Emerging Role of the Slit/Roundabout (Robo) Signaling Pathway in Glioma Pathogenesis and Potential Therapeutic Options
Abstract
:1. Introduction
2. Structural Aspects of Slit and Robo Proteins
3. Regulators of the Slit/Robo Signaling Pathway
4. Physiological Roles of the Slit/Robo Pathway
5. Implication of the Slit/Robo Pathway in the Pathogenesis of Gliomas
5.1. Slit/Robo’s Effects on Angiogenesis
5.2. Slit/Robo’s Effects in Cell Migration and Invasion
5.3. Slit/Robo’s Effects on Immune Cell Infiltration
6. Therapeutic Targeting of the Slit/Robo Pathway
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Ostrom, Q.T.; Gittleman, H.; Xu, J.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009–2013. Neuro-Oncology 2016, 18, v1–v75. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Markouli, M.; Strepkos, D.; Papavassiliou, K.A.; Papavassiliou, A.G.; Piperi, C. Crosstalk of Epigenetic and Metabolic Signaling Underpinning Glioblastoma Pathogenesis. Cancers 2022, 14, 2655. [Google Scholar] [CrossRef] [PubMed]
- Aldape, K.; Brindle, K.M.; Chesler, L.; Chopra, R.; Gajjar, A.; Gilbert, M.R.; Gottardo, N.; Gutmann, D.H.; Hargrave, D.; Holland, E.C.; et al. Challenges to Curing Primary Brain Tumours. Nat. Rev. Clin. Oncol. 2019, 16, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Bailey, O.T. Genesis of the Percival Bailey-Cushing classification of gliomas. Pediatr. Neurosci. 1985, 12, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Nafe, R.; Hattingen, E. The Spectrum of Molecular Pathways in Gliomas-An Up-to-Date Review. Biomedicines 2023, 11, 2281. [Google Scholar] [CrossRef] [PubMed]
- Geraldo, L.H.; Xu, Y.; Jacob, L.; Pibouin-Fragner, L.; Rao, R.; Maissa, N.; Verreault, M.; Lemaire, N.; Knosp, C.; Lesaffre, C.; et al. Slit2/Robo Signaling in Tumor-Associated Microglia and Macrophages Drives Glioblastoma Immunosuppression and Vascular Dysmorphia. J. Clin. Investig. 2021, 131, e141083. [Google Scholar] [CrossRef]
- Brose, K.; Bland, K.S.; Wang, K.H.; Arnott, D.; Henzel, W.; Goodman, C.S.; Tessier-Lavigne, M.; Kidd, T. Slit Proteins Bind Robo Receptors and Have an Evolutionarily Conserved Role in Repulsive Axon Guidance. Cell 1999, 96, 795–806. [Google Scholar] [CrossRef]
- Blockus, H.; Chédotal, A. The multifaceted roles of Slits and Robos in cortical circuits: From proliferation to axon guidance and neurological diseases. Curr. Opin. Neurobiol. 2014, 27, 82–88. [Google Scholar] [CrossRef]
- Feng, L.; Shu, H.P.; Sun, L.L.; Tu, Y.C.; Liao, Q.Q.; Yao, L.J. Role of the Slit-Robo signaling pathway in renal pathophysiology and various renal diseases. Front. Physiol. 2023, 14, 1226341. [Google Scholar] [CrossRef]
- Zhao, J.; Mommersteeg, M.T.M. Slit-Robo signalling in heart development. Cardiovasc. Res. 2018, 114, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Bisiak, F.; McCarthy, A.A. Structure and Function of Roundabout Receptors. Subcell. Biochem. 2019, 93, 291–319. [Google Scholar] [PubMed]
