. J. Biol. Chem. 2004, 279, 36454–36461. [Google Scholar] [CrossRef] [Green Version]
- Lishko, P.V.; Botchkina, I.L.; Fedorenko, A.; Kirichok, Y. Acid Extrusion from Human Spermatozoa Is Mediated by Flagellar Voltage-Gated Proton Channel. Cell 2010, 140, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Dai, H.; Arias, R.J.; De Blas, G.A.; Orta, G.; Pavarotti, M.A.; Shen, R.; Perozo, E.; Mayorga, L.S.; Darszon, A.; et al. Direct activation of the proton channel by albumin leads to human sperm capacitation and sustained release of inflammatory mediators by neutrophils. Nat. Commun. 2021, 12, 3855. [Google Scholar] [CrossRef]
- Smith, R.Y.; Morgan, D.; Sharma, L.; Cherny, V.V.; Tidswell, N.; Molo, M.W.; DeCoursey, T.E. Voltage-gated proton channels exist in the plasma membrane of human oocytes. Hum. Reprod. 2019, 34, 1974–1983. [Google Scholar] [CrossRef]
- Alvear-Arias, J.J.; Carrillo, C.; Villar, J.P.; Garcia-Betancourt, R.; Peña-Pichicoi, A.; Fernandez, A.; Fernandez, M.; Carmona, E.M.; Pupo, A.; Neely, A.; et al. Expression of H(v)1 proton channels in myeloid-derived suppressor cells (MDSC) and its potential role in T cell regulation. Proc. Natl. Acad. Sci. USA 2022, 119, e2104453119. [Google Scholar] [CrossRef]
- Gordienko, D.V.; Tare, M.; Parveen, S.; Fenech, C.J.; Robinson, C.; Bolton, T.B. Voltage-activated proton current in eosinophils from human blood. J. Physiol. 1996, 496 (Pt 2), 299–316. [Google Scholar] [CrossRef] [Green Version]
- Kovács, I.; Horváth, M.; Kovács, T.; Somogyi, K.; Tretter, L.; Geiszt, M.; Petheő, G.L. Comparison of proton channel, phagocyte oxidase, and respiratory burst levels between human eosinophil and neutrophil granulocytes. Free. Radic. Res. 2014, 48, 1190–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, D.; Cherny, V.V.; Finnegan, A.; Bollinger, J.; Gelb, M.H.; DeCoursey, T.E. Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2α activity. J. Physiol. 2007, 579, 327–344. [Google Scholar] [CrossRef]
- Morgan, D.; Cherny, V.V.; Murphy, R.; Katz, B.Z.; DeCoursey, T.E. The pH dependence of NADPH oxidase in human eosinophils. J. Physiol. 2005, 569, 419–431. [Google Scholar] [CrossRef]
- Morgan, D.; Cherny, V.V.; Murphy, R.; Xu, W.; Thomas, L.L.; DeCoursey, T. Temperature dependence of NADPH oxidase in human eosinophils. J. Physiol. 2003, 550, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Petheő, G.L.; Orient, A.; Baráth, M.; Kovács, I.; Réthi, B.; Lányi, A.; Rajki, A.; Rajnavölgyi, E.; Geiszt, M. Molecular and Functional Characterization of Hv1 Proton Channel in Human Granulocytes. PLoS ONE 2010, 5, e14081. [Google Scholar] [CrossRef] [Green Version]
- Schrenzel, J.; Lew, D.P.; Krause, K.H. Proton currents in human eosinophils. Am. J. Physiol. Physiol. 1996, 271, C1861–C1871. [Google Scholar] [CrossRef]
- Schrenzel, J.; Serrander, L.; Bánfi, B.; Nüße, O.; Fouyouzi, R.; Lew, D.P.; Demaurex, N.; Krause, K.-H. Electron currents generated by the human phagocyte NADPH oxidase. Nature 1998, 392, 734–737. [Google Scholar] [CrossRef]
- DeCoursey, T.E.; Cherny, V.V.; DeCoursey, A.G.; Xu, W.; Thomas, L.L. Interactions between NADPH oxidase-related proton and electron currents in human eosinophils. J. Physiol. 2001, 535, 767–781. [Google Scholar] [CrossRef]
- Femling, J.K.; Cherny, V.V.; Morgan, D.; Rada, B.; Davis, A.P.; Czirják, G.; Enyedi, P.; England, S.K.; Moreland, J.G.; Ligeti, E.; et al. The Antibacterial Activity of Human Neutrophils and Eosinophils Requires Proton Channels but Not BK Channels. J. Gen. Physiol. 2006, 127, 659–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherny, V.V.; Henderson, L.M.; Xu, W.; Thomas, L.L.; DeCoursey, T.E. Activation of NADPH oxidase-related proton and electron currents in human eosinophils by arachidonic acid. J. Physiol. 2001, 535, 783–794. [Google Scholar] [CrossRef]
- DeCoursey, T.E.; Cherny, V.V. Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. J. Gen. Physiol. 1998, 112, 503–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCoursey, T.E.; Cherny, V.V.; Zhou, W.; Thomas, L.L. Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils. Proc. Natl. Acad. Sci. USA 2000, 97, 6885–6889. [Google Scholar] [CrossRef] [Green Version]
- DeCoursey, T.E.; Cherny, V.V.; Morgan, D.; Katz, B.Z.; Dinauer, M.C. The gp91 Component of NADPH Oxidase Is Not the Voltage-gated Proton Channel in Phagocytes, but It Helps. J. Biol. Chem. 2001, 276, 36063–36066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okochi, Y.; Sasaki, M.; Iwasaki, H.; Okamura, Y. Voltage-gated proton channel is expressed on phagosomes. Biochem. Biophys. Res. Commun. 2009, 382, 274–279. [Google Scholar] [CrossRef]
- Ramsey, I.S.; Ruchti, E.; Kaczmarek, J.S.; Clapham, D.E. Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc. Natl. Acad. Sci. USA 2009, 106, 7642–7647. [Google Scholar] [CrossRef] [Green Version]
- El Chemaly, A.; Nunes, P.; Jimaja, W.; Castelbou, C.; Demaurex, N. Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases. J. Leukoc. Biol. 2014, 95, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Droste, A.; Chaves, G.; Stein, S.; Trzmiel, A.; Schweizer, M.; Karl, H.; Musset, B. Zinc accelerates respiratory burst termination in human PMN. Redox Biol. 2021, 47, 102133. [Google Scholar] [CrossRef] [PubMed]
- Musset, B.; Cherny, V.V.; DeCoursey, T.E. Strong glucose dependence of electron current in human monocytes. Am. J. Physiol. Physiol. 2012, 302, C286–C295. [Google Scholar] [CrossRef] [Green Version]
- DeCoursey, T.E.; Kim, S.Y.; Silver, M.R.; Quandt, F.N. Ion channel expression in PMA-differentiated human THP-1 macrophages. J. Membr. Biol. 1996, 152, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Kapus, A.; Romanek, R.; Qu, A.Y.; Rotstein, O.D.; Grinstein, S. A pH-sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages. J. Gen. Physiol. 1993, 102, 729–760. [Google Scholar] [CrossRef] [Green Version]
- Mori, H.; Sakai, H.; Morihata, H.; Kawawaki, J.; Amano, H.; Yamano, T.; Kuno, M. Regulatory Mechanisms and Physiological Relevance of a Voltage-Gated H+ Channel in Murine Osteoclasts: Phorbol Myristate Acetate Induces Cell Acidosis and the Channel Activation. J. Bone Miner. Res. 2003, 18, 2069–2076. [Google Scholar] [CrossRef]
- Mori, H.; Sakai, H.; Morihata, H.; Yamano, T.; Kuno, M. A voltage-gated H+ channel is a powerful mechanism for pH homeostasis in murine osteoclasts. Kobe J. Med. Sci. 2002, 48, 87–96. [Google Scholar]
- Nordström, T.; Rotstein, O.D.; Romanek, R.; Asotra, S.; Heersche, J.N.M.; Manolson, M.F.; Brisseau, G.F.; Grinstein, S. Regulation of Cytoplasmic pH in Osteoclasts. J. Biol. Chem. 1995, 270, 2203–2212. [Google Scholar] [CrossRef] [Green Version]
- Sakai, H.; Kawawaki, J.; Moriura, Y.; Mori, H.; Morihata, H.; Kuno, M. pH dependence and inhibition by extracellular calcium of proton currents via plasmalemmal vacuolar-type H+-ATPase in murine osteoclasts. J. Physiol. 2006, 576, 417–425. [Google Scholar] [CrossRef]
- Sakai, H.; Li, G.; Hino, Y.; Moriura, Y.; Kawawaki, J.; Sawada, M.; Kuno, M. Increases in intracellular pH facilitate endocytosis and decrease availability of voltage-gated proton channels in osteoclasts and microglia. J. Physiol. 2013, 591, 5851–5866. [Google Scholar] [CrossRef]
- Eder, C.; Fischer, H.-G.; Hadding, U.; Heinemann, U. Properties of voltage-gated currents of microglia developed using macrophage colony-stimulating factor. Pflugers Arch. 1995, 430, 526–533. [Google Scholar] [CrossRef]
- McLarnon, J.; Xu, R.; Lee, Y.; Kim, S. Ion channels of human microglia in culture. Neuroscience 1997, 78, 1217–1228. [Google Scholar] [CrossRef]
- Morihata, H.; Nakamura, F.; Tsutada, T.; Kuno, M. Potentiation of a Voltage-Gated Proton Current in Acidosis-Induced Swelling of Rat Microglia. J. Neurosci. 2000, 20, 7220–7227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visentin, S.; Agresti, C.; Patrizio, M.; Levi, G. Ion channels in rat microglia and their different sensitivity to lipopolysaccharide and interferon? J. Neurosci. Res. 1995, 42, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Yi, M.-H.; Jeong, H.; McEwan, P.P.; Zheng, J.; Wu, G.; Ganatra, S.; Ren, Y.; Richardson, J.R.; Oh, S.B.; et al. The voltage-gated proton channel Hv1 promotes microglia-astrocyte communication and neuropathic pain after peripheral nerve injury. Mol. Brain 2021, 14, 99. [Google Scholar] [CrossRef]
- Wu, L.-J.; Wu, G.; Sharif, M.R.A.; Baker, A.; Jia, Y.; Fahey, F.H.; Luo, H.R.; Feener, E.P.; Clapham, D.E. The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nat. Neurosci. 2012, 15, 565–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.-J. Voltage-gated proton channel HV1 in microglia, The Neuroscientist: A review journal bringing neurobiology, neurology and psychiatry. Neuroscientist 2014, 20, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Ritzel, R.M.; He, J.; Li, Y.; Cao, T.; Khan, N.; Shim, B.; Sabirzhanov, B.; Aubrecht, T.; Stoica, B.A.; Faden, A.I.; et al. Proton extrusion during oxidative burst in microglia exacerbates pathological acidosis following traumatic brain injury. Glia 2020, 69, 746–764. [Google Scholar] [CrossRef]
- Tian, D.-S.; Li, C.-Y.; Qin, C.; Murugan, M.; Wu, L.-J.; Liu, J.-L. Deficiency in the voltage-gated proton channel Hv1 increases M2 polarization of microglia and attenuates brain damage from photothrombotic ischemic stroke. J. Neurochem. 2016, 139, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tian, D.; Murugan, M.; Eyo, U.B.; Dreyfus, C.F.; Wang, W.; Wu, L. Microglial Hv1 proton channel promotes cuprizone-induced demyelination through oxidative damage. J. Neurochem. 2015, 135, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Yang, L.-L.; Hu, Z.-W.; Qin, C.; Zhou, L.-Q.; Duan, Y.-L.; Bosco, D.B.; Wu, L.-J.; Zhan, K.-B.; Xu, S.-B.; et al. Deficiency of microglial Hv1 channel is associated with activation of autophagic pathway and ROS production in LPC-induced demyelination mouse model. J. Neuroinflammation 2020, 17, 333. [Google Scholar] [CrossRef]
- Yu, Y.; Luo, X.; Li, C.; Ding, F.; Wang, M.; Xie, M.; Yu, Z.; Ransom, B.R.; Wang, W. Microglial Hv1 proton channels promote white matter injuries after chronic hypoperfusion in mice. J. Neurochem. 2020, 152, 350–367. [Google Scholar] [CrossRef] [PubMed]
- Murugan, M.; Zheng, J.; Wu, G.; Mogilevsky, R.; Zheng, X.; Hu, P.; Wu, J.; Wu, L.-J. The voltage-gated proton channel Hv1 contributes to neuronal injury and motor deficits in a mouse model of spinal cord injury. Mol. Brain 2020, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, Z.; Zong, W.; Chen, P.; Li, J.; Wang, M.; Ding, F.; Xie, M.; Wang, W.; Luo, X. Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J. Neuroinflammation 2020, 17, 263. [Google Scholar] [CrossRef]
- Li, Y.; Ritzel, R.M.; He, J.; Cao, T.; Sabirzhanov, B.; Li, H.; Liu, S.; Wu, L.-J.; Wu, J. The voltage-gated proton channel Hv1 plays a detrimental role in contusion spinal cord injury via extracellular acidosis-mediated neuroinflammation. Brain Behav. Immun. 2021, 91, 267–283. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, X.; Zhang, X.; Zhang, Y.; Huang, B.; Luo, T. Aging alters Hv1-mediated microglial polarization and enhances neuroinflammation after peripheral surgery. CNS Neurosci. Ther. 2020, 26, 374–384. [Google Scholar] [CrossRef] [PubMed]
- El Chemaly, A.; Guinamard, R.; Demion, M.; Fares, N.; Jebara, V.; Faivre, J.-F.; Bois, P. A voltage-activated proton current in human cardiac fibroblasts. Biochem. Biophys. Res. Commun. 2006, 340, 512–516. [Google Scholar] [CrossRef]
- Zhao, R.; Kennedy, K.; De Blas, G.A.; Orta, G.; Pavarotti, M.A.; Arias, R.J.; de la Vega-Beltrán, J.L.; Li, Q.; Dai, H.; Perozo, E.; et al. Role of human Hv1 channels in sperm capacitation and white blood cell respiratory burst established by a designed peptide inhibitor. Proc. Natl. Acad. Sci. USA 2018, 115, E11847–E11856. [Google Scholar] [CrossRef] [Green Version]
- Musset, B.; Clark, R.A.; DeCoursey, T.E.; Petheo, G.L.; Geiszt, M.; Chen, Y.; Cornell, J.E.; Eddy, C.A.; Brzyski, R.G.; El Jamali, A. NOX5 in human spermatozoa: Expression, function, and regulation. J. Biol. Chem. 2012, 287, 9376–9388. [Google Scholar] [CrossRef] [Green Version]
