Next Issue
Volume 14, November
Previous Issue
Volume 14, September
 
 

Biomolecules, Volume 14, Issue 10 (October 2024) – 142 articles

Cover Story (view full-size image): This paper delves into the mechanistic role of glycosphingolipids (GSLs) in cardiovascular disease, emphasizing their influence on inflammation, energy metabolism, and key signaling pathways that are crucial for heart function. GSLs interact with membrane microdomains, modulate mitochondrial dynamics, and impact lipid homeostasis, driving processes that contribute to heart failure. Through human and animal model studies, this work uncovers how disruptions in GSL metabolism are linked to oxidative stress, cardiac remodeling, and hypertrophy. These findings position GSLs as promising biomarkers and therapeutic targets for advancing cardiovascular treatment strategies. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
26 pages, 1923 KiB  
Review
tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators
by Yun Li, Zongyu Yu, Wenlin Jiang, Xinyi Lyu, Ailian Guo, Xiaorui Sun, Yiting Yang and Yunfang Zhang
Biomolecules 2024, 14(10), 1340; https://doi.org/10.3390/biom14101340 - 21 Oct 2024
Viewed by 1306
Abstract
As the most ancient RNA, transfer RNAs (tRNAs) play a more complex role than their constitutive function as amino acid transporters in the protein synthesis process. The transcription and maturation of tRNA in cells are subject to stringent regulation, resulting in the formation [...] Read more.
As the most ancient RNA, transfer RNAs (tRNAs) play a more complex role than their constitutive function as amino acid transporters in the protein synthesis process. The transcription and maturation of tRNA in cells are subject to stringent regulation, resulting in the formation of tissue- and cell-specific tRNA pools with variations in tRNA overall abundance, composition, modification, and charging levels. The heterogeneity of tRNA pools contributes to facilitating the formation of histocyte-specific protein expression patterns and is involved in diverse biological processes. Moreover, tRNAs can be recognized by various RNase under physiological and pathological conditions to generate tRNA-derived small RNAs (tsRNAs) and serve as small regulatory RNAs in various biological processes. Here, we summarize these recent insights into the heterogeneity of tRNA and highlight the advances in the regulation of tRNA function and tsRNA biogenesis by tRNA modifications. We synthesize diverse mechanisms of tRNA and tsRNA in embryonic development, cell fate determination, and epigenetic inheritance regulation. We also discuss the potential clinical applications based on the new knowledge of tRNA and tsRNA as diagnostic and prognostic biomarkers and new therapeutic strategies for multiple diseases. Full article
(This article belongs to the Special Issue Advances in tRNA Biology)
Show Figures

Figure 1

23 pages, 1998 KiB  
Review
Astragalus membranaceus: A Traditional Chinese Medicine with Multifaceted Impacts on Breast Cancer Treatment
by Zhong Tang and Xuefei Tian
Biomolecules 2024, 14(10), 1339; https://doi.org/10.3390/biom14101339 - 21 Oct 2024
Viewed by 1173
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, remains a critical area of focus for researchers striving to refine therapeutic approaches. As an important component of traditional Chinese medicine, Astragalus membranaceus (AM) has demonstrated potential for multifaceted impacts on breast cancer treatment [...] Read more.
Breast cancer, the most prevalent malignant tumor among women globally, remains a critical area of focus for researchers striving to refine therapeutic approaches. As an important component of traditional Chinese medicine, Astragalus membranaceus (AM) has demonstrated potential for multifaceted impacts on breast cancer treatment through various mechanisms. To guide clinical practice and further explore the under-researched field of AM in breast cancer treatment, this paper mainly reviews the regulatory roles of AM-derived compounds and extracts on breast cancer cell proliferation, migration, invasion, and chemoresistance. Furthermore, this study delves into the synergistic effects observed when AM is co-administered with chemotherapeutic agents, including the enhancement of chemosensitivity, mitigation of toxic side effects, and reversal of drug resistance. This review indicates that AM holds promise not only as a therapy in breast cancer treatment but also paves the way for innovative integrated treatment approaches that combine the benefits of traditional medicine with modern pharmaceuticals. Nevertheless, future research endeavors are also urged to elucidate the in vivo pharmacological effects and underlying mechanisms of AM to inform more effective clinical treatment strategies. Full article
(This article belongs to the Special Issue Antitumor Agents from Natural Sources 2024)
Show Figures

Figure 1

16 pages, 2676 KiB  
Article
Cooperative Substructure and Energetics of Allosteric Regulation of the Catalytic Core of the E3 Ubiquitin Ligase Parkin by Phosphorylated Ubiquitin
by Xiang Ye, Sravya Kotaru, Rosana Lopes, Shannen Cravens, Mauricio Lasagna and A. Joshua Wand
Biomolecules 2024, 14(10), 1338; https://doi.org/10.3390/biom14101338 - 21 Oct 2024
Viewed by 920
Abstract
Mutations in the parkin gene product Parkin give rise to autosomal recessive juvenile parkinsonism. Parkin is an E3 ubiquitin ligase that is a critical participant in the process of mitophagy. Parkin has a complex structure that integrates several allosteric signals to maintain precise [...] Read more.
Mutations in the parkin gene product Parkin give rise to autosomal recessive juvenile parkinsonism. Parkin is an E3 ubiquitin ligase that is a critical participant in the process of mitophagy. Parkin has a complex structure that integrates several allosteric signals to maintain precise control of its catalytic activity. Though its allosterically controlled structural reorganization has been extensively characterized by crystallography, the energetics and mechanisms of allosteric regulation of Parkin are much less well understood. Allostery is fundamentally linked to the energetics of the cooperative (sub)structure of the protein. Herein, we examine the mechanism of allosteric activation by phosphorylated ubiquitin binding to the enzymatic core of Parkin, which lacks the antagonistic Ubl domain. In this way, the allosteric effects of the agonist phosphorylated ubiquitin can be isolated. Using native-state hydrogen exchange monitored by mass spectrometry, we find that the five structural domains of the core of Parkin are energetically distinct. Nevertheless, association of phosphorylated ubiquitin destabilizes structural elements that bind the ubiquitin-like domain antagonist while promoting the dissociation of the catalytic domain and energetically poises the protein for transition to the fully activated structure. Full article
Show Figures