- Borrell, V.; Cárdenas, A.; Ciceri, G.; Galcerán, J.; Flames, N.; Pla, R.; Nóbrega-Pereira, S.; García-Frigola, C.; Peregrín, S.; Zhao, Z.; et al. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 2012, 76, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Tong, M.; Jun, T.; Nie, Y.; Hao, J.; Fan, D. The Role of the Slit/Robo Signaling Pathway. J. Cancer 2019, 10, 2694–2705. [Google Scholar] [CrossRef] [PubMed]
- Yom-Tov, G.; Barak, R.; Matalon, O.; Barda-Saad, M.; Guez-Haddad, J.; Opatowsky, Y. Robo Ig4 Is a Dimerization Domain. J. Mol. Biol. 2017, 429, 3606–3616. [Google Scholar] [CrossRef]
- Seki, M.; Watanabe, A.; Enomoto, S.; Kawamura, T.; Ito, H.; Kodama, T.; Hamakubo, T.; Aburatani, H. Human Robo1 Is Cleaved by Metalloproteinases and Gamma-Secretase and Migrates to the Nucleus in Cancer Cells. FEBS Lett. 2010, 584, 2909–2915. [Google Scholar] [CrossRef]
- Coleman, H.A.; Labrador, J.-P.; Chance, R.K.; Bashaw, G.J. The Adam Family Metalloprotease Kuzbanian Regulates the Cleavage of the Roundabout Receptor to Control Axon Repulsion at the Midline. Development 2010, 137, 2417–2426. [Google Scholar] [CrossRef]
- Dascenco, D.; Erfurth, M.-L.; Izadifar, A.; Song, M.; Sachse, S.; Bortnick, R.; Urwyler, O.; Petrovic, M.; Ayaz, D.; He, H.; et al. Slit and Receptor Tyrosine Phosphatase 69D Confer Spatial Specificity to Axon Branching via Dscam1. Cell 2015, 162, 1140–1154. [Google Scholar] [CrossRef]
- Svensson, K.J.; Long, J.Z.; Jedrychowski, M.P.; Cohen, P.; Lo, J.C.; Serag, S.; Kir, S.; Shinoda, K.; Tartaglia, J.A.; Rao, R.R.; et al. A Secreted Slit2 Fragment Regulates Adipose Tissue Thermogenesis and Metabolic Function. Cell Metab. 2016, 23, 454–466. [Google Scholar] [CrossRef]
- Nguyen Ba-Charvet, K.T.; Brose, K.; Ma, L.; Wang, K.H.; Marillat, V.; Sotelo, C.; Tessier-Lavigne, M.; Chédotal, A. Diversity and Specificity of Actions of Slit2 Proteolytic Fragments in Axon Guidance. J. Neurosci. 2001, 21, 4281–4289. [Google Scholar] [CrossRef]
- Delloye-Bourgeois, C.; Jacquier, A.; Charoy, C.; Reynaud, F.; Nawabi, H.; Thoinet, K.; Kindbeiter, K.; Yoshida, Y.; Zagar, Y.; Kong, Y.; et al. PlexinA1 Is a New Slit Receptor and Mediates Axon Guidance Function of Slit C-Terminal Fragments. Nat. Neurosci. 2015, 18, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Gonda, Y.; Namba, T.; Hanashima, C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front. Cell Dev. Biol. 2020, 8, 607415. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Liang, G.; Xiao, Y.; Qin, T.; Chen, X.; Wu, E.; Ma, Q.; Wang, Z. Targeting the Slit/Robo Pathway in Tumor Progression: Molecular Mechanisms and Therapeutic Perspectives. Ther. Adv. Med. Oncol. 2019, 11, 1758835919855238. [Google Scholar] [CrossRef] [PubMed]