- DeCoursey, T.; Cherny, V.V. Na(+)-H+ antiport detected through hydrogen ion currents in rat alveolar epithelial cells and human neutrophils. J. Gen. Physiol. 1994, 103, 755–785. [Google Scholar] [CrossRef] [Green Version]
- Cherny, V.V.; Markin, V.S.; DeCoursey, T.E. The voltage-activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient. J. Gen. Physiol. 1995, 105, 861–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCoursey, T.E.; Cherny, V.V. Voltage-activated proton currents in membrane patches of rat alveolar epithelial cells. J. Physiol. 1995, 489 (Pt 2), 299–307. [Google Scholar] [CrossRef] [Green Version]
- DeCoursey, T.E.; Cherny, V.V. Deuterium Isotope Effects on Permeation and Gating of Proton Channels in Rat Alveolar Epithelium. J. Gen. Physiol. 1997, 109, 415–434. [Google Scholar] [CrossRef] [Green Version]
- DeCoursey, T.E. Four varieties of voltage-gated proton channels. Front. Biosci. 1998, 3, d477–d482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherny, V.V.; DeCoursey, T.E. Ph-Dependent Inhibition of Voltage-Gated H+ Currents in Rat Alveolar Epithelial Cells by Zn2+ and Other Divalent Cations. J. Gen. Physiol. 1999, 114, 819–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCoursey, T.; Cherny, V. Effects of buffer concentration on voltage-gated H+ currents: Does diffusion limit the conductance? Biophys. J. 1996, 71, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuno, M.; Kawawaki, J.; Nakamura, F. A Highly Temperature-sensitive Proton Current in Mouse Bone Marrow–derived Mast Cells. J. Gen. Physiol. 1997, 109, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Schilling, T.; Gratopp, A.; DeCoursey, T.; Eder, C. Voltage-activated proton currents in human lymphocytes. J. Physiol. 2002, 545, 93–105. [Google Scholar] [CrossRef]
- Musset, B.; Capasso, M.; Cherny, V.V.; Morgan, D.; Bhamrah, M.; Dyer, M.J.S.; DeCoursey, T.E. Identification of Thr29 as a Critical Phosphorylation Site That Activates the Human Proton Channel Hvcn1 in Leukocytes. J. Biol. Chem. 2010, 285, 5117–5121. [Google Scholar] [CrossRef] [Green Version]
- Asuaje, A.; Martín, P.; Enrique, N.; Zegarra, L.A.D.; Smaldini, P.; Docena, G.; Milesi, V. Diphenhydramine inhibits voltage-gated proton channels (Hv1) and induces acidification in leukemic Jurkat T cells- New insights into the pro-apoptotic effects of antihistaminic drugs. Channels 2017, 12, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Asuaje, A.; Smaldini, P.; Martín, P.; Enrique, N.; Orlowski, A.; Aiello, E.A.; León, C.G.; Docena, G.; Milesi, V. The inhibition of voltage-gated H+ channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis. Pflugers Arch. 2017, 469, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Coe, D.; Poobalasingam, T.; Fu, H.; Bonacina, F.; Wang, G.; Morales, V.; Moregola, A.; Mitro, N.; Cheung, K.C.; Ward, E.J.; et al. Loss of voltage-gated hydrogen channel 1 expression reveals heterogeneous metabolic adaptation to intracellular acidification by T cells. JCI Insight 2022, 7, 147814. [Google Scholar] [CrossRef] [PubMed]
- Cherny, V.V.; Thomas, L.L.; DeCoursey, T.E. Voltage-gated proton currents in human basophils. Biol. Membrany. 2001, 18, 458–465. [Google Scholar]
- Cherny, V.V.; Henderson, L.M.; DeCoursey, T.E. Proton and chloride currents in Chinese hamster ovary cells. Membr. Cell Biol. 1997, 11, 337–347. [Google Scholar]
- Bare, D.J.; Cherny, V.V.; DeCoursey, T.E.; Abukhdeir, A.M.; Morgan, D. Expression and function of voltage gated proton channels (Hv1) in MDA-MB-231 cells. PLoS ONE 2020, 15, e0227522. [Google Scholar] [CrossRef] [PubMed]
- DeCoursey, T.E.; Cherny, V.V. Voltage-activated hydrogen ion currents. J. Membr. Biol. 1994, 141, 203–223. [Google Scholar] [CrossRef]
- Musset, B.; Cherny, V.V.; Morgan, D.; Okamura, Y.; Ramsey, I.S.; Clapham, D.E.; DeCoursey, T.E. Detailed comparison of expressed and native voltage-gated proton channel currents. J. Physiol. 2008, 586, 2477–2486. [Google Scholar] [CrossRef]
- Fischer, H.; Widdicombe, J.H.; Illek, B. Acid secretion and proton conductance in human airway epithelium. Am. J. Physiol. Cell Physiol. 2002, 282, C736–C743. [Google Scholar] [CrossRef] [Green Version]
- Fischer, H. Function of proton channels in lung epithelia. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2012, 1, 247–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro-Silva, L.; Queiroz, F.O.; da Silva, A.M.B.; Hirata, A.E.; Arcisio-Miranda, M. Voltage-Gated Proton Channel in Human Glioblastoma Multiforme Cells. ACS Chem. Neurosci. 2016, 7, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, Y.; Maienschein-Cline, M.; Feferman, L.; Wu, L.; Hong, L. RNA-Seq Analyses Reveal Roles of the HVCN1 Proton Channel in Cardiac pH Homeostasis. Front. Cell Dev. Biol. 2022, 10, 860502. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhang, Z.; Wang, M. Hv1 proton channel possibly promotes atherosclerosis by regulating reactive oxygen species production. Med. Hypotheses 2020, 141, 109724. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Pang, H.; Gao, Y.; Zhou, Y.; Li, S.J. Deficiency of voltage-gated proton channel Hv1 aggravates ovalbumin-induced allergic lung asthma in mice. Int. Immunopharmacol. 2021, 96, 107640. [Google Scholar] [CrossRef]
- Pang, H.; Wang, X.; Zhao, S.; Xi, W.; Lv, J.; Qin, J.; Zhao, Q.; Che, Y.; Chen, L.; Li, S.J. Loss of the voltage-gated proton channel Hv1 decreases insulin secretion and leads to hyperglycemia and glucose intolerance in mice. J. Biol. Chem. 2020, 295, 3601–3613. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xi, W.; Qin, J.; Lv, J.; Wang, Y.; Zhang, T.; Li, S.J. Deficiency of voltage-gated proton channel Hv1 attenuates streptozotocin-induced β-cell damage. Biochem. Biophys. Res. Commun. 2018, 498, 975–980. [Google Scholar] [CrossRef]
- Nau, C. Voltage-Gated Ion Channels. In Modern Anesthetics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 182, pp. 85–92. [Google Scholar] [CrossRef]
- Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Associates, Inc.: Sunderland, UK, 2001. [Google Scholar]
