Evaluation of Acute and Sub-Acute Toxicity, Oxidative Stress and Molecular Docking of Two Nitrofuranyl Amides as Promising Anti-Tuberculosis Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. Experimental Animals
2.2.1. Acute Toxicity in Mice
2.2.2. Sub-Acute Toxicity
2.2.3. Experimental Design
2.3. Pathomorphological Evaluation of Tissue Specimens
2.4. Biochemical Markers of Oxidative Stress Determination
2.4.1. Lipid Peroxidation Inhibition Assay
2.4.2. Measurement of the Total Glutathione
2.4.3. Enzyme Activity of Superoxide Dismutase (SOD)
2.4.4. Measurement of the Glutathione Peroxidase Activity
2.4.5. Protein Content
2.5. Molecular Docking
- (1)
- The crystal structure of M. tuberculosis enoyl reductase (InhA) complexed with 5-hexyl-2-(2-methylphenoxy)phenol (TCU) with a co-factor nicotinamide adenine dinucleotide (NAD+), extracted from Protein Data Bank (http://www.rcsb.org/, PDB ID 2X22, accessed on 16 February 2023).
- (2)
- The crystal structure of M. tuberculosis InhA complexed with (3s)-1-cyclohexyl-n-(3,5-dichlorophenyl)-5-oxopyrrolidine-3-carboxamide (ligand ID 641, further denoted as 641), also with a co-factor NAD+, extracted from PDB (PDB ID 4TZK).
- (3)
- The crystal structure of M. tuberculosis galactofuranosyltransferase 2 (GlfT2) complexed with glycerol (Gol) and a co-factor uridine-5′-diphosphate (UDP), extracted from PDB (PDB ID 4FIY).
- (4)
- The crystal structure of M. tuberculosis oxidoreductase complexed with ethanediol (Edo), extracted from PDB (PDB ID 4NXI).
3. Results and Discussion
3.1. Chemistry
3.2. Acute Toxicity in Mice
3.3. Sub-Acute Toxicity of DO-190 and DO-209 after 14 Days of Oral Administration of the Tested Compounds
Complete Blood Count (CBC) and Biochemistry in the Blood of Mice
3.4. Pathomorphological Evaluation of Tissue Specimens
3.4.1. Liver
3.4.2. Kidneys
3.4.3. Small Intestine
3.5. Markers of Oxidative Stress
3.6. Molecular Docking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perveen, S.; Kumari, D.; Singh, K.; Sharma, R. Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance. Eur. J. Med. Chem. 2022, 229, 114066. [Google Scholar] [CrossRef]
- Worley, M.V.; Estrada, S.J. Bedaquiline: A Novel Antitubercular Agent for the Treatment of Multidrug-Resistant Tuberculosis. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 34, 1187–1197. [Google Scholar] [CrossRef]
- Field, S.K. Bedaquiline for the treatment of multidrug-resistant tuberculosis: Great promise or disappointment? Ther. Adv. Chronic Dis. 2015, 6, 170–184. [Google Scholar] [CrossRef] [Green Version]
- Elsaman, T.; Mohamed, M.S.; Mohamed, M.A. Current development of 5-nitrofuran-2-yl derivatives as antitubercular agents. Bioorg. Chem. 2019, 88, 102969. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Baskakova, S.A.; Belyaev, D.V.; Vakhrusheva, D.V.; Eremeeva, N.I.; Rusinov, G.L.; Charushin, V.N. Renaissance of 4-(5-nitrofuran-2-yl)-5-arylamino substituted pyrimidines: Microwave-assisted synthesis and antitubercular activity. Mendeleev Commun. 2021, 31, 210–212. [Google Scholar] [CrossRef]
- Le, V.V.H.; Rakonjac, J. Nitrofurans: Revival of an “old” drug class in the fight against antibiotic resistance. PLoS Pathog. 2021, 17, e1009663. [Google Scholar] [CrossRef]