- Park, K.W.; Morrison, C.M.; Sorensen, L.K.; Jones, C.A.; Rao, Y.; Chien, C.-B.; Wu, J.Y.; Urness, L.D.; Li, D.Y. Robo4 Is a Vascular-Specific Receptor That Inhibits Endothelial Migration. Dev. Biol. 2003, 261, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Morlot, C.; Thielens, N.M.; Ravelli, R.B.G.; Hemrika, W.; Romijn, R.A.; Gros, P.; Cusack, S.; McCarthy, A.A. Structural Insights into the Slit-Robo Complex. Proc. Natl. Acad. Sci. USA 2007, 104, 14923–14928. [Google Scholar] [CrossRef]
- Kidd, T.; Brose, K.; Mitchell, K.J.; Fetter, R.D.; Tessier-Lavigne, M.; Goodman, C.S.; Tear, G. Roundabout Controls Axon Crossing of the CNS Midline and Defines a Novel Subfamily of Evolutionarily Conserved Guidance Receptors. Cell 1998, 92, 205–215. [Google Scholar] [CrossRef]
- Zhang, B.; Xiao, W.; Qiu, H.; Zhang, F.; Moniz, H.A.; Jaworski, A.; Condac, E.; Gutierrez-Sanchez, G.; Heiss, C.; Clugston, R.D.; et al. Heparan Sulfate Deficiency Disrupts Developmental Angiogenesis and Causes Congenital Diaphragmatic Hernia. J. Clin. Investig. 2014, 124, 209–221. [Google Scholar] [CrossRef]
- Qin, N.; Fan, X.C.; Zhang, Y.Y.; Xu, X.X.; Tyasi, T.L.; Jing, Y.; Mu, F.; Wei, M.L.; Xu, R.F. New insights into implication of the Slit/Robo pathway in the prehierarchical follicle development of hen ovary. Poult. Sci. 2015, 94, 2235–2246. [Google Scholar] [CrossRef]
- Chen, Z.B.; Zhang, H.Y.; Zhao, J.H.; Zhao, W.; Zhao, D.; Zheng, L.F.; Zhang, X.F.; Liao, X.P.; Yi, X.N. Slit-Robo GTPase-activating proteins are differentially expressed in murine dorsal root ganglia: Modulation by peripheral nerve injury. Anat. Rec. (Hoboken) 2012, 295, 652–660. [Google Scholar] [CrossRef]
- Rhee, J.; Buchan, T.; Zukerberg, L.; Lilien, J.; Balsamo, J. Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription. Nat. Cell Biol. 2007, 9, 883–892. [Google Scholar] [CrossRef]
- Bashaw, G.J.; Kidd, T.; Murray, D.; Pawson, T.; Goodman, C.S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 2000, 101, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Geisen, M.J.; Di Meglio, T.; Pasqualetti, M.; Ducret, S.; Brunet, J.F.; Chedotal, A.; Rijli, F.M. Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-Robo signaling. PLoS Biol. 2008, 6, e142. [Google Scholar] [CrossRef] [PubMed]
- Crowner, D.; Madden, K.; Goeke, S.; Giniger, E. Lola regulates midline crossing of CNS axons in Drosophila. Development 2002, 129, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Certel, K.; Gao, Y.; Niemitz, E.; Mosher, J.; Mukherjee, A.; Mutsuddi, M.; Huseinovic, N.; Crews, S.T.; Johnson, W.A.; et al. Functional interactions between Drosophila bHLH/PAS, Sox, and POU transcription factors regulate CNS midline expression of the slit gene. J. Neurosci. 2000, 20, 4596–4605. [Google Scholar] [CrossRef]
- Yeo, S.Y.; Miyashita, T.; Fricke, C.; Little, M.H.; Yamada, T.; Kuwada, J.Y.; Huh, T.L.; Chien, C.B.; Okamoto, H. Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish. Mech. Dev. 2004, 121, 315–324. [Google Scholar] [CrossRef]
- Chédotal, A. Slits and Their Receptors. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2000–2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6162/ (accessed on 28 July 2024).
- Georgiou, M.; Tear, G. The N-terminal and transmembrane domains of Commissureless are necessary for its function and trafficking within neurons. Mech. Dev. 2003, 120, 1009–1019. [Google Scholar] [CrossRef]
- Leombroni, M.; Khalil, A.; Liberati, M.; D’Antonio, F. Fetal midline anomalies: Diagnosis and counselling Part 1: Corpus callosum anomalies. Eur. J. Paediatr. Neurol. 2018, 22, 951–962. [Google Scholar] [CrossRef]
- Long, H.; Sabatier, C.; Ma, L.; Plump, A.; Yuan, W.; Ornitz, D.M.; Tamada, A.; Murakami, F.; Goodman, C.S.; Tessier-Lavigne, M. Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 2004, 42, 213–223. [Google Scholar] [CrossRef]
- Marillat, V.; Sabatier, C.; Failli, V.; Matsunaga, E.; Sotelo, C.; Tessier-Lavigne, M.; Chédotal, A. The slit receptor Rig-1/Robo3 controls midline crossing by hindbrain precerebellar neurons and axons. Neuron 2004, 43, 69–79. [Google Scholar] [CrossRef]
- Itoh, A.; Miyabayashi, T.; Ohno, M.; Sakano, S. Cloning and expressions of three mammalian homologues of Drosophila slit suggest possible roles for Slit in the formation and maintenance of the nervous system. Brain Res. Mol. Brain Res. 1998, 62, 175–186. [Google Scholar] [CrossRef]
- Sundaresan, V.; Roberts, I.; Bateman, A.; Bankier, A.; Sheppard, M.; Hobbs, C.; Xiong, J.; Minna, J.; Latif, F.; Lerman, M.; et al. The DUTT1 gene, a novel NCAM family member is expressed in developing murine neural tissues and has an unusually broad pattern of expression. Mol. Cel. Neurosci. 1998, 11, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Gould, R.A.; Aziz, H.; Woods, C.E.; Seman-Senderos, M.A.; Sparks, E.; Preuss, C.; Wünnemann, F.; Bedja, D.; Moats, C.R.; McClymont, S.A.; et al. Robo4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm. Nat. Genet. 2019, 51, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Patel, K.; Schmidt, H.; Andrews, W.; Pini, A.; Sundaresan, V. Extracellular Ig Domains 1 and 2 of Robo Are Important for Ligand (Slit) Binding. Mol. Cell Neurosci. 2004, 26, 232–240. [Google Scholar] [CrossRef]
- Kim, B.J.; Lee, Y.S.; Lee, S.Y.; Baek, W.Y.; Choi, Y.J.; Moon, S.A.; Lee, S.H.; Kim, J.E.; Chang, E.J.; Kim, E.Y.; et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation. J. Clin. Investig. 2018, 128, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Liu, W.; Xue, Y.; Shang, X.; Liu, J.; Li, Z.; Wang, P.; Liu, L.; Hu, Y.; Liu, Y. Roundabout 4 regulates blood-tumor barrier permeability through the modulation of ZO-1, Occludin, and Claudin-5 expression. J. Neuropathol. Exp. Neurol. 2015, 74, 25–37. [Google Scholar] [CrossRef]
- Ballard, M.S.; Hinck, L. A Roundabout Way to Cancer. Adv. Cancer Res. 2012, 114, 187–235. [Google Scholar]
- Chaturvedi, S.; Yuen, D.A.; Bajwa, A.; Huang, Y.-W.; Sokollik, C.; Huang, L.; Lam, G.Y.; Tole, S.; Liu, G.-Y.; Pan, J.; et al. Slit2 Prevents Neutrophil Recruitment and Renal Ischemia-Reperfusion Injury. J. Am. Soc. Nephrol. 2013, 24, 1274–1287. [Google Scholar] [CrossRef]
- Wang, B.; Xiao, Y.; Ding, B.B.; Zhang, N.; Yuan, X.b.; Gui, L.; Qian, K.X.; Duan, S.; Chen, Z.; Rao, Y.; et al. Induction of Tumor Angiogenesis by Slit-Robo Signaling and Inhibition of Cancer Growth by Blocking Robo Activity. Cancer Cell 2003, 4, 19–29. [Google Scholar] [CrossRef]
- Altay, T.; McLaughlin, B.; Wu, J.Y.; Park, T.S.; Gidday, J.M. Slit Modulates Cerebrovascular Inflammation and Mediates Neuroprotection against Global Cerebral Ischemia. Exp. Neurol. 2007, 207, 186–194. [Google Scholar] [CrossRef]
- Kanellis, J.; Garcia, G.E.; Li, P.; Parra, G.; Wilson, C.B.; Rao, Y.; Han, S.; Smith, C.W.; Johnson, R.J.; Wu, J.Y.; et al. Modulation of Inflammation by Slit Protein in Vivo in Experimental Crescentic Glomerulonephritis. Am. J. Pathol. 2004, 165, 341–352. [Google Scholar] [CrossRef]
- Guan, H.; Zu, G.; Xie, Y.; Tang, H.; Johnson, M.; Xu, X.; Kevil, C.; Xiong, W.-C.; Elmets, C.; Rao, Y.; et al. Neuronal Repellent Slit2 Inhibits Dendritic Cell Migration and the Development of Immune Responses. J. Immunol. 2003, 171, 6519–6526. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.-Q.; Geng, Z.H.; Ma, L.; Geng, J.-G. Slit2 Regulates Attractive Eosinophil and Repulsive Neutrophil Chemotaxis through Differential SrGAP1 Expression during Lung Inflammation. J. Immunol. 2010, 185, 6294–6305. [Google Scholar] [CrossRef] [PubMed]
- Pilling, D.; Chinea, L.E.; Consalvo, K.M.; Gomer, R.H. Different Isoforms of the Neuronal Guidance Molecule Slit2 Directly Cause Chemoattraction or Chemorepulsion of Human Neutrophils. J. Immunol. 2019, 202, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-M.; Tie, J.; Wang, W.-L.; Hu, S.-J.; Yin, J.-P.; Yi, X.-F.; Tian, Z.-H.; Zhang, X.-Y.; Li, M.-B.; Li, Z.-S.; et al. POU2F2-Oriented Network Promotes Human Gastric Cancer Metastasis. Gut 2016, 65, 1427–1438. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, J.; He, Y.; Zhao, M.; Liu, Z.; Wang, N.; Jiang, M.; Zhang, Z.; Liu, G.; Liu, H.; et al. MiR-218 Inhibited Tumor Angiogenesis by Targeting Robo1 in Gastric Cancer. Gene 2017, 615, 42–49. [Google Scholar] [CrossRef]
- Tie, J.; Pan, Y.; Zhao, L.; Wu, K.; Liu, J.; Sun, S.; Guo, X.; Wang, B.; Gang, Y.; Zhang, Y.; et al. MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor. PLoS Genet. 2010, 6, e1000879. [Google Scholar] [CrossRef]
- Tseng, R.-C.; Lee, S.-H.; Hsu, H.-S.; Chen, B.-H.; Tsai, W.-C.; Tzao, C.; Wang, Y.-C. Slit2 Attenuation during Lung Cancer Progression Deregulates Beta-Catenin and E-Cadherin and Associates with Poor Prognosis. Cancer Res. 2010, 70, 543–551. [Google Scholar] [CrossRef]
- Jin, J.; You, H.; Yu, B.; Deng, Y.; Tang, N.; Yao, G.; Shu, H.; Yang, S.; Qin, W. Epigenetic Inactivation of Slit2 in Human Hepatocellular Carcinomas. Biochem. Biophys. Res. Commun. 2009, 379, 86–91. [Google Scholar] [CrossRef]