- Ramsey, I.S.; Moran, M.M.; Chong, J.A.; Clapham, D.E. A voltage-gated proton-selective channel lacking the pore domain. Nature 2006, 440, 1213–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wang, Q.; Ni, F.; Ma, J. Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc. Natl. Acad. Sci. USA 2010, 107, 11352–11357. [Google Scholar] [CrossRef] [Green Version]
- Payandeh, J.; Scheuer, T.; Zheng, N.; Catterall, W.A. The crystal structure of a voltage-gated sodium channel. Nature 2011, 475, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Derst, C.; Karschin, A. Evolutionary link between prokaryotic and eukaryotic K+ channels. J. Exp. Biol. 1998, 201, 2791–2799. [Google Scholar] [CrossRef]
- MacKinnon, R.; Cohen, S.L.; Kuo, A.; Lee, A.; Chait, B.T. Structural Conservation in Prokaryotic and Eukaryotic Potassium Channels. Science 1998, 280, 106–109. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M.M.-C.; Haynes, W.J.; Loukin, S.H.; Kung, C.; Saimi, Y. Prokaryotic K+ channels: From crystal structures to diversity. FEMS Microbiol. Rev. 2005, 29, 961–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, D.; Navarro, B.; Xu, H.; Yue, L.; Shi, Q.; Clapham, D.E. A Prokaryotic Voltage-Gated Sodium Channel. Science 2001, 294, 2372–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimomura, T.; Yonekawa, Y.; Nagura, H.; Tateyama, M.; Fujiyoshi, Y.; Irie, K. A native prokaryotic voltage-dependent calcium channel with a novel selectivity filter sequence. Elife 2020, 9, e52828. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, S.; Scheuer, T.; Catterall, W.A. Ion Permeation through a Voltage- Sensitive Gating Pore in Brain Sodium Channels Having Voltage Sensor Mutations. Neuron 2005, 47, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; El-Din, T.M.G.; Ing, C.; Lu, P.; Pomès, R.; Zheng, N.; Catterall, W.A. Structural basis for gating pore current in periodic paralysis. Nature 2018, 557, 590–594. [Google Scholar] [CrossRef]
- Sasaki, M.; Takagi, M.; Okamura, Y. A Voltage Sensor-Domain Protein Is a Voltage-Gated Proton Channel. Science 2006, 312, 589–592. [Google Scholar] [CrossRef]
- Sutton, K.A.; Jungnickel, M.K.; Jovine, L.; Florman, H.M. Evolution of the Voltage Sensor Domain of the Voltage-Sensitive Phosphoinositide Phosphatase VSP/TPTE Suggests a Role as a Proton Channel in Eutherian Mammals. Mol. Biol. Evol. 2012, 29, 2147–2155. [Google Scholar] [CrossRef] [Green Version]
- Chaves, G.; Derst, C.; Franzen, A.; Mashimo, Y.; Machida, R.; Musset, B. Identification of an HV1 voltage-gated proton channel in insects. FEBS J. 2016, 283, 1453–1464. [Google Scholar] [CrossRef] [Green Version]
- Chaves, G.; Derst, C.; Jardin, C.; Franzen, A.; Musset, B. Voltage-gated proton channels in polyneopteran insects. FEBS Open Bio 2022, 12, 523–537. [Google Scholar] [CrossRef]
- Sakata, S.; Miyawaki, N.; McCormack, T.J.; Arima, H.; Kawanabe, A.; Özkucur, N.; Kurokawa, T.; Jinno, Y.; Fujiwara, Y.; Okamura, Y. Comparison between mouse and sea urchin orthologs of voltage-gated proton channel suggests role of S3 segment in activation gating. Biochim. Biophys. Acta 2016, 1858, 2972–2983. [Google Scholar] [CrossRef]
- Rangel-Yescas, G.; Cervantes, C.; Cervantes-Rocha, M.A.; Suárez-Delgado, E.; Banaszak, A.T.; Maldonado, E.; Ramsey, I.S.; Rosenbaum, T.; Islas, L.D. Discovery and characterization of Hv1-type proton channels in reef-building corals. eLife 2021, 10, e69248. [Google Scholar] [CrossRef] [PubMed]
- Chaves, G.; Ayuyan, A.G.; Cherny, V.V.; Morgan, D.; Franzen, A.; Fieber, L.; Nausch, L.; Derst, C.; Mahorivska, I.; Jardin, C.; et al. Unexpected expansion of the voltage-gated proton channel family. FEBS J. 2023, 290, 1008–1026. [Google Scholar] [CrossRef]
- Clark, M.S. Molecular mechanisms of biomineralization in marine invertebrates. J. Exp. Biol. 2020, 223, 206961. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, H.; Geisler, R.; Nicolson, T. Mutated otopetrin 1 affects the genesis of otoliths and the localization of Starmaker in zebrafish. Dev. Genes Evol. 2004, 214, 582–590. [Google Scholar] [CrossRef]
- Ramsey, I.S.; DeSimone, J.A. Otopetrin-1: A sour-tasting proton channel. J. Gen. Physiol. 2018, 150, 379–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Tombola, F. Voltage-gated proton channels from fungi highlight role of peripheral regions in channel activation. Commun. Biol. 2021, 4, 261. [Google Scholar] [CrossRef]
- Taylor, A.R.; Brownlee, C.; Wheeler, G.L. Proton channels in algae: Reasons to be excited. Trends Plant Sci. 2012, 17, 675–684. [Google Scholar] [CrossRef]
- Taylor, A.R.; Chrachri, A.; Wheeler, G.; Goddard, H.; Brownlee, C. A Voltage-Gated H+ Channel Underlying pH Homeostasis in Calcifying Coccolithophores. PLoS Biol. 2011, 9, e1001085. [Google Scholar] [CrossRef]
- Smith, S.M.E.; Morgan, D.; Musset, B.; Cherny, V.V.; Place, A.R.; Hastings, J.W.; DeCoursey, T.E. Voltage-gated proton channel in a dinoflagellate. Proc. Natl. Acad. Sci. USA 2011, 108, 18162–18167. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.D.; Haq, S.; Bachvaroff, T.; Nowak, K.F.; Nowak, S.J.; Morgan, D.; Cherny, V.V.; Sapp, M.M.; Bernstein, S.; Bolt, A.; et al. Identification of a vacuolar proton channel that triggers the bioluminescent flash in dinoflagellates. PLoS ONE 2017, 12, e0171594. [Google Scholar] [CrossRef] [Green Version]
- Kigundu, G.; Cooper, J.L.; Smith, S.M.E. Hv 1 Proton Channels in Dinoflagellates: Not Just for Bioluminescence? J. Eukaryot. Microbiol. 2018, 65, 928–933. [Google Scholar] [CrossRef]
- Shen, R.; Meng, Y.; Roux, B.; Perozo, E. Mechanism of voltage gating in the voltage-sensing phosphatase Ci-VSP. Proc. Natl. Acad. Sci. USA 2022, 119, e2206649119. [Google Scholar] [CrossRef]