Graphical abstract

1 pages, 143 KiB  
Correction
Correction: Choi et al. β-Ionone Attenuates Dexamethasone-Induced Suppression of Collagen and Hyaluronic Acid Synthesis in Human Dermal Fibroblasts. Biomolecules 2021, 11, 619
by Dabin Choi, Wesuk Kang, Soyoon Park, Bomin Son and Taesun Park
Biomolecules 2024, 14(10), 1337; https://doi.org/10.3390/biom14101337 - 21 Oct 2024
Viewed by 359
Abstract
The authors would like to modify the Conflicts of Interest section of the published paper [...] Full article
20 pages, 1322 KiB  
Article
Chemical Profiling of Polar Lipids and the Polyphenolic Fraction of Commercial Italian Phaseolus Seeds by UHPLC-HRMS and Biological Evaluation
by Vadym Samukha, Francesca Fantasma, Gilda D’Urso, Ester Colarusso, Anna Schettino, Noemi Marigliano, Maria Giovanna Chini, Gabriella Saviano, Vincenzo De Felice, Gianluigi Lauro, Francesco Maione, Giuseppe Bifulco, Agostino Casapullo and Maria Iorizzi
Biomolecules 2024, 14(10), 1336; https://doi.org/10.3390/biom14101336 - 20 Oct 2024
Viewed by 842
Abstract
The common bean (Phaseolus vulgaris L.) is one of the oldest food crops in the world. In this study, the ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) technique was used to characterize the polar lipid composition and polyphenolic fraction of five bean [...] Read more.
The common bean (Phaseolus vulgaris L.) is one of the oldest food crops in the world. In this study, the ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) technique was used to characterize the polar lipid composition and polyphenolic fraction of five bean varieties commonly consumed in Italy: Cannellino (PVCA), Controne (PVCO), Borlotti (PVBO), Stregoni (PVST), and Vellutina (PVVE). Lipid content represents a minor fraction of the whole metabolome in dry beans, and little is known about their polar lipids, which could be potentially bioactive components. Thirty-three compounds were detected through UHPLC-MS/MS, including oxylipins, phospholipids, N-acyl glycerolipids, and several fatty acids. The dichloromethane extracts were subjected to principal component analysis (PCA), with the results showing greater differentiation for the Borlotti variety. Moreover, 27 components belonging to different polyphenol classes, such as phenolic acids, flavonoids, catechins, anthocyanins and their glycosides, and some saponins, were identified in the hydroalcoholic seed extracts. In addition, the mineral content of the beans was determined. Considering the high number of compounds in the five apolar seed extracts, all samples were examined to determine their in vitro inhibitory activity against the enzyme cyclooxygenase-2 (COX-2), which is inducible in inflammatory cells and mediates inflammatory responses. Only PVCO showed the best inhibition of the COX-2 enzyme with an IC50 = 31.15 ± 2.16 µg/mL. In light of these results, the potential anti-inflammatory properties of PVCO were evaluated in the LPS-stimulated murine macrophage cell line J774A.1. Herein, we demonstrate, for the first time, that PVCO at 30 µg/mL can significantly reduce the release of TNF-α, with a less significant anti-inflammatory effect being observed in terms of IL-6 release. Full article
Show Figures

Graphical abstract

17 pages, 764 KiB  
Article
Increased Cardiometabolic Risk in Men with Hypoprolactinemia: A Pilot Study
by Robert Krysiak, Karolina Kowalcze, Witold Szkróbka and Bogusław Okopień
Biomolecules 2024, 14(10), 1335; https://doi.org/10.3390/biom14101335 - 20 Oct 2024
Viewed by 832
Abstract
Low prolactin levels in men predispose them to mood disturbances, sexual dysfunction, and diabetes. The purpose of the current study was to assess cardiometabolic risk in males with hypoprolactinemia. This prospective study included three age-matched groups of young and middle-aged men: individuals with [...] Read more.
Low prolactin levels in men predispose them to mood disturbances, sexual dysfunction, and diabetes. The purpose of the current study was to assess cardiometabolic risk in males with hypoprolactinemia. This prospective study included three age-matched groups of young and middle-aged men: individuals with cabergoline-induced hypoprolactinemia (n = 15), cabergoline-treated subjects with prolactin levels within the reference range (n = 20), and untreated men with normal prolactin levels (n = 31). In men with hypoprolactinemia, the cabergoline dose was reduced in order to normalize prolactin concentration. Anthropometric parameters, blood pressure, QRISK3 score; plasma concentrations of prolactin, glucose, insulin, lipids, uric acid, high-sensitivity C-reactive protein (hsCRP), fibrinogen, homocysteine, and testosterone; whole-blood levels of glycated hemoglobin (HbA1C); urinary albumin-to-creatinine ratio (UACR); and carotid intima–media thickness were assessed at baseline and six months later. Men with hypoprolactinemia were characterized by higher body mass index, fat content, waist circumference, systolic blood pressure, fasting and 2 h post-load glucose, HbA1C, HOMA1-IR, uric acid, hsCRP, fibrinogen, homocysteine, and UACR; by lower HDL cholesterol and testosterone; by greater intima–media thickness; and by a higher QRISK3 score than their peers with normal prolactin levels. There were no statistically significant differences in the measured parameters between both groups of men with normal prolactin levels. Normalization of prolactin concentration was accompanied by normalization of biochemical variables, systolic blood pressure, and QRISK3 score. Although cabergoline dose reduction did not cause statistically significant changes in the remaining anthropometric parameters and intima–media thickness, six months later, they did not differ from those observed in the remaining study groups. Our findings suggest that iatrogenic hypoprolactinemia is associated with increased cardiometabolic risk, which is reversible and resolves after the normalization of prolactin levels. Full article
(This article belongs to the Special Issue Advances in Cardiometabolic Health)
Show Figures

Figure 1

19 pages, 1379 KiB  
Review
Potential Roles of IP3 Receptors and Calcium in Programmed Cell Death and Implications in Cardiovascular Diseases
by Chanon Piamsiri, Nadezhda Fefelova, Sri Harika Pamarthi, Judith K. Gwathmey, Siriporn C. Chattipakorn, Nipon Chattipakorn and Lai-Hua Xie
Biomolecules 2024, 14(10), 1334; https://doi.org/10.3390/biom14101334 - 20 Oct 2024
Viewed by 1162
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a crucial role in maintaining intracellular/cytosolic calcium ion (Ca2+i) homeostasis. The release of Ca2+ from IP3Rs serves as a second messenger and a modulatory factor influencing various intracellular and interorganelle [...] Read more.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a crucial role in maintaining intracellular/cytosolic calcium ion (Ca2+i) homeostasis. The release of Ca2+ from IP3Rs serves as a second messenger and a modulatory factor influencing various intracellular and interorganelle communications during both physiological and pathological processes. Accumulating evidence from in vitro, in vivo, and clinical studies supports the notion that the overactivation of IP3Rs is linked to the pathogenesis of various cardiac conditions. The overactivation of IP3Rs results in the dysregulation of Ca2+ concentration ([Ca2+]) within cytosolic, mitochondrial, and nucleoplasmic cellular compartments. In cardiovascular pathologies, two isoforms of IP3Rs, i.e., IP3R1 and IP3R2, have been identified. Notably, IP3R1 plays a pivotal role in cardiac ischemia and diabetes-induced arrhythmias, while IP3R2 is implicated in sepsis-induced cardiomyopathy and cardiac hypertrophy. Furthermore, IP3Rs have been reported to be involved in various programmed cell death (PCD) pathways, such as apoptosis, pyroptosis, and ferroptosis underscoring their multifaceted roles in cardiac pathophysiology. Based on these findings, it is evident that exploring potential therapeutic avenues becomes crucial. Both genetic ablation and pharmacological intervention using IP3R antagonists have emerged as promising strategies against IP3R-related pathologies suggesting their potential therapeutic potency. This review summarizes the roles of IP3Rs in cardiac physiology and pathology and establishes a foundational understanding with a particular focus on their involvement in the various PCD pathways within the context of cardiovascular diseases. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