- Tseng, R.-C.; Chang, J.-M.; Chen, J.-H.; Huang, W.-R.; Tang, Y.-A.; Kuo, I.-Y.; Yan, J.-J.; Lai, W.-W.; Wang, Y.-C. Deregulation of Slit2-Mediated Cdc42 Activity Is Associated with Esophageal Cancer Metastasis and Poor Prognosis. J. Thorac. Oncol. 2015, 10, 189–198. [Google Scholar] [CrossRef]
- Sharma, G.; Mirza, S.; Prasad, C.P.; Srivastava, A.; Gupta, S.D.; Ralhan, R. Promoter Hypermethylation of P16INK4A, P14ARF, CyclinD2 and Slit2 in Serum and Tumor DNA from Breast Cancer Patients. Life Sci. 2007, 80, 1873–1881. [Google Scholar] [CrossRef]
- Jiang, L.; Sun, J.; Huang, D. Role of Slit/Robo Signaling pathway in Bone Metabolism. Int. Biol. Sci. 2022, 18, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Cao, C.; Tang, T.; Lu, C.; Xu, J.; Wang, S.; Xue, L.; Zhang, X.; Li, M. Robo3 Promotes Growth and Metastasis of Pancreatic Carcinoma. Cancer Lett. 2015, 366, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, W.; Geng, S.; Fang, Y.; Sun, Z.; Hu, H.; Liang, Z.; Yan, Z. Slit2 and Robo1 expression as biomarkers for assessing prognosis in brain glioma patients. Surg. Oncol. 2016, 25, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Ozhan, A.; Tombaz, M.; Konu, O. Discovery of Cancer-Specific and Independent Prognostic Gene Subsets of the Slit-Robo Family Using TCGA-PANCAN Datasets. OMICS 2021, 25, 782–795. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Ren, Y.; Yu, N.; Kong, L.; Kang, J. Thymoquinone inhibits inflammation, neoangiogenesis and vascular remodeling in asthma mice. Int. Immunopharmacol. 2016, 38, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Marlow, R.; Binnewies, M.; Sorensen, L.K.; Monica, S.D.; Strickland, P.; Forsberg, E.C.; Li, D.Y.; Hinck, L. Vascular Robo4 restricts proangiogenic VEGF signaling in breast. Proc. Natl. Acad. Sci. USA 2010, 107, 10520–10525. [Google Scholar] [CrossRef]
- Huminiecki, L.; Gorn, M.; Suchting, S.; Poulsom, R.; Bicknell, R. Magic roundabout is a new member of the roundabout recep- tor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 2002, 79, 547–552. [Google Scholar] [CrossRef]
- Yiin, J.-J.; Hu, B.; Jarzynka, M.J.; Feng, H.; Liu, K.-W.; Wu, J.Y.; Ma, H.-I.; Cheng, S.-Y. Slit2 Inhibits Glioma Cell Invasion in the Brain by Suppression of Cdc42 Activity. Neuro-Oncology 2009, 11, 779–789. [Google Scholar] [CrossRef]
- Mertsch, S.; Schmitz, N.; Jeibmann, A.; Geng, J.-G.; Paulus, W.; Senner, V. Slit2 Involvement in Glioma Cell Migration Is Mediated by Robo1 Receptor. J. Neurooncol 2008, 87, 1–7. [Google Scholar] [CrossRef]
- Werbowetski-Ogilvie, T.E.; Seyed Sadr, M.; Jabado, N.; Angers-Loustau, A.; Agar, N.Y.R.; Wu, J.; Bjerkvig, R.; Antel, J.P.; Faury, D.; Rao, Y.; et al. Inhibition of Medulloblastoma Cell Invasion by Slit. Oncogene 2006, 25, 5103–5112. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, H.; Ma, L.; Liu, X.; Dai, K.; Li, W.; Gu, F.; Fu, L.; Ma, Y. Low Expression of Slit2 and Robo1 is Associated with Poor Prognosis and Brain-specific Metastasis of Breast Cancer Patients. Sci. Rep. 2015, 24, 14430. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, X.; Kuzontkoski, P.-M.; Jiang, S.; Zhu, W.; Li, D.-Y.; Groopman, J.-E. Slit2N and Robo4 regulate lymphangiogenesis through the VEGF-C/VEGFR-3 pathway. Cell Commun. Signal 2014, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Guo, H.; Li, J.; Sui, C.; Qin, Y.; Wang, J.; Khan, Y.-H.; Ye, L.; Xie, F.; Wang, H.; et al. Slit2 and Robo1 induce opposing effects on metastasis of hepatocellular carcinoma Sk-hep-1 cells. Int. J. Oncol. 2016, 49, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Koyama, K.; Suga, K.; Ikemura, M.; Saito, Y.; Hino, A.; Iwanari, H.; Kusano-Arai, O.; Mitsui, K.; Kasahara, H.; et al. 90Y-Labeled Anti-Robo1 Monoclonal Antibody Exhibits Antitumor Activity against Small Cell Lung Cancer Xenografts. PLoS ONE 2015, 10, e0125468. [Google Scholar] [CrossRef]
- Bektur Aykanat, N.E.; Kacar, S.; Karakaya, S.; Sahinturk, V. Silymarin Suppresses HepG2 Hepatocarcinoma Cell Progression through Downregulation of Slit-2/Robo-1 Pathway. Pharmacol. Rep. 2020, 72, 199–207. [Google Scholar] [CrossRef]
- Liu, G.; Zhan, X.; Dong, C.; Liu, L. Genomics Alterations of Metastatic and Primary Tissues across 15 Cancer Types. Sci. Rep. 2017, 7, 13262. [Google Scholar] [CrossRef]
- Narayan, G.; Goparaju, C.; Arias-Pulido, H.; Kaufmann, A.M.; Schneider, A.; Dürst, M.; Mansukhani, M.; Pothuri, B.; Murty, V.V. Promoter Hypermethylation-Mediated Inactivation of Multiple Slit-Robo Pathway Genes in Cervical Cancer Progression. Mol. Cancer 2006, 5, 16. [Google Scholar] [CrossRef]
- Pinho, A.V.; Van Bulck, M.; Chantrill, L.; Arshi, M.; Sklyarova, T.; Herrmann, D.; Vennin, C.; Gallego-Ortega, D.; Mawson, A.; Giry-Laterriere, M.; et al. Robo2 Is a Stroma Suppressor Gene in the Pancreas and Acts via TGF-β Signalling. Nat. Commun. 2018, 9, 5083. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markouli, M.; Papachristou, A.; Politis, A.; Boviatsis, E.; Piperi, C. Emerging Role of the Slit/Roundabout (Robo) Signaling Pathway in Glioma Pathogenesis and Potential Therapeutic Options. Biomolecules 2024, 14, 1231. https://doi.org/10.3390/biom14101231
Markouli M, Papachristou A, Politis A, Boviatsis E, Piperi C. Emerging Role of the Slit/Roundabout (Robo) Signaling Pathway in Glioma Pathogenesis and Potential Therapeutic Options. Biomolecules. 2024; 14(10):1231. https://doi.org/10.3390/biom14101231
Chicago/Turabian StyleMarkouli, Mariam, Athina Papachristou, Anastasios Politis, Efstathios Boviatsis, and Christina Piperi. 2024. "Emerging Role of the Slit/Roundabout (Robo) Signaling Pathway in Glioma Pathogenesis and Potential Therapeutic Options" Biomolecules 14, no. 10: 1231. https://doi.org/10.3390/biom14101231
APA StyleMarkouli, M., Papachristou, A., Politis, A., Boviatsis, E., & Piperi, C. (2024). Emerging Role of the Slit/Roundabout (Robo) Signaling Pathway in Glioma Pathogenesis and Potential Therapeutic Options. Biomolecules, 14(10), 1231. https://doi.org/10.3390/biom14101231