- Cherny, V.V.; Morgan, D.; Musset, B.; Chaves, G.; Smith, S.M.; DeCoursey, T.E. Tryptophan 207 is crucial to the unique properties of the human voltage-gated proton channel, hHV1. J. Gen. Physiol. 2015, 146, 343–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, H.; Yonezawa, Y.; Takano, Y.; Okamura, Y.; Fujiwara, Y. Direct Interaction between the Voltage Sensors Produces Cooperative Sustained Deactivation in Voltage-gated H+ Channel Dimers. J. Biol. Chem. 2016, 291, 5935–5947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tombola, F.; Ulbrich, M.H.; Isacoff, E.Y. The Voltage-Gated Proton Channel Hv1 Has Two Pores, Each Controlled by One Voltage Sensor. Neuron 2008, 58, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-Y.; Letts, J.A.; MacKinnon, R. Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proc. Natl. Acad. Sci. USA 2008, 105, 7692–7695. [Google Scholar] [CrossRef] [Green Version]
- De La Rosa, V.; Ramsey, I.S. Gating Currents in the Hv1 Proton Channel. Biophys. J. 2018, 114, 2844–2854. [Google Scholar] [CrossRef] [Green Version]
- Musset, B.; Smith, S.M.E.; Rajan, S.; Morgan, D.; Cherny, V.V.; DeCoursey, T.E. Aspartate 112 is the selectivity filter of the human voltage-gated proton channel. Nature 2011, 480, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Shen, R.; Treger, J.S.; Wanderling, S.S.; Milewski, W.; Siwowska, K.; Bezanilla, F.; Perozo, E. Resting state of the human proton channel dimer in a lipid bilayer. Proc. Natl. Acad. Sci. USA 2015, 112, E5926–E5935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, H.P.; Kurokawa, T.; Okochi, Y.; Sasaki, M.; Okamura, Y.; Larsson, H.P. Multimeric nature of voltage-gated proton channels. Proc. Natl. Acad. Sci. USA 2008, 105, 9111–9116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratanayotha, A.; Kawai, T.; Higashijima, S.; Okamura, Y. Molecular and functional characterization of the voltage-gated proton channel in zebrafish neutrophils. Physiol. Rep. 2017, 5, 13345. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C.; Koch, H.P.; Drum, B.M.; Larsson, H.P. Strong cooperativity between subunits in voltage-gated proton channels. Nat. Struct. Mol. Biol. 2010, 17, 51–56. [Google Scholar] [CrossRef]
- Carmona, E.M.; Larsson, H.P.; Neely, A.; Alvarez, O.; Latorre, R.; Gonzalez, C. Gating charge displacement in a monomeric voltage-gated proton (H(v)1) channel. Proc. Natl. Acad. Sci. USA 2018, 115, 9240–9245. [Google Scholar] [CrossRef] [Green Version]
- Chaves, G.; Bungert-Plümke, S.; Franzen, A.; Mahorivska, I.; Musset, B. Zinc modulation of proton currents in a new voltage-gated proton channel suggests a mechanism of inhibition. FEBS J. 2020, 287, 4996–5018. [Google Scholar] [CrossRef]
- Thomas, S.; Cherny, V.V.; Morgan, D.; Artinian, L.R.; Rehder, V.; Smith, S.M.; DeCoursey, T.E. Exotic properties of a voltage-gated proton channel from the snail Helisoma trivolvis. J. Gen. Physiol. 2018, 150, 835–850. [Google Scholar] [CrossRef]
- Papp, F.; Lomash, S.; Szilagyi, O.; Babikow, E.; Smith, J.; Chang, T.-H.; Bahamonde, M.I.; Toombes, G.E.S.; Swartz, K.J. TMEM266 is a functional voltage sensor regulated by extracellular Zn2+. eLife 2019, 8, e42372. [Google Scholar] [CrossRef]
- Kulleperuma, K.; Smith, S.M.; Morgan, D.; Musset, B.; Holyoake, J.; Chakrabarti, N.; Cherny, V.V.; DeCoursey, T.E.; Pomès, R. Construction and validation of a homology model of the human voltage-gated proton channel hHV1. J. Gen. Physiol. 2013, 141, 445–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeshita, K.; Sakata, S.; Yamashita, E.; Fujiwara, Y.; Kawanabe, A.; Kurokawa, T.; Okochi, Y.; Matsuda, M.; Narita, H.; Okamura, Y.; et al. X-ray crystal structure of voltage-gated proton channel. Nat. Struct. Mol. Biol. 2014, 21, 352–357. [Google Scholar] [CrossRef] [PubMed]
- van Keulen, S.C.; Gianti, E.; Carnevale, V.; Klein, M.L.; Rothlisberger, U.; Delemotte, L. Does Proton Conduction in the Voltage-Gated H+ Channel hHv1 Involve Grotthuss-Like Hopping via Acidic Residues? J. Phys. Chem. B 2017, 121, 3340–3351. [Google Scholar] [CrossRef]
- Boytsov, D.; Brescia, S.; Chaves, G.; Koefler, S.; Hannesschlaeger, C.; Siligan, C.; Goessweiner-Mohr, N.; Musset, B.; Pohl, P. Trapped Pore Waters in the Open Proton Channel H(V) 1. Small 2023, 19, e2205968. [Google Scholar] [CrossRef] [PubMed]
- Musset, B.; DeCoursey, T. Biophysical properties of the voltage-gated proton channel HV1. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2012, 1, 605–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, I.S.; Mokrab, Y.; Carvacho, I.; Sands, Z.A.; Sansom, M.; Clapham, D. An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1. Nat. Struct. Mol. Biol. 2010, 17, 869–875. [Google Scholar] [CrossRef] [Green Version]
- Morgan, D.; Musset, B.; Kulleperuma, K.; Smith, S.M.; Rajan, S.; Cherny, V.V.; Pomès, R.; DeCoursey, T.E. Peregrination of the selectivity filter delineates the pore of the human voltage-gated proton channel hHV1. J. Gen. Physiol. 2013, 142, 625–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudev, T.; Musset, B.; Morgan, D.; Cherny, V.V.; Smith, S.M.E.; Mazmanian, K.; DeCoursey, T.E.; Lim, C. Selectivity Mechanism of the Voltage-gated Proton Channel, HV1. Sci. Rep. 2015, 5, 10320. [Google Scholar] [CrossRef] [Green Version]
- Wood, M.L.; Schow, E.V.; Freites, J.A.; White, S.H.; Tombola, F.; Tobias, D.J. Water wires in atomistic models of the Hv1 proton channel. Biochim. Biophys. Acta. 2012, 1818, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Sakata, S.; Kurokawa, T.; Nørholm, M.H.H.; Takagi, M.; Okochi, Y.; von Heijne, G.; Okamura, Y. Functionality of the voltage-gated proton channel truncated in S4. Proc. Natl. Acad. Sci. USA 2009, 107, 2313–2318. [Google Scholar] [CrossRef] [Green Version]
- Berger, T.K.; Isacoff, E.Y. The Pore of the Voltage-Gated Proton Channel. Neuron 2011, 72, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- Chamberlin, A.; Qiu, F.; Wang, Y.; Noskov, S.Y.; Larsson, H.P. Mapping the Gating and Permeation Pathways in the Voltage-Gated Proton Channel Hv1. J. Mol. Biol. 2015, 427, 131–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mony, L.; Berger, T.K.; Isacoff, E.Y. A specialized molecular motion opens the Hv1 voltage-gated proton channel. Nat. Struct. Mol. Biol. 2015, 22, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCoursey, T.E.; Morgan, D.; Musset, B.; Cherny, V.V. Insights into the structure and function of HV1 from a meta-analysis of mutation studies. J. Gen. Physiol. 2016, 148, 97–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.J.; Zhao, Q.; Zhou, Q.; Unno, H.; Zhai, Y.; Sun, F. The Role and Structure of the Carboxyl-terminal Domain of the Human Voltage-gated Proton Channel Hv1. J. Biol. Chem. 2010, 285, 12047–12054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCoursey, T.E. Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family. Physiol. Rev. 2013, 93, 599–652. [Google Scholar] [CrossRef]
