The Fidelity of Rheumatoid Arthritis Multivariate Diagnostic Biomarkers Using Discriminant Analysis and Binary Logistic Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. Sample Acquisition and Preparation
2.3. Statistical Analysis
2.3.1. Hierarchical Clustering
2.3.2. Binary Logistic Regression
2.3.3. Discriminant Analysis
2.3.4. Receiver Operating Characteristic Curve (ROC) and Area under the Curve (AUC)
2.3.5. Other Statistical Testing
3. Results
3.1. Constructing Models to Distinguish RA Patients from Normal Controls Using BLR and DA
3.2. Testing the Predictive Power of the Models
3.3. Estimated Probability of RA Correlates with Clinical Findings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azizi, G.; Jadidi-Niaragh, F.; Mirshafiey, A. Th17 Cells in Immunopathogenesis and treatment of rheumatoid arthritis. Int. J. Rheum. Dis. 2013, 16, 243–253. [Google Scholar] [CrossRef]
- Emery, P.; Gabay, C.; Kraan, M.; Gomez-Reino, J. Evidence-based review of biologic markers as indicators of disease progression and remission in rheumatoid arthritis. Rheumatol. Int. 2007, 27, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.; Becker, J.C.; Teng, J.; Dougados, M.; Schiff, M.; Smolen, J.; Aletaha, D.; van Riel, P.L. Validation of the 28-joint Disease Activity Score (DAS28) and European League Against Rheumatism response criteria based on C-reactive protein against disease progression in patients with rheumatoid arthritis, and comparison with the DAS28 based on erythrocyte sedimentation rate. Ann. Rheum. Dis. 2009, 68, 954–960. [Google Scholar] [CrossRef]
- Khan, I.H.; Krishnan, V.V.; Ziman, M.; Janatpour, K.; Wun, T.; Luciw, P.A.; Tuscano, J. A comparison of multiplex suspension array large-panel kits for profiling cytokines and chemokines in rheumatoid arthritis patients. Cytom. B Clin. Cytom. 2009, 76, 159–168. [Google Scholar] [CrossRef]
- de Jager, W.; Prakken, B.; Rijkers, G.T. Cytokine multiplex immunoassay: Methodology and (clinical) applications. Methods Mol. Biol. 2009, 514, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Fu, T.; Ji, J.; Li, Z.; Gu, Z. The role of interleukin-4 in rheumatic diseases. Clin. Exp. Pharmacol. Physiol. 2018, 45, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Gaffen, S.L. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr. Rheumatol. Rep. 2009, 11, 365–370. [Google Scholar] [CrossRef]
- Qian, Y.; He, Z.; Zhao, S.S.; Liu, B.; Chen, Y.; Sun, X.; Ye, D.; Jiang, X.; Zheng, H.; Wen, C.; et al. Genetically Determined Circulating Levels of Cytokines and the Risk of Rheumatoid Arthritis. Front. Genet. 2022, 13, 802464. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Isozaki, T.; Tsubokura, Y.; Fukuse, S.; Kasama, T. Eotaxin-1/CCL11 is involved in cell migration in rheumatoid arthritis. Sci. Rep. 2021, 11, 7937. [Google Scholar] [CrossRef]
- Wang, B.H.; Lu, Y.H.; Wu, L.F.; Lu, X.; Guo, W.; Deng, F.Y.; Lei, S.F. Evaluation of plasma cytokine protein array profile: The highlighted PDGF-BB in rheumatoid arthritis. Clin. Rheumatol. 2020, 39, 3323–3330. [Google Scholar] [CrossRef]