- Yempalla, K.R.; Munagala, G.; Singh, S.; Magotra, A.; Kumar, S.; Rajput, V.S.; Bharate, S.S.; Tikoo, M.; Singh, G.D.; Khan, I.A.; et al. Nitrofuranyl Methyl Piperazines as New Anti-TB Agents: Identification, Validation, Medicinal Chemistry, and PK Studies. ACS Med. Chem. Lett. 2015, 6, 1041–1046. [Google Scholar] [CrossRef] [Green Version]
- Hevener, K.E.; Ball, D.M.; Buolamwini, J.K.; Lee, R.E. Quantitative structure–activity relationship studies on nitrofuranyl anti-tubercular agents. Bioorg. Med. Chem. 2008, 16, 8042–8053. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Yang, Y.; Jun, Y.; Wang, B.; Lv, K.; Liu, M.; Guo, H.; Lu, Y. Synthesis, evaluation and CoMFA/CoMSIA study of nitrofuranyl methyl N-heterocycles as novel antitubercular agents. Bioorg. Med. Chem. 2018, 26, 2073–2084. [Google Scholar] [CrossRef]
- Krishna, V.S.; Zheng, S.; Rekha, E.M.; Nallangi, R.; Sai Prasad, D.V.; George, S.E.; Guddat, L.W.; Sriram, D. Design and development of ((4-methoxyphenyl)carbamoyl) (5-(5-nitrothiophen-2-yl)-1,3,4-thiadiazol-2-yl)amide analogues as Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors. Eur. J. Med. Chem. 2020, 193, 112178. [Google Scholar] [CrossRef]
- Rakesh; Bruhn, D.F.; Scherman, M.S.; Woolhiser, L.K.; Madhura, D.B.; Maddox, M.M.; Singh, A.P.; Lee, R.B.; Hurdle, J.G.; McNeil, M.R.; et al. Pentacyclic Nitrofurans with In Vivo Efficacy and Activity against Nonreplicating Mycobacterium tuberculosis. PLoS ONE 2014, 9, e87909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budha, N.R.; Mehrotra, N.; Tangallapally, R.; Rakesh; Qi, J.; Daniels, A.J.; Lee, R.E.; Meibohm, B. Pharmacokinetically-Guided Lead Optimization of Nitrofuranylamide Anti-Tuberculosis Agents. AAPS J. 2008, 10, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Faazil, S.; Malik, M.S.; Ahmed, S.A.; Alsantali, R.I.; Yedla, P.; Alsharif, M.A.; Shaikh, I.N.; Kamal, A. Novel linezolid-based oxazolidinones as potent anticandidiasis and antitubercular agents. Bioorg. Chem. 2022, 126, 105869. [Google Scholar] [CrossRef]
- Mokrousov, I.; Slavchev, I.; Solovieva, N.; Dogonadze, M.; Vyazovaya, A.; Valcheva, V.; Masharsky, A.; Belopolskaya, O.; Dimitrov, S.; Zhuravlev, V.; et al. Molecular Insight into Mycobacterium tuberculosis Resistance to Nitrofuranyl Amides Gained through Metagenomics-like Analysis of Spontaneous Mutants. Pharmaceuticals 2022, 15, 1136. [Google Scholar] [CrossRef]
- Pan, Y.; Tang, P.; Cao, J.; Song, Q.; Zhu, L.; Ma, S.; Zhang, J. Lipid peroxidation aggravates anti-tuberculosis drug-induced liver injury: Evidence of ferroptosis induction. Biochem. Biophys. Res. Commun. 2020, 533, 1512–1518. [Google Scholar] [CrossRef]
- Wang, P.; Pradhan, K.; Zhong, X.-b.; Ma, X. Isoniazid metabolism and hepatotoxicity. Acta Pharm. Sin. B 2016, 6, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.M.; Guo, H.-l.; Yousef, B.A.; Luyong, Z.; Zhenzhou, J. Hepatotoxicity mechanisms of isoniazid: A mini-review. J. Appl. Toxicol. 2015, 35, 1427–1432. [Google Scholar] [CrossRef]
- Council of Europe. European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123); Council of Europe: Strasbourg, France, 1991. [Google Scholar]
- OECD Test No. 425. Acute oral toxicity: Up-and-down procedure. In OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2008.
- Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983, 54, 275–287. [Google Scholar] [CrossRef]
- Chinedu, E.; Arome, D.; Ameh, F.S. A new method for determining acute toxicity in animal models. Toxicol. Int. 2013, 20, 224–226. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wicha, S.G.; de Knegt, G.J.; Ortega, F.; Alameda, L.; Sousa, V.; de Steenwinkel, J.E.M.; Simonsson, U.S.H. Assessing Pharmacodynamic Interactions in Mice Using the Multistate Tuberculosis Pharmacometric and General Pharmacodynamic Interaction Models. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 787–797. [Google Scholar] [CrossRef]
- Lillie, R.D. Studies on histochemical acylation procedures. I. Phenols. J. Histochem. Cytochem. 1964, 12, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Mileva, M.; Hadjimitova, V.; Tantcheva, L.; Traykov, T.; Galabov, A.S.; Savov, V.; Ribarov, S. Antioxidant Properties of Rimantadine in Influenza Virus Infected Mice and in Some Model Systems. Z. Für Naturforschung C 2000, 55, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 2006, 1, 3159–3165. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Ortiz, C.L.D.; Completo, G.C.; Nacario, R.C.; Nellas, R.B. Potential Inhibitors of Galactofuranosyltransferase 2 (GlfT2): Molecular Docking, 3D-QSAR, and In Silico ADMETox Studies. Sci. Rep. 2019, 9, 17096. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, M.J.; Samy, J.G.; Khalilullah, H.; Nomani, M.S.; Saraswat, P.; Gaur, R.; Singh, A. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett. 2011, 21, 7246–7250. [Google Scholar] [CrossRef]
- Kumar, V.; Patel, S.; Jain, R. New structural classes of antituberculosis agents. Med. Res. Rev. 2018, 38, 684–740. [Google Scholar] [CrossRef]
- Geng, P.; Hong, X.; Li, X.; Ni, D.; Liu, G. Optimization of nitrofuranyl calanolides for the fluorescent detection of Mycobacterium tuberculosis. Eur. J. Med. Chem. 2022, 244, 114835. [Google Scholar] [CrossRef]
- Hodge, H.C.; Sterner, J.H. Tabulation of Toxicity Classes. Am. Ind. Hyg. Assoc. Q. 1949, 10, 93–96. [Google Scholar] [CrossRef]
- Gutteridge, J.M.C.; Halliwell, B. Mini-Review: Oxidative stress, redox stress or redox success? Biochem. Biophys. Res. Commun. 2018, 502, 183–186. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care, 2017 Update; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Molla, Y.; Wubetu, M.; Dessie, B. Anti-Tuberculosis Drug Induced Hepatotoxicity and Associated Factors among Tuberculosis Patients at Selected Hospitals, Ethiopia. Hepatic Med. Evid. Res. 2021, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wiid, I.; Seaman, T.; Hoal, E.G.; Benade, A.J.S.; Van Helden, P.D. Total Antioxidant Levels are Low During Active TB and Rise with Anti-tuberculosis Therapy. IUBMB Life 2004, 56, 101–106. [Google Scholar] [CrossRef]
- Tampo, Y. Studies on Membrane Factors in Iron-Supported Lipid Peroxidation. Yakugaku Zasshi 2000, 120, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Niedernhofer, L.J.; Daniels, J.S.; Rouzer, C.A.; Greene, R.E.; Marnett, L.J. Malondialdehyde, a Product of Lipid Peroxidation, Is Mutagenic in Human Cells. J. Biol. Chem. 2003, 278, 31426–31433. [Google Scholar] [CrossRef] [Green Version]
- Bains, V.K.; Bains, R. The antioxidant master glutathione and periodontal health. Dent. Res. J. 2015, 12, 389–405. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, H.; Thompson, D.C.; Shertzer, H.G.; Nebert, D.W.; Vasiliou, V. Glutathione defense mechanism in liver injury: Insights from animal models. Food Chem. Toxicol. 2013, 60, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.; Sharma, P.; Tiwary, M. Glutathione deficiency in COVID19 illness-does supplementation help? Saudi J. Anaesth. 2021, 15, 458–460. [Google Scholar] [CrossRef]
- Kangralkar, V.A.; Patil, S.D.; Bandivadekar, R.M. Oxidative stress and diabetes: A review. Int. J. Pharm. Appl. 2010, 1, 38–45. [Google Scholar]
- Yasui, K.; Baba, A. Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm. Res. 2006, 55, 359–363. [Google Scholar] [CrossRef]
- Muthukumar, K.; Nachiappan, V. Cadmium-induced oxidative stress in Saccharomyces cerevisiae. Indian J. Biochem. Biophys. 2010, 47, 383–387. [Google Scholar] [PubMed]
- Muthukumar, K.; Rajakumar, S.; Sarkar, M.N.; Nachiappan, V. Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie Van Leeuwenhoek 2011, 99, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Rafique, S.; Ajmal, K.; Naeem, U.; Waheed, A.; Afzal, A.; Munir, A.; Ara, I. Comparison of hepatoprotective effect of aqueous and ethanolic extracts of Berberis lycium Royale (Sumbloo) in isoniazid induced hepatotoxicity in male mice model. Int. J. Basic Clin. Pharmacol. 2020, 9, 835–843. [Google Scholar] [CrossRef]
Dose mg/kg | Lethality | Time of Appearance | Symptoms before Lethal Outcome |
---|---|---|---|
1000 | 3/3 (100%) | 15–30 min | Rapid breathing, ataxia, piloerection |
800 | 2/3 (67%) | After 0.5 h | Difficulty of breathing, ataxia |
600 | 1/3 (33%) | After 1 h | Difficulty of breathing, ataxia |
400 | 0/3 | - | - |
200 | 0/3 | - | - |
Dose mg/kg | Lethality | Time of Appearance | Symptoms before Lethal Outcome |
---|---|---|---|
1000 | 2/3 (67%) | 15–30 min | Rapid breathing, ataxia, piloerection |
800 | 1/3 (33%) | After 2 h | Difficulty breathing, ataxia |
600 | 0/3 | - | - |
400 | 0/3 | - | - |
200 | 0/3 | - | - |
Dose mg/kg | Lethality | Time of Appearance | Symptoms before Lethal Outcome |
---|---|---|---|
3000 | 1/3 (33%) | - | Rapid breathing, ataxia, piloerection |
2000 | 0/3 | - | - |
1500 | 0/3 | - | - |
1000 | 0/3 | - | - |
500 | 0/3 | - | - |
CBC | Control | EMB | A | B | C | D | Ref. Values |
---|---|---|---|---|---|---|---|
WBC x 109/L | 6.4 ± 0.5 | 7.8 ± 0.6 a | 7.1 ± 0.7 | 8.23 ± 0.13 a | 6.8 ± 0.6 | 8.4 ± 0.28 a | 2.9–15.3 |
RBC x 1012/L | 7.06 ± 0.4 | 6.36 ± 0.8 | 7.03 ± 0.5 | 6.02 ± 0.2 | 7.23 ± 0.7 | 7.12 ± 0.4 | 5.6–7.89 |
Hgb g/L | 142 ± 7.2 | 142 ± 2.6 | 136 ± 3.2 | 128 ± 4.1 | 135 ± 2.4 | 139 ± 4.2 | 120–150 |
HCT % | 44 ± 2.4 | 41 ± 3.2 | 42.4 ± 2.2 | 43.2 ± 3.1 | 42.2 ± 3.7 | 43.2 ± 2.1 | 36–46 |
PLT 109/L | 789 ± 96 | 881 ± 123 | 865 ± 105 | 932 ± 116 | 888 ± 121 | 787 ± 212 | 100–1610 |
BP | Control | EMB | A | B | C | D | Ref. Values |
---|---|---|---|---|---|---|---|
GLU mmol/L | 6.2 ± 0.12 | 7.1 ± 0.4 | 6.3 ± 0.5 | 7.3 ± 0.32 | 6.5 ± 0.41 | 8.8 ± 0.29 ab | 4.2–7.5 |
UREA mmol/L | 7.1 ± 0.32 | 8.0 ± 0.36 | 11.4 ± 0.31 ab | 12.6 ± 0.28 ab | 6.8 ± 0.22 | 13.6 ± 0.22 ab | 3.27–12.1 |
CREAT µmol/L | 88 ± 12.3 | 82 ± 12.8 | 92.3 ± 8.2 | 102.2 ± 11.6 | 85 ± 16.2 | 79 ± 12.6 | 35–120 |
UA µmol/L | 236 ± 11.4 | 385 ± 20.3 a | 286.3 ± 9.1 ab | 298 ± 11.3 ab | 243 ± 13.3 | 261 ± 12.3 | 0–300 |
TP g/L | 58 ± 3.2 | 53 ± 4.6 | 55.2 ± 2.8 | 58.1 ± 3.1 | 54 ± 5.3 | 56 ± 3.3 | 53–63 |
ALB g/L | 27 ± 1.3 | 28 ± 1.2 | 27.2 ± 0.8 | 26.8 ± 1.6 | 26 ± 2.2 | 27 ± 3.1 | 26–29 |
ASAT U/L | 83 ± 4.1 | 86 ± 5.4 | 121.2 ± 3.2 ab | 122.2 ± 2.1 ab | 91 ± 3.8 | 98 ± 4.8 | 65–122 |
ALAT U/L | 58 ± 4.2 | 59 ± 6.1 | 80.2 ± 2.2 ab | 79.3 ± 1.3 ab | 62.2 ± 4.3 | 88.4 ± 3.6 abc | 55–80 |
T-Bil µmol/L | 5.6 ± 0.48 | 6.0 ± 0.28 | 8.2 ± 0.41 ab | 8.4 ± 0.8 ab | 4.4 ± 0.42 | 6.3 ± 0.38 | 3.9–9.6 |
D-Bil µmol/L | 3.4 ± 0.86 | 3.5 ± 0.84 | 3.8 ± 0.31 | 4.1 ± 0.61 | 3.4 ± 0.56 | 4.9 ± 0.24 | 0–6.8 |
Compounds | Docking Score * | |||
---|---|---|---|---|
2 X 22 | 4TZK | 4FIY | 4NXI | |
DO-190 | −11.65 | −11.73 | −9.20 | −7.81 |
DO-209 | −11.77 | −11.67 | −8.50 | −6.73 |
EMB | −9.63 | −10.73 | −8.75 | −8.45 |
INH | −9.69 | −9.70 | −7.79 | −8.90 |
Compounds | Protein–Ligand Interactions | |||
---|---|---|---|---|
2X22 | 4TZK | 4FIY | 4NXI | |
DO-190 | Phe149 Met199 | Met199 | Arg37 | Asn41 Gly160 |
DO-209 | Met155 Tyr158 | Tyr158 | Glu30 | Gln7 Asn41 Gly160 |
EMB | Tyr158 Met199 | Met199 | Leu28 Glu30 | Asp12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, S.; Slavchev, I.; Simeonova, R.; Mileva, M.; Pencheva, T.; Philipov, S.; Georgieva, A.; Tsvetanova, E.; Teneva, Y.; Rimpova, N.; et al. Evaluation of Acute and Sub-Acute Toxicity, Oxidative Stress and Molecular Docking of Two Nitrofuranyl Amides as Promising Anti-Tuberculosis Agents. Biomolecules 2023, 13, 1174. https://doi.org/10.3390/biom13081174
Dimitrov S, Slavchev I, Simeonova R, Mileva M, Pencheva T, Philipov S, Georgieva A, Tsvetanova E, Teneva Y, Rimpova N, et al. Evaluation of Acute and Sub-Acute Toxicity, Oxidative Stress and Molecular Docking of Two Nitrofuranyl Amides as Promising Anti-Tuberculosis Agents. Biomolecules. 2023; 13(8):1174. https://doi.org/10.3390/biom13081174
Chicago/Turabian StyleDimitrov, Simeon, Ivaylo Slavchev, Rumyana Simeonova, Milka Mileva, Tania Pencheva, Stanislav Philipov, Almira Georgieva, Elina Tsvetanova, Yoanna Teneva, Nadezhda Rimpova, and et al. 2023. "Evaluation of Acute and Sub-Acute Toxicity, Oxidative Stress and Molecular Docking of Two Nitrofuranyl Amides as Promising Anti-Tuberculosis Agents" Biomolecules 13, no. 8: 1174. https://doi.org/10.3390/biom13081174
APA StyleDimitrov, S., Slavchev, I., Simeonova, R., Mileva, M., Pencheva, T., Philipov, S., Georgieva, A., Tsvetanova, E., Teneva, Y., Rimpova, N., Dobrikov, G., & Valcheva, V. (2023). Evaluation of Acute and Sub-Acute Toxicity, Oxidative Stress and Molecular Docking of Two Nitrofuranyl Amides as Promising Anti-Tuberculosis Agents. Biomolecules, 13(8), 1174. https://doi.org/10.3390/biom13081174