- Musset, B.; Smith, S.M.E.; Rajan, S.; Cherny, V.V.; Sujai, S.; Morgan, D.; DeCoursey, T.E. Zinc inhibition of monomeric and dimeric proton channels suggests cooperative gating. J. Physiol. 2010, 588, 1435–1449. [Google Scholar] [CrossRef]
- Mony, L.; Stroebel, D.; Isacoff, E.Y. Dimer interaction in the Hv1 proton channel. Proc. Natl. Acad. Sci. USA 2020, 117, 20898–20907. [Google Scholar] [CrossRef]
- Qiu, F.; Rebolledo, S.; Gonzalez, C.; Larsson, H.P. Subunit Interactions during Cooperative Opening of Voltage-Gated Proton Channels. Neuron 2013, 77, 288–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, L.; Singh, V.; Wulff, H.; Tombola, F. Interrogation of the intersubunit interface of the open Hv1 proton channel with a probe of allosteric coupling. Sci. Rep. 2015, 5, 14077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musset, B.; Smith, S.M.; Rajan, S.; Cherny, V.V.; Morgan, D.; DeCoursey, T.E. Oligomerization of the voltage gated proton channel. Channels 2010, 4, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Qiu, F.; Chamberlin, A.; Watkins, B.M.; Ionescu, A.; Perez, M.E.; Barro-Soria, R.; González, C.; Noskov, S.Y.; Larsson, H.P. Molecular mechanism of Zn 2+ inhibition of a voltage-gated proton channel. Proc. Natl. Acad. Sci. USA 2016, 113, E5962–E5971. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.; Rebolledo, S.; Perez, M.E.; Larsson, H.P. Molecular mechanism of voltage sensing in voltage-gated proton channels. J. Gen. Physiol. 2013, 141, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Schladt, T.M.; Berger, T.K. Voltage and pH difference across the membrane control the S4 voltage-sensor motion of the Hv1 proton channel. Sci. Rep. 2020, 10, 21293. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Delgado, E.; Orozco-Contreras, M.; Rangel-Yescas, G.E.; Islas, L.D. Activation-pathway transitions in human voltage-gated proton channels revealed by a non-canonical fluorescent amino acid. eLife 2023, 12, e85836. [Google Scholar] [CrossRef] [PubMed]
- Carmona, E.M.; Fernandez, M.; Alvear-Arias, J.J.; Neely, A.; Larsson, H.P.; Alvarez, O.; Garate, J.A.; Latorre, R.; Gonzalez, C. The voltage sensor is responsible for ΔpH dependence in H v 1 channels. Proc. Natl. Acad. Sci. USA 2021, 118, e2025556118. [Google Scholar] [CrossRef]
- Jardin, C.; Ohlwein, N.; Franzen, A.; Chaves, G.; Musset, B. The pH-dependent gating of the human voltage-gated proton channel from computational simulations. Phys. Chem. Chem. Phys. 2022, 24, 9964–9977. [Google Scholar] [CrossRef]
- Villalba-Galea, C.A. Hv1 Proton Channel Opening Is Preceded by a Voltage-independent Transition. Biophys. J. 2014, 107, 1564–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, Y.; Kurokawa, T.; Takeshita, K.; Nakagawa, A.; Larsson, H.P.; Okamura, Y. Gating of the designed trimeric/tetrameric voltage-gated H+channel. J. Physiol. 2013, 591, 627–640. [Google Scholar] [CrossRef]
- DeCoursey, T.; Hosler, J. Philosophy of voltage-gated proton channels. J. R. Soc. Interface 2014, 11, 20130799. [Google Scholar] [CrossRef] [Green Version]
- DeCoursey, T.E. Voltage and pH sensing by the voltage-gated proton channel, H(V)1. J. R. Soc. Interface 2018, 15, 20180108. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wanderling, S.; Paduch, M.; Medovoy, D.; Singharoy, A.; McGreevy, R.; Villalba-Galea, C.A.; Hulse, R.E.; Roux, B.; Schulten, K.; et al. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat. Struct. Mol. Biol. 2014, 21, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Lee, A.; Limapichat, W.; Dougherty, D.A.; MacKinnon, R. A Gating Charge Transfer Center in Voltage Sensors. Science 2010, 328, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.K.; MacKinnon, R. Contribution of the S4 Segment to Gating Charge in the Shaker K+ Channel. Neuron 1996, 16, 1169–1177. [Google Scholar] [CrossRef] [Green Version]
- Starace, D.M.; Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 2004, 427, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Banh, R.; Cherny, V.V.; Morgan, D.; Musset, B.; Thomas, S.; Kulleperuma, K.; Smith, S.M.E.; Pomès, R.; DeCoursey, T.E. Hydrophobic gasket mutation produces gating pore currents in closed human voltage-gated proton channels. Proc. Natl. Acad. Sci. USA 2019, 116, 18951–18961. [Google Scholar] [CrossRef] [Green Version]
- Chamberlin, A.; Qiu, F.; Rebolledo, S.; Wang, Y.; Noskov, S.Y.; Larsson, H.P. Hydrophobic plug functions as a gate in voltage-gated proton channels. Proc. Natl. Acad. Sci. USA 2014, 111, E273–E282. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhang, L.; Hong, L. The role of Phe150 in human voltage-gated proton channel. iScience 2022, 25, 105420. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, C.M.; Bezanilla, F. Currents Related to Movement of the Gating Particles of the Sodium Channels. Nature 1973, 242, 459–461. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kurokawa, T.; Takeshita, K.; Kobayashi, M.; Okochi, Y.; Nakagawa, A.; Okamura, Y. The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H+ channel Hv1. Nat. Commun. 2012, 3, 816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherny, V.V.; Musset, B.; Morgan, D.; Thomas, S.; Smith, S.M.; DeCoursey, T.E. Engineered high-affinity zinc binding site reveals gating configurations of a human proton channel. J. Gen. Physiol. 2020, 152. [Google Scholar] [CrossRef]
- Armstrong, C.T.; Mason, P.E.; Anderson, J.L.R.; Dempsey, C.E. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels. Sci. Rep. 2016, 6, 21759. [Google Scholar] [CrossRef] [Green Version]