15 pages, 1695 KiB  
Review
Stress-Induced Evolution of the Nucleolus: The Role of Ribosomal Intergenic Spacer (rIGS) Transcripts
by Anastasia A. Gavrilova, Margarita V. Neklesova, Yuliya A. Zagryadskaya, Irina M. Kuznetsova, Konstantin K. Turoverov and Alexander V. Fonin
Biomolecules 2024, 14(10), 1333; https://doi.org/10.3390/biom14101333 - 20 Oct 2024
Viewed by 1109
Abstract
It became clear more than 20 years ago that the nucleolus not only performs the most important biological function of assembling ribonucleic particles but is also a key controller of many cellular processes, participating in cellular adaptation to stress. The nucleolus’s multifunctionality is [...] Read more.
It became clear more than 20 years ago that the nucleolus not only performs the most important biological function of assembling ribonucleic particles but is also a key controller of many cellular processes, participating in cellular adaptation to stress. The nucleolus’s multifunctionality is due to the peculiarities of its biogenesis. The nucleolus is a multilayered biomolecular condensate formed by liquid–liquid phase separation (LLPS). In this review, we focus on changes occurring in the nucleolus during cellular stress, molecular features of the nucleolar response to abnormal and stressful conditions, and the role of long non-coding RNAs transcribed from the intergenic spacer region of ribosomal DNA (IGS rDNA). Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

22 pages, 7650 KiB  
Article
Identification of Multifunctional Putative Bioactive Peptides in the Insect Model Red Palm Weevil (Rhynchophorus ferrugineus)
by Carmen Scieuzo, Roberta Rinaldi, Fabiana Giglio, Rosanna Salvia, Mohammed Ali AlSaleh, Jernej Jakše, Arnab Pain, Binu Antony and Patrizia Falabella
Biomolecules 2024, 14(10), 1332; https://doi.org/10.3390/biom14101332 - 19 Oct 2024
Viewed by 1156
Abstract
Innate immunity, the body’s initial defense against bacteria, fungi, and viruses, heavily depends on antimicrobial peptides (AMPs), which are small molecules produced by all living organisms. Insects, with their vast biodiversity, are one of the most abundant and innovative sources of AMPs. In [...] Read more.
Innate immunity, the body’s initial defense against bacteria, fungi, and viruses, heavily depends on antimicrobial peptides (AMPs), which are small molecules produced by all living organisms. Insects, with their vast biodiversity, are one of the most abundant and innovative sources of AMPs. In this study, AMPs from the red palm weevil (RPW) Rhynchophorus ferrugineus (Coleoptera: Curculionidae), a known invasive pest of palm species, were examined. The AMPs were identified in the transcriptomes from different body parts of male and female adults, under different experimental conditions, including specimens collected from the field and those reared in the laboratory. The RPW transcriptomes were examined to predict antimicrobial activity, and all sequences putatively encoding AMPs were analyzed using several machine learning algorithms available in the CAMPR3 database. Additionally, anticancer, antiviral, and antifungal activity of the peptides were predicted using iACP, AVPpred, and Antifp server tools, respectively. Physicochemical parameters were assessed using the Antimicrobial Peptide Database Calculator and Predictor. From these analyses, 198 putatively active peptides were identified, which can be tested in future studies to validate the in silico predictions. Genome-wide analysis revealed that several AMPs have predominantly emerged through gene duplication. Noticeably, we detect a newly originated defensin allele from an ancestral defensin via the deletion of two amino acids following gene duplication in RPW, which may confer an enhanced resilience to microbial infection. Our study shed light on AMP gene families and shows that high duplication and deletion rates are essential to achieve a diversity of antimicrobial mechanisms; hence, we propose the RPW AMPs as a model for exploring gene duplication and functional variations against microbial infection. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Antimicrobial Peptides)
Show Figures

Figure 1

17 pages, 4282 KiB  
Article
A Novel Peptide from VP1 of EV-D68 Exhibits Broad-Spectrum Antiviral Activity Against Human Enteroviruses
by Xiaojing Lin, Qiang Sun, Yang Cao, Zi Li, Cuiling Xu, Jun Liu, Jingdong Song, Kun Qin, Yong Zhang and Jianfang Zhou
Biomolecules 2024, 14(10), 1331; https://doi.org/10.3390/biom14101331 - 19 Oct 2024
Viewed by 872
Abstract
Enteroviruses have been a historical concern since the identification of polioviruses in humans. Wild polioviruses have almost been eliminated, while multiple species of non-polio enteroviruses and their variants co-circulate annually. To date, at least 116 types have been found in humans and are [...] Read more.
Enteroviruses have been a historical concern since the identification of polioviruses in humans. Wild polioviruses have almost been eliminated, while multiple species of non-polio enteroviruses and their variants co-circulate annually. To date, at least 116 types have been found in humans and are grouped into the species Enterovirus A–D and Rhinovirus A–C. However, there are few available antiviral drugs, especially with a universal pharmaceutical effect. Here, we demonstrate that peptide P25 from EV-D68 has broad antiviral activity against EV A–D enteroviruses in vitro. P25, derived from the HI loop and β-I sheet of VP1, operates through a conserved hydrophilic motif -R---K-K--K- and the hydrophobic F near the N-terminus. It could prevent viral infection of EV-A71 by competing for the heparan sulfate (HS) receptor, binding and stabilizing virions by suppressing the release of the viral genome. P25 also inhibited the generation of infectious viral particles by reducing viral protein synthesis. The molecular docking revealed that P25 might bind to the pocket opening area, a potential target for broad-spectrum antivirals. Our findings implicate the multiple antiviral effects of peptide P25, including blocking viral binding to the HS receptor, impeding viral genome release, and reducing progeny particles, which could be a novel universal anti-enterovirus drug candidate. Full article
(This article belongs to the Section Biomacromolecules: Proteins)
Show Figures

Figure 1

26 pages, 1530 KiB  
Review
A Survey on Computational Methods in Drug Discovery for Neurodegenerative Diseases
by Caterina Vicidomini, Francesco Fontanella, Tiziana D’Alessandro and Giovanni N. Roviello
Biomolecules 2024, 14(10), 1330; https://doi.org/10.3390/biom14101330 - 19 Oct 2024
Cited by 1 | Viewed by 1188
Abstract
Currently, the age structure of the world population is changing due to declining birth rates and increasing life expectancy. As a result, physicians worldwide have to treat an increasing number of age-related diseases, of which neurological disorders represent a significant part. In this [...] Read more.
Currently, the age structure of the world population is changing due to declining birth rates and increasing life expectancy. As a result, physicians worldwide have to treat an increasing number of age-related diseases, of which neurological disorders represent a significant part. In this context, there is an urgent need to discover new therapeutic approaches to counteract the effects of neurodegeneration on human health, and computational science can be of pivotal importance for more effective neurodrug discovery. The knowledge of the molecular structure of the receptors and other biomolecules involved in neurological pathogenesis facilitates the design of new molecules as potential drugs to be used in the fight against diseases of high social relevance such as dementia, Alzheimer’s disease (AD) and Parkinson’s disease (PD), to cite only a few. However, the absence of comprehensive guidelines regarding the strengths and weaknesses of alternative approaches creates a fragmented and disconnected field, resulting in missed opportunities to enhance performance and achieve successful applications. This review aims to summarize some of the most innovative strategies based on computational methods used for neurodrug development. In particular, recent applications and the state-of-the-art of molecular docking and artificial intelligence for ligand- and target-based approaches in novel drug design were reviewed, highlighting the crucial role of in silico methods in the context of neurodrug discovery for neurodegenerative diseases. Full article
Show Figures

Figure 1

17 pages, 971 KiB  
Review
Aspirin Hypersensitivity in Patients with Coronary Artery Disease: An Updated Review and Practical Recommendations
by Luigi Cappannoli, Stefania Colantuono, Francesco Maria Animati, Francesco Fracassi, Mattia Galli, Cristina Aurigemma, Enrico Romagnoli, Rocco Antonio Montone, Mattia Lunardi, Lazzaro Paraggio, Carolina Ierardi, Ilaria Baglivo, Cristiano Caruso, Carlo Trani and Francesco Burzotta
Biomolecules 2024, 14(10), 1329; https://doi.org/10.3390/biom14101329 - 19 Oct 2024
Viewed by 983
Abstract
Acetylsalicylic acid (ASA) represents a cornerstone of antiplatelet therapy for the treatment of atherosclerotic coronary artery disease (CAD). ASA is in fact indicated in case of an acute coronary syndrome or after a percutaneous coronary intervention with stent implantation. Aspirin hypersensitivity is frequently [...] Read more.
Acetylsalicylic acid (ASA) represents a cornerstone of antiplatelet therapy for the treatment of atherosclerotic coronary artery disease (CAD). ASA is in fact indicated in case of an acute coronary syndrome or after a percutaneous coronary intervention with stent implantation. Aspirin hypersensitivity is frequently reported by patients, and this challenging situation requires a careful evaluation of the true nature of the presumed sensitivity and of its mechanisms, as well as to differentiate it from a more frequent (and more easily manageable) aspirin intolerance. Two main strategies are available to allow ASA administration for patients with CAD and suspected ASA hypersensitivity: a low-dose ASA challenge, aimed at assessing the tolerability of ASA at the antiplatelet dose of 100 mg, and desensitization, a therapeutic procedure which aims to induce tolerance to ASA. For those patients who cannot undergo ASA challenge and desensitization due to previous serious adverse reactions, or for those in whom desensitization was unsuccessful, a number of further alternative strategies are available, even if these have not been validated and approved by guidelines. The aim of this state-of-the-art review is therefore to summarize the established evidence regarding pathophysiology, clinical presentation, diagnosis, and management of aspirin hypersensitivity and to provide a practical guide for cardiologists (and clinicians) who have to face the not uncommon situation of a patient with concomitant coronary artery disease and aspirin hypersensitivity. Full article
(This article belongs to the Special Issue New Discoveries in Biological Functions of Platelet)
Show Figures

Figure 1

17 pages, 2211 KiB  
Article
The Biological Effect of Enriching the Plasma Content in Platelet-Rich Plasma: An In Vitro Study
by Eduardo Anitua, Mar Zalduendo, Roberto Prado, María Troya, Roberto Tierno, María de la Fuente and Mohammad H. Alkhraisat
Biomolecules 2024, 14(10), 1328; https://doi.org/10.3390/biom14101328 - 18 Oct 2024
Viewed by 688
Abstract
BACKGROUND: Platelet-rich plasma (PRP) formulations have become valuable therapeutic tools in regenerative medicine. In addition, these blood derivates have been successfully included in cell therapy as fetal bovine serum substitutes, due to the real need to avoid the risk of host immunologic reactions [...] Read more.
BACKGROUND: Platelet-rich plasma (PRP) formulations have become valuable therapeutic tools in regenerative medicine. In addition, these blood derivates have been successfully included in cell therapy as fetal bovine serum substitutes, due to the real need to avoid the risk of host immunologic reactions and the animal disease transmission associated with reagents from animal origin. However, the protocols for obtaining them should be optimized to improve their biological potential. METHODS: PRP-derived preparations with different concentrations of the platelet and plasma components were obtained from the blood of five donors by freeze-drying. Measurements of the pH, protein, and growth factor concentration were performed. Moreover, their biological effects on cell proliferation and migration and their angiogenic potential were assessed. RESULTS: An increased plasma component concentration resulted in an augmented quantity of the total protein content, a significative variation in the hepatocyte growth factor concentration, and an experimental but clinically irrelevant alteration of the pH value. No significant changes were induced in their potential to enhance proliferative and migratory responses in epithelial cells, with the latter being reduced for dermal fibroblasts. The endothelial cell capacity for tube formation was significatively reduced. CONCLUSIONS: An increased blood plasma content did not improve the biological potential of the formulations. However, they have emerged as a promising approach for regenerative therapies where neovascularization must be avoided. Full article
Show Figures

Figure 1

15 pages, 2592 KiB  
Article
Pulling Forces Differentially Affect Refolding Pathways Due to Entangled Misfolded States in SARS-CoV-1 and SARS-CoV-2 Receptor Binding Domain
by Pham Dang Lan, Edward P. O’Brien and Mai Suan Li
Biomolecules 2024, 14(10), 1327; https://doi.org/10.3390/biom14101327 - 18 Oct 2024
Viewed by 1043
Abstract
Single-molecule force spectroscopy (SMFS) experiments can monitor protein refolding by applying a small force of a few piconewtons (pN) and slowing down the folding process. Bell theory predicts that in the narrow force regime where refolding can occur, the folding time should increase [...] Read more.
Single-molecule force spectroscopy (SMFS) experiments can monitor protein refolding by applying a small force of a few piconewtons (pN) and slowing down the folding process. Bell theory predicts that in the narrow force regime where refolding can occur, the folding time should increase exponentially with increased external force. In this work, using coarse-grained molecular dynamics simulations, we compared the refolding pathways of SARS-CoV-1 RBD and SARS-CoV-2 RBD (RBD refers to the receptor binding domain) starting from unfolded conformations with and without a force applied to the protein termini. For SARS-CoV-2 RBD, the number of trajectories that fold is significantly reduced with the application of a 5 pN force, indicating that, qualitatively consistent with Bell theory, refolding is slowed down when a pulling force is applied to the termini. In contrast, the refolding times of SARS-CoV-1 RBD do not change meaningfully when a force of 5 pN is applied. How this lack of a Bell response could arise at the molecular level is unknown. Analysis of the entanglement changes of the folded conformations revealed that in the case of SARS-CoV-1 RBD, an external force minimizes misfolding into kinetically trapped states, thereby promoting efficient folding and offsetting any potential slowdown due to the external force. These misfolded states contain non-native entanglements that do not exist in the native state of either SARS-CoV-1-RBD or SARS-CoV-2-RBD. These results indicate that non-Bell behavior can arise from this class of misfolding and, hence, may be a means of experimentally detecting these elusive, theoretically predicted states. Full article
(This article belongs to the Section Biomacromolecules: Proteins)
Show Figures

Graphical abstract

23 pages, 3110 KiB  
Article
From Organotypic Mouse Brain Slices to Human Alzheimer’s Plasma Biomarkers: A Focus on Nerve Fiber Outgrowth
by Sakir Necat Yilmaz, Katharina Steiner, Josef Marksteiner, Klaus Faserl, Mathias Villunger, Bettina Sarg and Christian Humpel
Biomolecules 2024, 14(10), 1326; https://doi.org/10.3390/biom14101326 - 18 Oct 2024
Viewed by 686
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by memory loss and progressive deterioration of cognitive functions. Being able to identify reliable biomarkers in easily available body fluids such as blood plasma is vital for the disease. To achieve this, we used a [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by memory loss and progressive deterioration of cognitive functions. Being able to identify reliable biomarkers in easily available body fluids such as blood plasma is vital for the disease. To achieve this, we used a technique that applied human plasma to organotypic brain slice culture via microcontact printing. After a 2-week culture period, we performed immunolabeling for neurofilament and myelin oligodendrocyte glycoprotein (MOG) to visualize newly formed nerve fibers and oligodendrocytes. There was no significant change in the number of new nerve fibers in the AD plasma group compared to the healthy control group, while the length of the produced fibers significantly decreased. A significant increase in the number of MOG+ dots around these new fibers was detected in the patient group. According to our hypothesis, there are factors in the plasma of AD patients that affect the growth of new nerve fibers, which also affect the oligodendrocytes. Based on these findings, we selected the most promising plasma samples and conducted mass spectrometry using a differential approach and we identified three putative biomarkers: aldehyde-dehydrogenase 1A1, alpha-synuclein and protein S100-A4. Our method represents a novel and innovative approach for translating research findings from mouse models to human applications. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Graphical abstract

10 pages, 1292 KiB  
Article
Endometrial Dysbiosis: A Possible Association with Estrobolome Alteration
by Giorgia Scarfò, Simona Daniele, Elisa Chelucci, Francesca Papini, Francesco Epifani, Maria Ruggiero, Vito Cela, Ferdinando Franzoni and Paolo Giovanni Artini
Biomolecules 2024, 14(10), 1325; https://doi.org/10.3390/biom14101325 - 18 Oct 2024
Viewed by 669
Abstract
Background/Objectives: Microbiota modification at the endometrial level can favor gynecological diseases and impair women’s fertility. The overgrowth of pathogen microorganisms is related to the contemporary alteration of estrogen-metabolizing bacteria, including β-glucuronidase, thereby enhancing estrogen-related inflammatory states and decreasing anti-inflammatory cells. The possible connection [...] Read more.
Background/Objectives: Microbiota modification at the endometrial level can favor gynecological diseases and impair women’s fertility. The overgrowth of pathogen microorganisms is related to the contemporary alteration of estrogen-metabolizing bacteria, including β-glucuronidase, thereby enhancing estrogen-related inflammatory states and decreasing anti-inflammatory cells. The possible connection between estrobolome impairment and gynecological diseases has been suggested in animal models. Nevertheless, in humans, coherent evidence on the estrobolome alteration and functionality of the female reproductive tract is still lacking. The objective of this study was to explore alterations in estrogen-related signaling and the putative link with endometrial dysbiosis. Methods: Women with infertility and repeated implantation failure (RIF, N = 40) were enrolled in order to explore the putative link between estrogen metabolism and endometrial dysbiosis. Endometrial biopsies were used to measure inflammatory and growth factor molecules. β-glucuronidase enzyme activity and estrogen receptor (ER) expression were also assessed. Results: Herein, increased levels of inflammatory molecules (i.e., IL-1β and HIF-1α) and decreased levels of the growth factor IGF-1 were found in the endometrial biopsies of patients presenting dysbiosis compared to eubiotic ones. β-glucuronidase activity and the expression of ERβ were significantly enhanced in patients in the dysbiosis group. Interestingly, Lactobacilli abundance was inversely related to β-glucuronidase activity and to ERβ expression, thus suggesting that an alteration of the estrogen-activating enzyme may affect the expression of ERs as well. Conclusions. Overall, these preliminary data suggested a link between endometrial dysbiosis and estrobolome impairment as possible synergistic contributing factors to women infertility and RIF. Full article
(This article belongs to the Special Issue Molecular Aspects of Female Infertility)
Show Figures

Figure 1

15 pages, 577 KiB  
Review
Targeting Protein Aggregation in ALS
by Michele Perni and Benedetta Mannini
Biomolecules 2024, 14(10), 1324; https://doi.org/10.3390/biom14101324 - 18 Oct 2024
Viewed by 995
Abstract
Proteinopathies involve the abnormal accumulation of specific proteins. Maintaining the balance of the proteome is a finely regulated process managed by a complex network of cellular machinery responsible for protein synthesis, folding, and degradation. However, stress and ageing can disrupt this balance, leading [...] Read more.
Proteinopathies involve the abnormal accumulation of specific proteins. Maintaining the balance of the proteome is a finely regulated process managed by a complex network of cellular machinery responsible for protein synthesis, folding, and degradation. However, stress and ageing can disrupt this balance, leading to widespread protein aggregation. Currently, several therapies targeting protein aggregation are in clinical trials for ALS. These approaches mainly focus on two strategies: addressing proteins that are prone to aggregation due to mutations and targeting the cellular mechanisms that maintain protein homeostasis to prevent aggregation. This review will cover these emerging drugs. Advances in ALS research not only offer hope for better outcomes for ALS patients but also provide valuable insights and methodologies that can benefit the broader field of neurodegenerative disease drug discovery. Full article
(This article belongs to the Special Issue The Role of Amyloid in Neurological Disorders)
Show Figures

Graphical abstract

12 pages, 687 KiB  
Review
The Emerging Role of Immunoglobulins and Complement in the Stimulation of Neuronal Activity and Repair: Not as Simple as We Thought
by Tatyana Veremeyko, Natasha S. Barteneva, Ivan Vorobyev and Eugene D. Ponomarev
Biomolecules 2024, 14(10), 1323; https://doi.org/10.3390/biom14101323 - 18 Oct 2024
Viewed by 740
Abstract
Neurologic disorders such as traumatic brain injury, multiple sclerosis, Alzheimer’s disease, and drug-resistant epilepsy have a high socioeconomic impact around the world. Current therapies for these disorders are often not effective. This creates a demand for the development of new therapeutic approaches to [...] Read more.
Neurologic disorders such as traumatic brain injury, multiple sclerosis, Alzheimer’s disease, and drug-resistant epilepsy have a high socioeconomic impact around the world. Current therapies for these disorders are often not effective. This creates a demand for the development of new therapeutic approaches to treat these disorders. Recent data suggest that autoreactive naturally occurring immunoglobulins produced by subsets of B cells, called B1 B cells, combined with complement, are actively involved in the processes of restoration of neuronal functions during pathological conditions and remyelination. The focus of this review is to discuss the possibility of creating specific therapeutic antibodies that can activate and fix complement to enhance neuronal survival and promote central nervous system repair after injuries associated with many types of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Recent Advances in Neurological Diseases)
Show Figures

Figure 1

20 pages, 1446 KiB  
Article
The Role of Keeving in Modulating Fermentation and the Flavour Profiles of Apple Brandy
by Magdalena Januszek, Paweł Satora, Aneta Pater and Łukasz Wajda
Biomolecules 2024, 14(10), 1322; https://doi.org/10.3390/biom14101322 - 18 Oct 2024
Viewed by 605
Abstract
Keeving is the removal of nutrients from apple musts due to their binding to pectin, resulting in a slower fermentation and spontaneous arrest. The aim of this study was to determine the effect of keeving on the chemical composition of fermented apple must [...] Read more.
Keeving is the removal of nutrients from apple musts due to their binding to pectin, resulting in a slower fermentation and spontaneous arrest. The aim of this study was to determine the effect of keeving on the chemical composition of fermented apple must and on the volatile profile and sensory analysis of apple brandies. We compared the application of keeving during spontaneous fermentation with fermentation carried out by Saccharomyces cerevisiae (SafSpirit HG-1). We evaluated the impact of adding different doses of calcium chloride on various parameters of fermented musts and distillates. Calcium chloride had a greater effect on the ethanol concentration, total extract, and fermentation efficiency than on the type of fermentation used. However, a different phenomenon was observed with respect to the volatiles. The concentration of most of the higher alcohols, acetaldehyde, dodecanal, and geranylaceton, decreased after spontaneous fermentation and increased during the fermentation carried out with Saccharomyces cerevisiae SafSpirit HG-1. In general, the application of keeving contributed to a decrease in the concentration of ethyl and methyl esters, but caused an increase in the concentration of all acetate esters and terpenoids. When the amount of nutrients in the environment is limited and starvation occurs, microorganisms use the available nutrients for basic metabolic processes that allow them to survive and limit the formation of side metabolites such as volatiles. However, most of the samples fermented after the faecal depletion achieved high scores for the floral, fruity, and “overall note” parameters in the sensory analysis. This means that this method, carried out with a properly selected yeast strain, could be feasible for the distilling industry. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

21 pages, 7042 KiB  
Article
Glucocorticoid-Induced Leucine Zipper Protein and Yeast-Extracted Compound Alleviate Colitis and Reduce Fungal Dysbiosis
by Marco Gentili, Samuele Sabbatini, Emilia Nunzi, Eleonora Lusenti, Luigi Cari, Antonella Mencacci, Nathalie Ballet, Graziella Migliorati, Carlo Riccardi, Simona Ronchetti and Claudia Monari
Biomolecules 2024, 14(10), 1321; https://doi.org/10.3390/biom14101321 - 17 Oct 2024
Viewed by 678
Abstract
Inflammatory bowel diseases (IBD) have a complex, poorly understood pathogenesis and lack long-lasting effective treatments. Recent research suggests that intestinal fungal dysbiosis may play a role in IBD development. This study investigates the effects of the glucocorticoid-induced leucine zipper protein (GILZp)”, known for [...] Read more.
Inflammatory bowel diseases (IBD) have a complex, poorly understood pathogenesis and lack long-lasting effective treatments. Recent research suggests that intestinal fungal dysbiosis may play a role in IBD development. This study investigates the effects of the glucocorticoid-induced leucine zipper protein (GILZp)”, known for its protective role in gut mucosa, and a yeast extract (Py) with prebiotic properties, either alone or combined, in DSS-induced colitis. Both treatments alleviated symptoms via overlapping or distinct mechanisms. In particular, they reduced the transcription levels of pro-inflammatory cytokines IL-1β and TNF-α, as well as the expression of the tight junction protein Claudin-2. Additionally, GILZp increased MUC2 transcription, while Py reduced IL-12p40 and IL-6 levels. Notably, both treatments were effective in restoring the intestinal burden of clinically important Candida and related species. Intestinal mycobiome analysis revealed that they were able to reduce colitis-associated fungal dysbiosis, and this effect was mainly the result of a decreased abundance of the Meyerozima genus, which was dominant in colitic mice. Overall, our results suggest that combined treatment regimens with GILZp and Py could represent a new strategy for the treatment of IBD by targeting multiple mechanisms, including the fungal dysbiosis. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

36 pages, 3132 KiB  
Review
The Ambivalence of Post COVID-19 Vaccination Responses in Humans
by Radha Gopalaswamy, Vivekanandhan Aravindhan and Selvakumar Subbian
Biomolecules 2024, 14(10), 1320; https://doi.org/10.3390/biom14101320 - 17 Oct 2024
Viewed by 1540
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has prompted a massive global vaccination campaign, leading to the rapid development and deployment of several vaccines. Various COVID-19 vaccines are under different phases of clinical trials and include [...] Read more.
The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has prompted a massive global vaccination campaign, leading to the rapid development and deployment of several vaccines. Various COVID-19 vaccines are under different phases of clinical trials and include the whole virus or its parts like DNA, mRNA, or protein subunits administered directly or through vectors. Beginning in 2020, a few mRNA (Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273) and adenovirus-based (AstraZeneca ChAdOx1-S and the Janssen Ad26.COV2.S) vaccines were recommended by WHO for emergency use before the completion of the phase 3 and 4 trials. These vaccines were mostly administered in two or three doses at a defined frequency between the two doses. While these vaccines, mainly based on viral nucleic acids or protein conferred protection against the progression of SARS-CoV-2 infection into severe COVID-19, and prevented death due to the disease, their use has also been accompanied by a plethora of side effects. Common side effects include localized reactions such as pain at the injection site, as well as systemic reactions like fever, fatigue, and headache. These symptoms are generally mild to moderate and resolve within a few days. However, rare but more serious side effects have been reported, including allergic reactions such as anaphylaxis and, in some cases, myocarditis or pericarditis, particularly in younger males. Ongoing surveillance and research efforts continue to refine the understanding of these adverse effects, providing critical insights into the risk-benefit profile of COVID-19 vaccines. Nonetheless, the overall safety profile supports the continued use of these vaccines in combating the pandemic, with regulatory agencies and health organizations emphasizing the importance of vaccination in preventing COVID-19’s severe outcomes. In this review, we describe different types of COVID-19 vaccines and summarize various adverse effects due to autoimmune and inflammatory response(s) manifesting predominantly as cardiac, hematological, neurological, and psychological dysfunctions. The incidence, clinical presentation, risk factors, diagnosis, and management of different adverse effects and possible mechanisms contributing to these effects are discussed. The review highlights the potential ambivalence of human response post-COVID-19 vaccination and necessitates the need to mitigate the adverse side effects. Full article
Show Figures

Figure 1

12 pages, 1430 KiB  
Review
N6-Methyladenosine Methyltransferase Component KIAA1429 Is a Potential Target of Cancer Therapy
by Junjun Huang, Jihua Guo and Rong Jia
Biomolecules 2024, 14(10), 1319; https://doi.org/10.3390/biom14101319 - 17 Oct 2024
Viewed by 725
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotes, has a crucial impact on tumorigenesis. KIAA1429 is the key component of the m6A methyltransferase complex, in which KIAA1429 functions as a scaffold to bridge the catalytic core proteins. KIAA1429 [...] Read more.
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotes, has a crucial impact on tumorigenesis. KIAA1429 is the key component of the m6A methyltransferase complex, in which KIAA1429 functions as a scaffold to bridge the catalytic core proteins. KIAA1429 is often overexpressed in malignances, associated with patient prognosis, and required for tumorigenesis. KIAA1429 regulates the expression of a number of tumor-associated genes in an m6A -dependent manner, and thus, contributes to cell proliferation, migration, drug resistance, tumor formation and metastasis. This review focuses on recent progress in the understanding of roles and mechanisms of KIAA1429 in cancers, and offers ideas for potential anti-cancer therapeutic methods by targeting KIAA1429. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 1565 KiB  
Review
The Role of Mitochondrial Permeability Transition in Bone Metabolism, Bone Healing, and Bone Diseases
by Xiting Zhu, Ziqi Qin, Min Zhou, Chen Li, Junjun Jing, Wushuang Ye and Xueqi Gan
Biomolecules 2024, 14(10), 1318; https://doi.org/10.3390/biom14101318 - 17 Oct 2024
Viewed by 1018
Abstract
Bone is a dynamic organ with an active metabolism and high sensitivity to mitochondrial dysfunction. The mitochondrial permeability transition pore (mPTP) is a low-selectivity channel situated in the inner mitochondrial membrane (IMM), permitting the exchange of molecules of up to 1.5 kDa in [...] Read more.
Bone is a dynamic organ with an active metabolism and high sensitivity to mitochondrial dysfunction. The mitochondrial permeability transition pore (mPTP) is a low-selectivity channel situated in the inner mitochondrial membrane (IMM), permitting the exchange of molecules of up to 1.5 kDa in and out of the IMM. Recent studies have highlighted the critical role of the mPTP in bone tissue, but there is currently a lack of reviews concerning this topic. This review discusses the structure and function of the mPTP and its impact on bone-related cells and bone-related pathological states. The mPTP activity is reduced during the osteogenic differentiation of mesenchymal stem cells (MSCs), while its desensitisation may underlie the mechanism of enhanced resistance to apoptosis in neoplastic osteoblastic cells. mPTP over-opening triggers mitochondrial swelling, regulated cell death, and inflammatory response. In particular, mPTP over-opening is involved in dexamethasone-induced osteoblast dysfunction and bisphosphonate-induced osteoclast apoptosis. In vivo, the mPTP plays a significant role in maintaining bone homeostasis, with many bone disorders linked to its excessive opening. Genetic deletion or pharmacological inhibition of the over-opening of mPTP has shown potential in enhancing bone injury recovery and alleviating bone diseases. Here, we review the findings on the relationship of the mPTP and bone at both the cellular and disease levels, highlighting novel avenues for pharmacological approaches targeting mitochondrial function to promote bone healing and manage bone-related disorders. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

16 pages, 2015 KiB  
Review
The Roles of Mitochondria in Human Being’s Life and Aging
by Hiroko P. Indo, Moragot Chatatikun, Ikuo Nakanishi, Ken-ichiro Matsumoto, Motoki Imai, Fumitaka Kawakami, Makoto Kubo, Hiroshi Abe, Hiroshi Ichikawa, Yoshikazu Yonei, Hisashi J. Beppu, Yukiko Minamiyama, Takuro Kanekura, Takafumi Ichikawa, Atthaphong Phongphithakchai, Lunla Udomwech, Suriyan Sukati, Nurdina Charong, Voravuth Somsak, Jitbanjong Tangpong, Sachiyo Nomura and Hideyuki J. Majimaadd Show full author list remove Hide full author list
Biomolecules 2024, 14(10), 1317; https://doi.org/10.3390/biom14101317 - 17 Oct 2024
Viewed by 1704
Abstract
The universe began 13.8 billion years ago, and Earth was born 4.6 billion years ago. Early traces of life were found as soon as 4.1 billion years ago; then, ~200,000 years ago, the human being was born. The evolution of life on earth [...] Read more.
The universe began 13.8 billion years ago, and Earth was born 4.6 billion years ago. Early traces of life were found as soon as 4.1 billion years ago; then, ~200,000 years ago, the human being was born. The evolution of life on earth was to become individual rather than cellular life. The birth of mitochondria made this possible to be the individual life. Since then, individuals have had a limited time of life. It was 1.4 billion years ago that a bacterial cell began living inside an archaeal host cell, a form of endosymbiosis that is the development of eukaryotic cells, which contain a nucleus and other membrane-bound compartments. The bacterium started to provide its host cell with additional energy, and the interaction eventually resulted in a eukaryotic cell, with both archaeal (the host cell) and bacterial (mitochondrial) origins still having genomes. The cells survived high concentrations of oxygen producing more energy inside the cell. Further, the roles of mitochondria in human being’s life and aging will be discussed. Full article
(This article belongs to the Special Issue Mitochondrial Quality Control in Aging and Neurodegeneration)
Show Figures

Graphical abstract

13 pages, 1968 KiB  
Article
Gintonin Stimulates Glucose Uptake in Myocytes: Involvement of Calcium and Extracellular Signal-Regulated Kinase Signaling
by Rami Lee, Kyung-Jong Won, Ji-Hun Kim, Byung-Hwan Lee, Sung-Hee Hwang and Seung-Yeol Nah
Biomolecules 2024, 14(10), 1316; https://doi.org/10.3390/biom14101316 - 17 Oct 2024
Viewed by 696
Abstract
Ginseng has anti-hyperglycemic effects. Gintonin, a glycolipoprotein derived from ginseng, also stimulates insulin release from pancreatic beta cells. However, the role of gintonin in glucose metabolism within skeletal muscle is unknown. Here, we showed the effect of gintonin on glucose uptake, glycogen content, [...] Read more.
Ginseng has anti-hyperglycemic effects. Gintonin, a glycolipoprotein derived from ginseng, also stimulates insulin release from pancreatic beta cells. However, the role of gintonin in glucose metabolism within skeletal muscle is unknown. Here, we showed the effect of gintonin on glucose uptake, glycogen content, glucose transporter (GLUT) 4 expression, and adenosine triphosphate (ATP) content in C2C12 myotubes. Gintonin (3–30 μg/mL) dose-dependently stimulated glucose uptake in myotubes. The expression of GLUT4 on the cell membrane was increased by gintonin treatment. Treatment with 1–3 μg/mL of gintonin increased glycogen content in myotubes, but the content was decreased at 30 μg/mL of gintonin. The ATP content in myotubes increased following treatment with 10–100 μg/mL gintonin. Gintonin transiently elevated intracellular calcium concentrations and increased the phosphorylation of extracellular signal-regulated kinase (ERK). Gintonin-induced transient calcium increases were inhibited by treatment with the lysophosphatidic acid receptor inhibitor Ki16425, the phospholipase C inhibitor U73122, and the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate. Gintonin-stimulated glucose uptake was decreased by treatment with U73122, the intracellular calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetra(acetoxymethyl) ester, and the ERK inhibitor PD98059. These results show that gintonin plays a role in glucose metabolism by increasing glucose uptake through transient calcium increases and ERK signaling pathways. Thus, gintonin may be beneficial for glucose metabolism control. Full article
(This article belongs to the Special Issue Therapeutic Potential of Natural Products in Metabolic Diseases)
Show Figures

Figure 1

14 pages, 2418 KiB  
Review
Fungal L-Methionine Biosynthesis Pathway Enzymes and Their Applications in Various Scientific and Commercial Fields
by Kamila Rząd, Aleksandra Kuplińska and Iwona Gabriel
Biomolecules 2024, 14(10), 1315; https://doi.org/10.3390/biom14101315 - 17 Oct 2024
Viewed by 778
Abstract
L-methionine (L-Met) is one of the nine proteinogenic amino acids essential for humans since, in human cells, there are no complete pathways for its biosynthesis from simple precursors. L-Met plays a crucial role in cellular function as it is required for proper protein [...] Read more.
L-methionine (L-Met) is one of the nine proteinogenic amino acids essential for humans since, in human cells, there are no complete pathways for its biosynthesis from simple precursors. L-Met plays a crucial role in cellular function as it is required for proper protein synthesis, acting as an initiator. Additionally, this amino acid participates in various metabolic processes and serves as a precursor for the synthesis of S-adenosylmethionine (AdoMet), which is involved in the methylation of DNA molecules and phospholipids, as well as in maintaining genome stability. Due to its importance, fungal L-methionine biosynthesis pathway enzymes are being intensively studied. This review presents the current state of the art in terms of their cellular function, usefulness as molecular markers, antifungal targets, or industrial approaches. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

12 pages, 2239 KiB  
Article
Some Glycoproteins Expressed on the Surface of Immune Cells and Cytokine Plasma Levels Can Be Used as Potential Biomarkers in Patients with Colorectal Cancer
by Tsvetelina Batsalova, Denitsa Uzunova, Gergana Chavdarova, Tatyana Apostolova and Balik Dzhambazov
Biomolecules 2024, 14(10), 1314; https://doi.org/10.3390/biom14101314 - 16 Oct 2024
Viewed by 814
Abstract
Colorectal cancer (CRC) is a leading cause of mortality worldwide. Its incidence holds a major position among the most common life-threatening diseases. Hence, the early identification and precise characterization of disease activity based on proper biomarkers are of utmost importance for therapeutic strategy [...] Read more.
Colorectal cancer (CRC) is a leading cause of mortality worldwide. Its incidence holds a major position among the most common life-threatening diseases. Hence, the early identification and precise characterization of disease activity based on proper biomarkers are of utmost importance for therapeutic strategy and patient survival. The identification of new biomarkers for colorectal cancer or disease-specific levels/combinations of biomarkers will significantly contribute to precise diagnosis and improved personalized treatment of patients. Therefore, the present study aims to identify colorectal cancer-specific immunological biomarkers. The plasma levels of several cytokines (interleukin-1β /IL-1β/, IL-2, IL-4, IL-10, IL-12, IL-15, TGFβ and IFNγ) of 20 patients with colorectal cancer and 21 healthy individuals were determined by ELISA. The expression of several types of glycoproteins on the surface of peripheral blood leukocytes isolated from CRC patients and healthy volunteers was evaluated by flow cytometry. Correlations between cytokine levels and cell surface glycoprotein expression were analyzed. The obtained results demonstrated significantly elevated levels of CD80, CD86, CD279 and CD274 expressing leukocyte populations in the cancer patient group, while the numbers of NK cells and CD8- and CD25-positive cells were decreased. Based on these data and the correlations with cytokine levels, it can be concluded that CD25, CD80, CD86, CD274 and CD279 glycoproteins combined with specific plasma levels of IL-1β, IL-2, IL-15 and TGFβ could represent potential biomarkers for colorectal cancer. Full article
(This article belongs to the Special Issue Immune-Related Biomarkers: 2nd Edition)
Show Figures

Figure 1

16 pages, 685 KiB  
Article
Altered Gut Microbiota Patterns in Young Children with Recent Maltreatment Exposure
by Gergana Karaboycheva, Melanie L. Conrad, Peggy Dörr, Katja Dittrich, Elena Murray, Karolina Skonieczna-Żydecka, Mariusz Kaczmarczyk, Igor Łoniewski, Heiko Klawitter, Claudia Buss, Sonja Entringer, Elisabeth Binder, Sibylle M. Winter and Christine Heim
Biomolecules 2024, 14(10), 1313; https://doi.org/10.3390/biom14101313 - 16 Oct 2024
Viewed by 844
Abstract
Background: The brain and the intestinal microbiota are highly interconnected and especially vulnerable to disruptions in early life. Emerging evidence indicates that psychosocial adversity detrimentally impacts the intestinal microbiota, affecting both physical and mental health. This study aims to investigate the gut microbiome [...] Read more.
Background: The brain and the intestinal microbiota are highly interconnected and especially vulnerable to disruptions in early life. Emerging evidence indicates that psychosocial adversity detrimentally impacts the intestinal microbiota, affecting both physical and mental health. This study aims to investigate the gut microbiome in young children in the immediate aftermath of maltreatment exposure. Methods: Maltreatment exposure was assessed in 88 children (ages 3–7) using the Maternal Interview for the Classification of Maltreatment [MICM]. Children were allocated to three groups according to the number of experienced maltreatment categories: no maltreatment, low maltreatment, and high maltreatment exposures. Stool samples were collected and analyzed by 16S rRNA sequencing. Results: Children subjected to high maltreatment exposure exhibited lower alpha diversity in comparison to those with both no and low maltreatment exposure (Simpson Index, Tukey post hoc, p = 0.059 and p = 0.007, respectively). No significant distinctions in beta diversity were identified. High maltreatment exposure was associated with the enrichment of several genera from the class Clostridia (Clostridium, Intestinibacter, Howardella and Butyrivibrio) and the depletion of the genus Phocaeicola (class Bacteriodia). Conclusions: Severe maltreatment exposure is associated with alterations in the gut microbiota of young children. Longitudinal trajectories of intestinal microbiota composition in the context of maltreatment may reveal important insights related to psychiatric and somatic health outcomes. Full article
Show Figures

Figure 1

16 pages, 2591 KiB  
Article
Short Link N Modulates Inflammasome Activity in Intervertebral Discs Through Interaction with CD14
by Muskan Alad, Michael P. Grant, Laura M. Epure, Sunny Y. Shih, Geraldine Merle, Hee-Jeong Im, John Antoniou and Fackson Mwale
Biomolecules 2024, 14(10), 1312; https://doi.org/10.3390/biom14101312 - 16 Oct 2024
Viewed by 790
Abstract
Intervertebral disc degeneration and pain are associated with the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome activation and the processing of interleukin-1 beta (IL-1β). Activation of thehm inflammasome is triggered by Toll-like receptor stimulation and requires the cofactor receptor cluster [...] Read more.
Intervertebral disc degeneration and pain are associated with the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome activation and the processing of interleukin-1 beta (IL-1β). Activation of thehm inflammasome is triggered by Toll-like receptor stimulation and requires the cofactor receptor cluster of differentiation 14 (CD14). Short Link N (sLN), a peptide derived from link protein, has been shown to modulate inflammation and pain in discs in vitro and in vivo; however, the underlying mechanisms remain elusive. This study aims to assess whether sLN modulates IL-1β and inflammasome activity through interaction with CD14. Disc cells treated with lipopolysaccharides (LPS) with or without sLN were used to assess changes in Caspase-1, IL-1β, and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). Peptide docking of sLN to CD14 and immunoprecipitation were performed to determine their interaction. The results indicated that sLN inhibited LPS-induced NFκB and Caspase-1 activation, reducing IL-1β maturation and secretion in disc cells. A significant decrease in inflammasome markers was observed with sLN treatment. Immunoprecipitation studies revealed a direct interaction between sLN and the LPS-binding pocket of CD14. Our results suggest that sLN could be a potential therapeutic agent for discogenic pain by mitigating IL-1β and inflammasome activity within discs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 3440 KiB  
Article
Caution for Multidrug Therapy: Significant Baroreflex Afferent Neuroexcitation Coordinated by Multi-Channels/Pumps Under the Threshold Concentration of Yoda1 and Dobutamine Combination
by Yin-zhi Xu, Zhao-yuan Xu, Hui-xiao Fu, Mao Yue, