Should Cystatin C eGFR Become Routine Clinical Practice?
Abstract
:1. Introduction
2. Cystatin C
3. Measuring Kidney Function
4. Bias, Accuracy and Correlation
5. Analytical Performance
6. Clinical Applications
6.1. Elderly
6.2. Ethnicity
6.3. Cardiovascular Disease
6.4. Reclassification
7. Cost and Implementation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gounden, V.; Bhatt, H.; Jialal, I. Renal Function Tests. StatPearls Internet. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507821/ (accessed on 2 June 2023).
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.M.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar] [CrossRef] [Green Version]
- Nankivell, B.J.; Nankivell, L.F.; Elder, G.J.; Gruenewald, S.M. How unmeasured muscle mass affects estimated GFR and diagnostic inaccuracy. Eclinicalmedicine 2020, 29–30, 100662. [Google Scholar] [CrossRef] [PubMed]
- NICE CKD Guidelines, CG182. Available online: https://www.nice.org.uk/guidance/cg182/chapter/1-Recommendations#identification-and-management-of-ckd-in-adults (accessed on 18 April 2023).
- Lees, J.S.; Welsh, C.E.; Celis-Morales, C.A.; Mackay, D.; Lewsey, J.; Gray, S.R.; Lyall, D.M.; Cleland, J.G.; Gill, J.M.R.; Jhund, P.S.; et al. Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease. Nat. Med. 2019, 25, 1753–1760. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Matsushita, K.; Ärnlöv, J.; Inker, L.A.; Katz, R.; Polkinghorne, K.R.; Rothenbacher, D.; Sarnak, M.J.; Astor, B.C.; Coresh, J.; et al. Cystatin C versus Creatinine in Determining Risk Based on Kidney Function. N. Engl. J. Med. 2013, 369, 932–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasserson, D.S.; Shine, B.; O’callaghan, C.A.; James, T. Requirement for cystatin C testing in chronic kidney disease: A retrospective population-based study. Br. J. Gen. Pract. 2017, 67, e732–e735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsushita, K.; Van Der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; De Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Coresh, J. Chronic kidney disease. Lancet 2012, 379, 165–180. [Google Scholar] [CrossRef]
- Levey, A.S.; Eckardt, K.-U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; Zeeuw, D.D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.-S.; Kelly, T.N.; Chen, J.; He, J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015, 88, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Wiebe, N.; Culleton, B.; House, A.; Rabbat, C.; Fok, M.; McAlister, F.; Garg, A.X. Chronic kidney disease and mortality risk: A systematic review. J. Am. Soc. Nephrol. 2006, 17, 2034–2047. [Google Scholar] [CrossRef] [Green Version]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.-y. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.L.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Keith, D.S.; Nichols, G.A.; Gullion, C.M.; Brown, J.B.; Smith, D.H. Longitudinal Follow-up and Outcomes Among a Population with Chronic Kidney Disease in a Large Managed Care Organization. Arch. Intern. Med. 2004, 164, 659–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsushita, K.; Selvin, E.; Bash, L.D.; Franceschini, N.; Astor, B.C.; Coresh, J. Change in estimated GFR associates with coronary heart disease and mortality. J. Am. Soc. Nephrol. 2010, 21, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siklos, M.; BenAissa, M.; Thatcher, G.R. Cysteine proteases as therapeutic targets: Does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm. Sin. B 2015, 5, 506–519. [Google Scholar] [CrossRef] [Green Version]
- Shamsi, A.; Bano, B. Journey of cystatins from being mere thiol protease inhibitors to at heart of many pathological conditions. Int. J. Biol. Macromol. 2017, 102, 674–693. [Google Scholar] [CrossRef]
- Inker, L.A.; Titan, S. Measurement and Estimation of GFR for Use in Clinical Practice: Core Curriculum 2021. Am. J. Kidney Dis. 2021, 78, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.L.; Verhave, J.C.; Spiegelman, D.; Hillege, H.L.; De Zeeuw, D.; Curhan, G.C.; De Jong, P.E. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004, 65, 1416–1421. [Google Scholar] [CrossRef] [Green Version]