- Mor, A.; Abramson, S.B.; Pillinger, M.H. The fibroblast-like synovial cell in rheumatoid arthritis: A key player in inflammation and joint destruction. Clin. Immunol. 2005, 115, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.D.; Zachariah, J.P.; Whichard, L.P. CXCR3 and CCR5 ligands in rheumatoid arthritis synovium. Clin. Immunol. 2001, 98, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.D.; Braine, E.L.; Campbell, I.K.; Rich, M.J.; Hamilton, J.A. Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): Requirement for GM-CSF in the effector phase of disease. Arthritis Res. 2001, 3, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.R.; Williams, A.A.; Coyle, C.H.; Bowers, M.E. Early diagnosis to enable early treatment of pre-osteoarthritis. Arthritis Res. Ther. 2012, 14, 212. [Google Scholar] [CrossRef]
- Lance, G.N.; Williams, W.T. Computer programs for hierarchical polythetic classification (“similarity analyses”). Comput. J. 1966, 9, 5. [Google Scholar] [CrossRef]
- Lance, G.N.; Williams, W.T. Mixed-Data Classificatory Programs I—Agglomerative Systems. Autralian Comput. J. 1967, 1, 6. [Google Scholar]
- Michener, S. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 1958, 38, 30. [Google Scholar]
- Warner, R.M. Applied Statistics: From Bivariate through Multivariate Techniques; Sage Publications, Inc.: Los Angeles, CA, USA; London, UK; New Delhi, India; Singapore, 2008. [Google Scholar]
- Hosmer, D.W.; Lemesbow, S. Goodness of fit tests for the multiple logistic regression model. Commun. Stat.-Theory Methods 1980, 9, 1043–1069. [Google Scholar] [CrossRef]
- Nagelkerke, N.J.D. A note on the general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Büyüköztürk, Ş.; Çokluk-Bökeoğlu, Ö. Discriminant Function Analysis: Concept and Application. Eurasian J. Educ. Res. 2008, 33, 73–92. [Google Scholar]
- Lutz, J.G.; Eckert, T.L. The Relationship Between Canonical Correlation Analysis and Multivariate Multiple Regression. Educ. Psychol. Meas. 1994, 54, 666–675. [Google Scholar] [CrossRef]
- Nordlund, D.J.; Nagel, R. Standardized Discriminant Coefficients Revisited. J. Educ. Stat. 1991, 16, 8. [Google Scholar] [CrossRef]
- Burska, A.; Boissinot, M.; Ponchel, F. Cytokines as biomarkers in rheumatoid arthritis. Mediat. Inflamm. 2014, 2014, 545493. [Google Scholar] [CrossRef]
- Jung, S.M.; Kim, K.W.; Yang, C.W.; Park, S.H.; Ju, J.H. Cytokine-mediated bone destruction in rheumatoid arthritis. J. Immunol. Res. 2014, 2014, 263625. [Google Scholar] [CrossRef]
- Srirangan, S.; Choy, E.H. The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2010, 2, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Skundric, D.S.; Zhou, W.; Cruikshank, W.W.; Dai, R. Increased levels of bioactive IL-16 correlate with disease activity during relapsing experimental autoimmune encephalomyelitis (EAE). J. Autoimmun. 2005, 25, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Amarasekara, D.S.; Yun, H.; Kim, S.; Lee, N.; Kim, H.; Rho, J. Regulation of Osteoclast Differentiation by Cytokine Networks. Immune Netw. 2018, 18, e8. [Google Scholar] [CrossRef] [PubMed]
- Haddad, A.; Bienvenu, J.; Miossec, P. Increased production of a Th2 cytokine profile by activated whole blood cells from rheumatoid arthritis patients. J. Clin. Immunol. 1998, 18, 399–403. [Google Scholar] [CrossRef]
- van Roon, J.A.; Verhoef, C.M.; van Roy, J.L.; Gmelig-Meyling, F.H.; Huber-Bruning, O.; Lafeber, F.P.; Bijlsma, J.W. Decrease in peripheral type 1 over type 2 T cell cytokine production in patients with rheumatoid arthritis correlates with an increase in severity of disease. Ann. Rheum. Dis. 1997, 56, 656–660. [Google Scholar] [CrossRef]
- Iwaszko, M.; Bialy, S.; Bogunia-Kubik, K. Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis. Cells 2021, 10, 3000. [Google Scholar] [CrossRef]