- DeCoursey, T.E. Voltage-Gated Proton Channels and Other Proton Transfer Pathways. Physiol. Rev. 2003, 83, 475–579. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, V.S.; Cherny, V.V.; Ayuyan, A.G.; DeCoursey, T.E. Analysis of an electrostatic mechanism for ΔpH dependent gating of the voltage-gated proton channel, H(V)1, supports a contribution of protons to gating charge. Biochim. Biophys. Acta Bioenerg. 2021, 1862, 148480. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Peng, S.; Vance, J.; Tran, K.; Do, N.; Bui, N.; Gui, Z.; Wang, S. Structural dynamics determine voltage and pH gating in human voltage-gated proton channel. eLife 2022, 11, e73093. [Google Scholar] [CrossRef] [PubMed]
- Cherny, V.V.; Morgan, D.; Thomas, S.; Smith, S.M.; DeCoursey, T.E. Histidine168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hHV1. J. Gen. Physiol. 2018, 150, 851–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Respiratory Burst | Cell Type | Function of HV1 | References |
---|---|---|---|
Yes | Eosinophil (human) (rodent) | Charge compensation, prevention of cell death. | [10,12,17,36,37,38,39,40,41,42,43,44,45,46] |
Yes | Neutrophil (human) PLB-985 (hcl) HL-60 (hcl) K-562 (hcl) Neutrophil (rodent) | Charge compensation, migration, granula release, calcium homeostasis, pH homeostasis, ERK activity, phagosomal pH homeostasis. | [6,8,10,12,13,14,15,41,45,47,48,49,50,51,52,53] |
Yes | Monocyte (human) | Charge compensation. | [54] |
Yes, small | Macrophage (human) THP-1 (Hcl) Macrophage (mice) | Charge compensation, phagosome acidification. | [52,55,56] |
Yes, small | Osteoclast (rodent/Leporidae) | pH homeostasis, charge compensation, ROS production. | [57,58,59,60,61] |
Yes, small | Microglia (rodent) Microglia culture (human) BV-2 (rcl) GM1-R1 (rcl) MLS-9 (rcl) | pH homeostasis, charge compensation, ROS production, microglia-astrocyte communication, neuropathic pain promotion, brain damage enhancing, acidosis exacerbation, M2 polarization reduction, demyelination promotion, white matter injuries promotion, secondary spinal cord damage enhancing, neuroinflammation promotion, pyroptosis increase, motor deficit expansion, autophagy increase, M1 polarization promotion in aged mice. | [22,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] |
Yes | Kupffer cell (mice/rodent) | Glucose metabolism, ROS production suppression, hyperglycaemia, and hyperinsulinemia prevention. | [23] |
No | Cardiac fibroblast (human) | pH homeostasis, membrane potential, potentially beneficial in ischemia. | [78] |
Yes, small | Dendritic cells (rodent/human) | TLR9 activation. | [28] |
No | Sperm cell (human) | Capacitation, acid extrusion. | [32,33,79,80] |
Yes | Oocyte (human) | pH homeostasis. | [34] |
No | Type 2 alveolar cells (rodent) | pH regulation. | [30,47,81,82,83,84,85,86] |
No | Mast cell (mouse) | pH homeostasis. | [87] |
Yes, tiny | B cells (human) (rodent) LK35.2 (rodent) | B cell receptor signalling, migration and proliferation enhancing (short isoform). | [26,27,88,89] |
No | T cells (human) Jurkat (human) T cells (rodent) | Apoptosis prevention, pH homeostasis, autoimmune disorders prevention. | [29,88,90,91,92] |
No | Cardiomyocytes (canine) | pH homeostasis. | [11] |
No | SHG-44 glioma cells (human) | Apoptosis prevention. | [18] |
No | Colorectal cancer (human) SW620 (hcl) HT29 (hcl) LS174T (hcl) Colo205 (hcl) | Prevention of cellular acidosis, support of cancer cell metabolism, pH homeostasis, potential biomarker, and drug target | [19] |
No | Basophils (human) | Exocytosis (histamine release), pH homeostasis. | [16,93] |
No | Ovary cells (Hamster) | pH homeostasis. | [94] |
No | Breast cancer cells (human primary) MDA-BA-231(hcl) MCF-7 (hcl) MDA-MB-468 (hcl) MDA-MB-453 (hcl) T-47D (hcl) SK-BR-3 (hcl) | Tumor growth, metastasis and invasiveness promotion, (expression predicts prognosis of tumor). | [20,21,95] |
No | Lung cancer cell A549 (human) | No information. | [96] |
No | Prostate cancer cell PC-3 (human) | No information. | [96] |
No | Kidney (human) HEK-293 | No information. | [96,97] |
Yes, small | Nasal epithelium (human primary culture) JME/CF 15 (human) Cystic fibrosis genotype | Airway surface epithelium acidification, proton extrusion. | [98] |
Yes, small | Ciliated tracheal cells (human) | NADPH oxidase activity driven proton extrusion. | [31,98] |
Yes, small | lung epithelium fetal (human) | DUOX driven proton release, acid extrusion. | [99] |
Yes, tiny | Serous gland cell line Calu-3 (human) | Airway surface epithelium acidification, proton extrusion (to a lesser extent than airway epithelium) | [31] |
No | Skeletal muscle myocyte (human) | pH homeostasis. | [7] |
No | Glioblastoma cell line (human) T98G | Cell’s survival and migration. | [100] |
No | Whole heart (rodent) | NOXs transcription and CO2 homeostasis control, electrophysiological remodelling. | [101] |
No/Yes | Vascular system, Immune system | Atherosclerosis advancement (hypothetical). | [102] |
No/Yes Whole tissue | Lung (rodent) | Goblet cell hyperplasia prevention. Depression expression of IL-4, IL-5, and IL-13. Reduction of the expression levels of NOX2, NOX4, and DUOX1. Promotion of the expression of SOD2 and catalase. Reduction of the development of allergic asthma through ROS production enhancing. | [103] |
Yes | Myeloid derived suppressor cells (MDSC) (rodent) | T-cells regulation (via ROS production). | [35] |
No | epididymal adipose tissue (rodent) | Diet obesity induction. | [24] |
Yes, tiny | Pancreatic β cells (rodent) | Insulin secretion, ROS production, NOX4 upregulation, glucotoxicity induction. | [25,104,105] |
Species | Phylae/Subphylae | NaV | CaV |
---|---|---|---|
Euglena gracilis | Excavata | 28/52% (86) | 35/50% (91) |
Raperostelium potamoides | Amoebozoa | 36/51% (106) | 35/56% (86) |
Balamuthia mandrillaris | Amoebozoa | 34/52% (74) | <25% |
Paramoeba aestuarina | Amoebozoa | 27/50% (64) | <25% |
Emiliania huxleyi | Haptista | 37/51% (79) | 32/57% (73) |
Amorphochlora amoebiformis | SAR-Rhizaria | <25% | 28/55% (79) |
Odontella aurita | SAR-Stramenopiles | 36/58% (67) * | <25% |
Karlodinium veneficum | SAR-Alveolata | <25% | 34/55% (80) |
Scrippsiella hangoei | SAR-Alveolata | 29/51% (87) | 29/56% (85) |
Gracilaria vermiculophylla | Rhodophyta | 30/63% (69) | <25% |
Species | Kingdom | cDNA (mRNA) | Gene |
---|---|---|---|
Escherichia coli | Prokaryota | - | - |
Dictyostelium discoideum | Protist | - | - |
Tetrahymena thermophila | - | - | |
Naegleria gruberi | - | - | |
Emiliania huxleyi | HBNU01018021 GIZZ01010784 | NW_005196830 NW_005202428 | |
Thalassiosira pseudonana | NC_012076 | ||
Aspergillus niger | Fungi | XM_001390088 | NT_166520 |
Neurospora crassa | - | - | |
Saccharomyces cerevisiae | - | - | |
Arabidopsis thaliana | Plantae | NP_001321473 | NC_003070 |
Zea mays | - | - | |
Oryza sativa | - | - | |
Physcomitrella patens | XM_024508236 XM_024525718 | NC_037254 NC_037259 | |
Marchantia polymorpha | - | AP019868 AP019873 AP019871 | |
Chlamydomonas reinhardtii | Archaeplastida | - | - |
Aplysia californica | Invertebrata | XM_005100609 XM_005093050 XM_005094218 XM_013086351 XM_013080089 XM_013090418 XM_013082371 | NW_004797523 NW_004797327 NW_004797348 NW_004797727 NW_004797344 NW_004798539 NW_004797441 |
Branchiostoma belcheri | XR_002139895 XM_019760615 XM_019764911 | NW_017802379 ” NW_017803191 | |
Caenorhabditis elegans | - | - | |
Ciona intestinalis | NM_001078469 | NW_004190496 | |
Daphnia pulex | XM_046604416 | NC_060027 | |
Drosophila melanogaster | - | - | |
Hydra vulgaris | XM_047284425 | - | |
Lymnaea stagnalis | FX197150 FX190227 FX196339 | nys | |
Nematostella vectensis | XP_001626501 | NC_064038 | |
Strongylocentrotus purpuratus | XM_030990962 | NW_022145605 | |
Trichoplax adhaerens | XM_002110878 XM_002110360 | NW_002060945 ” | |
Ambystoma mexicanum | Vertebrata | GFZP01114012 | JXRH01463164 |
Gallus gallus | NM_001396354 | NC_052587 | |
Mesocricetus auratus | XM_040731183 | NW_024429206 | |
Cavia porcellus | XM_003462980 | NT_176304 | |
Mus musculus | NM_028752 | NC_000071 | |
Rattus norvegicus | XM_017598517 | NC_051347 | |
Macaca mulatta | XM_028829869 | NC_041764 | |
Takifugu rubripes | XM_003977031 | NC_042298 | |
Xenopus laevis | XM_018249100 XM_018244209 | NC_054371 NC_054372 | |
Danio rerio | NM_001002346 | NC_007121 | |
Homo sapiens | NM_001040107 | NC_000012 |
Organism | Species | Channel | Oligomerization? | Selectivity | Gating Charges, e0 | Slope Vthres/Vrev | Vthres at ΔpH = 0 (mV) | ΔgH-V/ΔpH (mV/pHo) | H+ Influx at Relevant Physiological pH? | References |
---|---|---|---|---|---|---|---|---|---|---|
Mammals | H. sapiens | hHV1 | confirmed f,g,j,k | >106 PH+/PTMA+ d,i >106 PH+/PCH3SO3- i >106 PH+/PCl- i | ~ 5 h,δ ~ 6 l | 0.82 d 0.67–0.71 (expressed) l 0.71 (native) l | 13.8 d −9 to −11 (expressed) l +27 (native) l | 40 l | no (native) yes (if expressed) l | [110] d, [138] f, [139] g, [140] h, [141] i, [41] j, [142] k, [97] l |
M. musculus | mHV1 | confirmed n | >107 PH+/PNMDG+ >107 PH+/PNa+ >107 PH+/PK+ | ~6 m | 0.86 * (expressed) 0.69 m (expressed) | +10 to +20 −15 (expressed) m | 50 40 m | no (native) yes (if expressed) m | [118], [97] m, [143] n | |
R. norvegicus | RnHV1 | possibly | >107 PH+/PTMA+ o >108 PD+/PTMA+ p | 5.4 p | 0.76 | +18 | 44 40 o,p | no | [5], [81] o, [83] p | |
Fish | D. rerio | DrHV1 | possibly | >107 PH+/PNMDG+ | n.d. | 0.69 * | ~+10 mV ε | ~ 40 ε | no | [144] |
Sea squirt | C. intestinalis | CiHV1 | confirmed b | n.d. | 4.4–5.9 (dimer) b 1.6–2.7 (monomer) c | n.d. | n.d. | ~ 40 c | no | [118], [145] c, [146] d |
Insects | N. phytophila | NpHV1 | confirmed a | >108 PH+/PTMA+ >104 PH+/PNa+ >104 PH+/PCl- | 4.7–6.1 a | 0.81 a | −3.4 a | 47–54 a | no | [120] a, [147] b |
E. tiaratum | EtHV1 | n.d. | >106 PH+/PTMA+ | n.d. | 0.77 | −23 | 45 | yes | [121] | |
Mollusks | C. gigas | CgHV4 | possibly | >107 PH+/PTMA+ | n.d. | 0.84 | −12 | 49 | no ● | [125] |
A. californica | AcHV1 | possibly | >107 PH+/PTMA+ >106 PH+/PNa+ >106 PH+/PK+ | 5.7 | 0.78 | 5 | 43–45 | no | [124] | |
A. californica | AcHV2 | possibly | >107 PH+/PTMA+ >106 PH+/PK+ | 5.3 | 0.77 | −20 | 44 40 (pHi) | yes | [124] | |
A. californica | AcHV3 | possibly + | >107 PH+/PTMA+ | n.d. | n.d. | n.d. | n.d. | yes § | [124] | |
H. trivolvis | HtHV1 | possibly | >107 PH+/PTMA+ | 5.5 | 1.03 * 0.26 (pHi) * | n.d. | 60.0 15.3 (pHi) | no | [148] | |
Corals | A. millepora | AmHV1 | confirmed | >107 PH+/PTMA+ | 2 λ | 0.86 * | ~ +10 mV θ | ~ 50 θ | no | [123] |
Sea Urchin | S. purpuratus | SpHV1 | confirmed | >107 PH+/PK+ | 4.3 (dimer) 1.1 (monomer) | 0.69 * | ~ +10 mV | ~ 40 β | no | [122] |
Fungi | A. oryzae | AoHV1 | possibly + | >105 PH+/PTEA+ # | 5 | 1.40–1.55 * | ~ −30 (pH 5.5) γ ~ −30 (pH 6.5) γ | 80–90 | yes | [129] |
S. luteus | SlHV1 | possibly + | >105 PH+/PTEA+ # | 5 | 1.40–1.55 * | ~ +20 (pH 5.5) γ ~ +40 (pH 6.5) γ | 80–90 | no | [129] | |
Dinoflagellates | K. veneficum | kHV1 | possibly not φ | >107 PH+/PTMA+ >105 PH+/PCl- | n.d. | 0.79 | −37 | 46 | yes | [132] |
L. polyedrum | LpHV1 | possibly + | >109 PH+/PTMA+ | n.d. | 0.69 * | 46 | 40 ** | yes α | [133] | |
Phytoplankton | E. huxleyi | EhHV1 | possibly | >106 PH+/PK+ >106 PH+/PCl- | n.d. | 0.69 μ (expressed) | ~+20 mV (expressed) μ | ~40 Ω | no | [131] |
C. pelagicus | CpHV1 | possibly | >106 PH+/PK+ >106 PH+/PCl- | n.d. | 0.69 μ (native) | +10 mV (native) μ | ~40 Ω | no | [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaves, G.; Jardin, C.; Derst, C.; Musset, B. Voltage-Gated Proton Channels in the Tree of Life. Biomolecules 2023, 13, 1035. https://doi.org/10.3390/biom13071035
Chaves G, Jardin C, Derst C, Musset B. Voltage-Gated Proton Channels in the Tree of Life. Biomolecules. 2023; 13(7):1035. https://doi.org/10.3390/biom13071035
Chicago/Turabian StyleChaves, Gustavo, Christophe Jardin, Christian Derst, and Boris Musset. 2023. "Voltage-Gated Proton Channels in the Tree of Life" Biomolecules 13, no. 7: 1035. https://doi.org/10.3390/biom13071035
APA StyleChaves, G., Jardin, C., Derst, C., & Musset, B. (2023). Voltage-Gated Proton Channels in the Tree of Life. Biomolecules, 13(7), 1035. https://doi.org/10.3390/biom13071035