- Śledziński, T.; Proczko-Markuszewska, M.; Kaska, L.; Stefaniak, T.; Świerczyński, J. Serum Cystatin C in Relation to Fat Mass Loss After Bariatric Surgery”. Pol. Przegl. Chir. 2012, 84, 202–207. [Google Scholar] [CrossRef]
- Fricker, M.; Wiesli, P.; Brändle, M.; Schwegler, B.; Schmid, C. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 2003, 63, 1944–1947. [Google Scholar] [CrossRef] [Green Version]
- Madero, M.; Sarnak, M.J. Association of cystatin C with adverse outcomes. Curr. Opin. Nephrol. Hypertens. 2009, 18, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, D.W.; Gault, H. Prediction of Creatinine Clearance from Serum Creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A More Accurate Method to Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Levey, A.S.; Greene, T.; Kusek, J.W.; Beck, G.J. A simplified equation to predict glomerular filtration rate from serum creatinine. Am. J. Kidney Dis. 2002, 39, 155A. [Google Scholar]
- Levey, A.S.; Inker, L.A. GFR as the “Gold Standard”: Estimated, Measured, and True. Am. J. Kidney Dis. 2016, 67, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Pottel, H.; Björk, J.; Courbebaisse, M.; Couzi, L.; Ebert, N.; Eriksen, B.O.; Dalton, R.N.; Dubourg, L.; Gaillard, F.; Garrouste, C.; et al. Development and Validation of a Modified Full Age Spectrum Creatinine-Based Equation to Estimate Glomerular Filtration Rate. A cross-sectional analysis of pooled data. Ann. Intern. Med. 2021, 174, 183–191. [Google Scholar] [CrossRef]
- Michels, W.M.; Grootendorst, D.C.; Verduijn, M.; Elliott, E.G.; Dekker, F.W.; Krediet, R.T. Performance of the Cockcroft-Gault, MDRD, and New CKD-EPI Formulas in Relation to GFR, Age, and Body Size. Clin. J. Am. Soc. Nephrol. 2010, 5, 1003–1009. [Google Scholar] [CrossRef] [Green Version]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. New Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Risch, L.; Herklotz, R.; Blumberg, A.; Huber, A.R. Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin. Chem. 2001, 47, 2055–2056. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.-X.; Sun, L.; Nicholas, S.B.; Lu, Y.; Sinha, S.; Hua, R. Comparison of bias and accuracy using cystatin C and creatinine in CKD-EPI equations for GFR estimation. Eur. J. Intern. Med. 2020, 80, 29–34. [Google Scholar] [CrossRef]
- Karger, A.B.; Long, T.; Inker, L.A.; Eckfeldt, J.H.; College of American Pathologists Accuracy Based Committee and Chemistry Resource Committee. Improved Performance in Measurement of Serum Cystatin C by Laboratories Participating in the College of American Pathologists 2019 CYS Survey. Arch. Pathol Lab. Med. 2022, 146, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.M.; Emara, M.; El Moselhi, H.; Shoker, A. Comparing measures of cystatin C in human sera by three methods. Am. J. Nephrol. 2009, 29, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Chew, J.S.C.; Saleem, M.; Florkowski, C.M.; George, P.M. Cystatin C—A paradigm of evidence based laboratory medicine. Clin. Biochem. Rev. 2008, 29, 47–62. [Google Scholar] [PubMed]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. J. Am. Soc. Nephrol. 2022, 33, 587–605. [Google Scholar] [CrossRef]
- The Association for Clinical Biochemistry & Laboratory Medicine Analyte Monographs for Creatinine and Cystatin C. Available online: https://www.acb.org.uk/our-resources/science-knowledge-hub/analyte-monographs.html (accessed on 2 June 2023).
- Shlipak, M.G.; Wassel Fyr, C.L.; Chertow, G.M.; Harris, T.B.; Kritchevsky, S.B.; Tylavsky, F.A.; Satterfield, S.; Cummings, S.R.; Newman, A.B.; Fried, L.F. Cystatin C and mortality risk in the elderly: The Health, Aging, and Body Composition Study. J. Am. Soc. Nephrol. 2006, 17, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Shlipak, M.G.; Katz, R.; Sarnak, M.J.; Fried, L.F.; Newman, A.B.; Stehman-Breen, C.; Seliger, S.L.; Kestenbaum, B.; Psaty, B.; Tracy, R.P.; et al. Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease. Ann. Intern. Med. 2006, 145, 237–246. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Sarnak, M.J.; Katz, R.; Fried, L.F.; Seliger, S.L.; Newman, A.B.; Siscovick, D.S.; Stehman-Breen, C. Cystatin C and the risk of death and cardiovascular events among elderly persons. N. Engl. J. Med. 2005, 352, 2049–2060. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Katz, R.; Stehman-Breen, C.O.; Fried, L.F.; Jenny, N.S.; Psaty, B.M.; Newman, A.B.; Siscovick, D.; Shlipak, M.G.; the Cardiovascular Health Study. Cystatin C Concentration as a Risk Factor for Heart Failure in Older Adults. Ann. Intern. Med. 2005, 142, 497–505. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Fried, L.F.; Stehman-Breen, C.; Siscovick, D.; Newman, A.B. Chronic Renal Insufficiency and Cardiovascular Events in the Elderly: Findings from the Cardiovascular Health Study. Am. J. Geriatr. Cardiol. 2004, 13, 81–90. [Google Scholar] [CrossRef]
- Chen, D.C.; Selvarajah, S.; Sanghera, D.K.; Lees, J.S.; Lu, K.; Scherzer, R.; Rutherford, E.; Mark, P.B.; Kanaya, A.M.; Shlipak, M.G.; et al. Differential Associations of Cystatin C versus Creatinine-Based Kidney Function with Risks of Cardiovascular Event and Mortality Among South Asian Individuals in the UK Biobank. J. Am. Heart Assoc. 2023, 12, e027079. [Google Scholar] [CrossRef] [PubMed]
- Dharnidharka, V.R.; Kwon, C.; Stevens, G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: A meta-analysis. Am. J. Kidney Dis. 2002, 40, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.S.; Welsh, C.E.; Celis-Morales, C.A.; Rutherford, E.; Stevens, K.I.; Chen, D.C.; Scherzer, R.; Estrella, M.M.; Sullivan, M.K.; Ebert, N.; et al. Assessment of Cystatin C Level for Risk Stratification in Adults with Chronic Kidney Disease. JAMA Netw Open. 2022, 5, e2238300. [Google Scholar] [CrossRef] [PubMed]
- Peralta, C.A.; Shlipak, M.G.; Judd, S.; Cushman, M.; McClellan, W.; Zakai, N.A.; Safford, M.M.; Zhang, X.; Muntner, P.; Warnock, D. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA 2011, 305, 1545–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peralta, C.A.; Katz, R.; Sarnak, M.J.; Ix, J.; Fried, L.F.; De Boer, I.; Palmas, W.; Siscovick, D.; Levey, A.S.; Shlipak, M.G. Cystatin C Identifies Chronic Kidney Disease Patients at Higher Risk for Complications. J. Am. Soc. Nephrol. 2011, 22, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Menon, V.; Shlipak, M.G.; Wang, X.; Coresh, J.; Greene, T.; Stevens, L.; Kusek, J.W.; Beck, G.J.; Collins, A.J.; Levey, A.S.; et al. Cystatin C as a Risk Factor for Outcomes in Chronic Kidney Disease. Ann. Intern. Med. 2007, 147, 19–27. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Mattes, M.D.; Peralta, C.A. Update on Cystatin C: Incorporation Into Clinical Practice. Am. J. Kidney Dis. 2013, 62, 595–603. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Health and Care Excellence. Chronic Kidney Disease: Assessment and Management [NG203]. 2021. Available online: https://www.nice.org.uk/guidance/ng203 (accessed on 2 June 2023).
Creatinine | Cystatin C | |
---|---|---|
Function |
|
|
Renal Processing |
|
|
Basal Production |
|
|
Decreasing Factors |
|
|
Increasing Factors |
|
|
Advantages |
|
|
CKD-EPI eGFR (With) | Pearson Correlation | 95% CI | Fisher’s z-Transformed Correlation | 95% CI |
---|---|---|---|---|
Creatinine | 0.77 | 0.69–0.86 | 1.07 | 0.79–1.35 |
Cystatin | 0.76 | 0.68–0.85 | 1.04 | 0.77–1.32 |
Creatinine and Cystatin | 0.81 | 0.73–0.89 | 1.2 | 0.89–1.50 |
Creatinine | Cystatin C | |
---|---|---|
Analytical Method |
|
|
Reference Method |
|
|
Reference Material |
|
|
Sources of Error |
|
|
Interfering Substances |
| |
Reference Interval (Adults) |
|
|
Interindividual CV |
|
|
Intraindividual CV |
|
|
Index of Individuality |
|
|
Analytical CV |
|
|
RCV Positive |
|
|
RCV Negative |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spencer, S.; Desborough, R.; Bhandari, S. Should Cystatin C eGFR Become Routine Clinical Practice? Biomolecules 2023, 13, 1075. https://doi.org/10.3390/biom13071075
Spencer S, Desborough R, Bhandari S. Should Cystatin C eGFR Become Routine Clinical Practice? Biomolecules. 2023; 13(7):1075. https://doi.org/10.3390/biom13071075
Chicago/Turabian StyleSpencer, Sebastian, Robert Desborough, and Sunil Bhandari. 2023. "Should Cystatin C eGFR Become Routine Clinical Practice?" Biomolecules 13, no. 7: 1075. https://doi.org/10.3390/biom13071075
APA StyleSpencer, S., Desborough, R., & Bhandari, S. (2023). Should Cystatin C eGFR Become Routine Clinical Practice? Biomolecules, 13(7), 1075. https://doi.org/10.3390/biom13071075