- Schlaak, J.F.; Pfers, I.; Meyer Zum Buschenfelde, K.H.; Marker-Hermann, E. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin. Exp. Rheumatol. 1996, 14, 155–162. [Google Scholar]
- Kokkonen, H.; Soderstrom, I.; Rocklov, J.; Hallmans, G.; Lejon, K.; Rantapaa Dahlqvist, S. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 2010, 62, 383–391. [Google Scholar] [CrossRef]
- Khan, S.; Greenberg, J.D.; Bhardwaj, N. Dendritic cells as targets for therapy in rheumatoid arthritis. Nat. Rev. Rheumatol. 2009, 5, 566–571. [Google Scholar] [CrossRef]
- Robert, M.; Miossec, P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun. Rev. 2017, 16, 984–991. [Google Scholar] [CrossRef]
- Wang, J.; He, L.; Li, W.; Lv, S. A Role of IL-17 in Rheumatoid Arthritis Patients Complicated With Atherosclerosis. Front. Pharmacol. 2022, 13, 828933. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, W.B.; Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat. Rev. Rheumatol. 2009, 5, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Attur, M.; Furer, V.; Todd, J.; Ramirez, R.; Lock, M.; Lu, Q.A.; Abramson, S.B.; Greenberg, J.D. Increased plasma IL-17F levels in rheumatoid arthritis patients are responsive to methotrexate, anti-TNF, and T cell costimulatory modulation. Inflammation 2015, 38, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Atwa, S.E.; Azab, M.M.; Mohamed, M.S. Serum Interleukin-17 Level in Patients with Rheumatoid Arthritis and its Relation to Disease Activity. Zagazig Univ. Med. J. 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Yao, T.C.; Kuo, M.L.; See, L.C.; Ou, L.S.; Lee, W.I.; Chan, C.K.; Huang, J.L. RANTES and monocyte chemoattractant protein 1 as sensitive markers of disease activity in patients with juvenile rheumatoid arthritis: A six-year longitudinal study. Arthritis Rheum. 2006, 54, 2585–2593. [Google Scholar] [CrossRef]
- Yang, M.H.; Wu, F.X.; Xie, C.M.; Qing, Y.F.; Wang, G.R.; Guo, X.L.; Tang, Z.; Zhou, J.G.; Yuan, G.H. Expression of CC chemokine ligand 5 in patients with rheumatoid arthritis and its correlation with disease activity and medication. Chin. Med. Sci. J. 2009, 24, 50–54. [Google Scholar] [CrossRef]
- Charbonneau, M.; Lavoie, R.R.; Lauzier, A.; Harper, K.; McDonald, P.P.; Dubois, C.M. Platelet-Derived Growth Factor Receptor Activation Promotes the Prodestructive Invadosome-Forming Phenotype of Synoviocytes from Patients with Rheumatoid Arthritis. J. Immunol. 2016, 196, 3264–3275. [Google Scholar] [CrossRef]
- Saito, Y.; Chikenji, T.; Ozasa, Y.; Fujimiya, M.; Yamashita, T.; Gingery, A.; Iba, K. PDGFR Signaling Mediates Hyperproliferation and Fibrotic Responses of Subsynovial Connective Tissue Cells in Idiopathic Carpal Tunnel Syndrome. Sci. Rep. 2017, 7, 16192. [Google Scholar] [CrossRef]
- Ying, H.Z.; Chen, Q.; Zhang, W.Y.; Zhang, H.H.; Ma, Y.; Zhang, S.Z.; Fang, J.; Yu, C.H. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol. Med. Rep. 2017, 16, 7879–7889. [Google Scholar] [CrossRef]
- Uezumi, A.; Fukada, S.; Yamamoto, N.; Ikemoto-Uezumi, M.; Nakatani, M.; Morita, M.; Yamaguchi, A.; Yamada, H.; Nishino, I.; Hamada, Y.; et al. Identification and characterization of PDGFRalpha+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis. 2014, 5, e1186. [Google Scholar] [CrossRef]
- Nilsson, J.; Andersson, M.L.E.; Hafstrom, I.; Svensson, B.; Forslind, K.; Ajeganova, S.; Leu Agelii, M.; Gjertsson, I. Influence of Age and Sex on Disease Course and Treatment in Rheumatoid Arthritis. Open Access Rheumatol. 2021, 13, 123–138. [Google Scholar] [CrossRef]
- Rydell, E.; Forslind, K.; Nilsson, J.A.; Karlsson, M.; Akesson, K.E.; Jacobsson, L.T.H.; Turesson, C. Predictors of radiographic erosion and joint space narrowing progression in patients with early rheumatoid arthritis: A cohort study. Arthritis Res. Ther. 2021, 23, 27. [Google Scholar] [CrossRef]
- Pertsinidou, E.; Manivel, V.A.; Westerlind, H.; Klareskog, L.; Alfredsson, L.; Mathsson-Alm, L.; Hansson, M.; Saevarsdottir, S.; Askling, J.; Ronnelid, J. Rheumatoid arthritis autoantibodies and their association with age and sex. Clin. Exp. Rheumatol. 2021, 39, 879–882. [Google Scholar] [CrossRef]
- Pavlovic, V.; Dimic, A.; Milenkovic, S.; Krtinic, D. Serum levels of IL-17, IL-4, and INFgamma in Serbian patients with early rheumatoid arthritis. J. Res. Med. Sci. 2014, 19, 18–22. [Google Scholar]
- Sag, S.; Sag, M.S.; Tekeoglu, I.; Kamanli, A.; Nas, K.; Acar, B.A. Relationship of hematologic markers with IL-17 and IL-1 beta in patients with rheumatoid arthritis. J. Back. Musculoskelet. Rehabil. 2018, 31, 703–707. [Google Scholar] [CrossRef]
- Liu, D.F.; Yan, J.; Guo, M.Y.; Wang, C.; Hu, Y.H.; Yang, M.; Yun, M.D.; Luo, Y.; Zhang, J.; Li, H. Correlation study between interleukin-17 and ESR and CRP in serum and the synovial fluid of rheumatoid arthritis patients of accumulated dampness-heat obstruction in joints syndrome. Zhongguo Zhong Xi Yi Jie He Za Zhi 2014, 34, 272–275. [Google Scholar]
- Tishkowski, K.; Gupta, V. Erythrocyte Sedimentation Rate. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Babikir, M.B.O. Association of Fibrinogen, Erythrocyte Sedimentation Rate, and C-Reactive Protein Levels with Rheumatoid Arthritis. Open Access Libr. J. 2017, 4, 75369. [Google Scholar] [CrossRef]
- Vasse, M.; Paysant, J.; Soria, J.; Collet, J.P.; Vannier, J.P.; Soria, C. Regulation of fibrinogen biosynthesis by cytokines, consequences on the vascular risk. Haemostasis 1996, 26 (Suppl. 4), 331–339. [Google Scholar] [CrossRef] [PubMed]
Variable | Number |
---|---|
Mean Age (years) | 49.5 + 13.8 |
Female gender (%) | 58 (87.8) |
Duration of disease | |
Early (≤2 years) Established (>2 years) | 6 51 |
Seropositivity (%) (0 seronegative, 1 positive to RF or anti-CCP, 2 double positive) For RF and anti-CCP the cutoff for positive was 15 U/mL and 5 IU/mL, respectively. | |
Rheumatoid factor (positive) | 36 (63.15) |
Anti-cyclic citrullinated peptide | 49 (85.96) |
0 | 15 (26.31) |
1 | 16 (28.07) |
2 | 35 (61.4) |
Medications | |
Drug-free remission | 7 (12.28) |
MTX monotherapy | 11 (19.29) |
MTX combination base | 2 (3.5) |
Other csDMARDs | 5 (8.77) |
bDMARDs/tsDMARDs | 41 (71.92) |
Controls | |
Mean age (years) | 47 + 14.4 |
Female gender (%) Female | 68 (87.2) |
Measure of Model Fit or Significance | All Participants | Male Participants | Female Participants |
---|---|---|---|
Chi-square p-value | 2.98 × 10−17 | 0.00086 | 1.55 × 10−16 |
Nagelkerke pseudo-R2 | 0.535 | 0.632 | 0.601 |
Hosmer–Lemeshow p-value | 0.019 | 0.609 | 0.258 |
Measure of Model Fit or Significance | All Participants | Male Participants | Female Participants |
---|---|---|---|
Canonical correlation | 0.564 | 0.524 | 0.688 |
Eigenvalue | 0.465 | 0.378 | 0.899 |
Wilks’ lambda | 0.682 | 0.726 | 0.527 |
p-value | 1.37 × 10−12 | 0.012 | 9.80 × 10−16 |
Rank | Binary Logistic Regression Models | Discriminant Analysis Models | ||||
---|---|---|---|---|---|---|
All Participants | Male | Female | All Participants | Male | Female | |
1 | IL-4 B = 1.387 Exp(B) = 4.001 p = 3.97 × 10−8 | Eotaxin B = 0.037 Exp(B) = 1.037 p = 0.288 | IL-4 B = 1.548 Exp(B) = 4.703 p = 6.79 × 10−8 | IL-4 SCDFC = 1.290 λ = 0.743 p = 1.46 × 10−11 | PDGF-BB SCDFC = 1.000 λ = 0.726 p = 0.012 | IL-4 SCDFC = 1.252 λ = 0.710 p = 1.87 × 10−11 |
2 | IL-17 B = −0.027 Exp(B) = 0.974 p = 8.09 × 10−4 | PDGF-BB B = 0.007 Exp(B) = 1.007 p = 0.070 | IL-17 B = −0.038 Exp(B) = 0.963 p = 1.23 × 10−4 | IL-17 SCDFC = −0.479 λ = 0.902 p = 7.09 × 10−5 | n/a | IL-1Ra SCDFC = 0.783 λ = 0.900 p = 1.91 × 10−4 |
3 | RANTES B = 0.000 Exp(B) = 1.000 p = 5.85 × 10−4 | n/a | MIP-1b B = 0.054 Exp(B) = 1.055 p = 0.017 | RANTES SCDFC = −0.439 λ = 0.967 p = 0.024 | n/a | GM-CSF SCDFC = −0.598 λ = 0.943 p = 0.005 |
4 | n/a | n/a | RANTES B = 0.000 Exp(B) = 1.000 p = 1.25 × 10−4 | n/a | n/a | IL-17 SCDFC = −0.535 λ = 0.909 p = 3.85 × 10−4 |
5 | n/a | n/a | n/a | n/a | n/a | Eotaxin SCDFC = −0.533 λ = 0.915 p = 6.20 × 10−4 |
6 | n/a | n/a | n/a | n/a | n/a | RANTES SCDFC = −0.334 λ = 0.958 p = 0.017 |
Patient Population | Model/Variable | AUC | p-Value | Sensitivity | Specificity |
---|---|---|---|---|---|
All | BLR | 0.882 | 1.76 × 10−16 | 85.9% | 83.3% |
DA | 0.877 | 4.14 × 10−16 | 85.9% | 75.6% | |
IL-4 | 0.825 | 2.37 × 10−12 | 85.9% | 73.1% | |
IL-17 | 0.742 | 1.85 × 10−7 | 85.9% | 56.4% | |
RANTES | 0.463 | 0.421 | 85.9% | 32.1% | |
Males | BLR | 0.901 | 0.001 | 90.9% 81.1% | 45.5% 100% |
DA | 0.818 | 0.011 | 90.9% 81.1% | 45.5% 63.5% | |
PDGF-BB | 0.818 | 0.091 | 90.9% 81.1% | 45.5% 63.5% | |
Eotaxin | 0.752 | 0.045 | 90.9% 81.1% | 36.4% 54.5% | |
Females | BLR | 0.903 | 7.85 × 10−16 | 89.6% | 82.1% |
DA | 0.913 | 1.61 × 10−16 | 89.6% | 80.6% | |
IL-4 | 0.825 | 8.83 × 10−11 | 88.1% | 73.1% | |
IL-17 | 0.743 | 1.00 × 10−6 | 89.6% | 52.2% | |
MIP-1b | 0.709 | 3.10 × 10−5 | 89.6% | 50.7% | |
IL-1Ra | 0.860 | 6.33 × 10−13 | 89.6% | 64.2% | |
Eotaxin | 0.747 | 7.66 × 10−7 | 89.6% | 50.7% | |
RANTES | 0.562 | 0.219 | 89.6% | 35.8% | |
GM-CSF | 0.597 | 0.052 | 89.6% | 41.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, W.M.; Othman, N.; Daghestani, M.; Warsy, A.; Omair, M.A.; Alqurtas, E.; Amin, S.; Ismail, A.; El-Ansary, A.; Bhat, R.S.; et al. The Fidelity of Rheumatoid Arthritis Multivariate Diagnostic Biomarkers Using Discriminant Analysis and Binary Logistic Regression. Biomolecules 2023, 13, 1305. https://doi.org/10.3390/biom13091305
Hassan WM, Othman N, Daghestani M, Warsy A, Omair MA, Alqurtas E, Amin S, Ismail A, El-Ansary A, Bhat RS, et al. The Fidelity of Rheumatoid Arthritis Multivariate Diagnostic Biomarkers Using Discriminant Analysis and Binary Logistic Regression. Biomolecules. 2023; 13(9):1305. https://doi.org/10.3390/biom13091305
Chicago/Turabian StyleHassan, Wail M., Nashwa Othman, Maha Daghestani, Arjumand Warsy, Maha A. Omair, Eman Alqurtas, Shireen Amin, Abdulaziz Ismail, Afaf El-Ansary, Ramesa Shafi Bhat, and et al. 2023. "The Fidelity of Rheumatoid Arthritis Multivariate Diagnostic Biomarkers Using Discriminant Analysis and Binary Logistic Regression" Biomolecules 13, no. 9: 1305. https://doi.org/10.3390/biom13091305
APA StyleHassan, W. M., Othman, N., Daghestani, M., Warsy, A., Omair, M. A., Alqurtas, E., Amin, S., Ismail, A., El-Ansary, A., Bhat, R. S., & Omair, M. A. (2023). The Fidelity of Rheumatoid Arthritis Multivariate Diagnostic Biomarkers Using Discriminant Analysis and Binary Logistic Regression. Biomolecules, 13(9), 1305. https://doi.org/10.3390/biom13091305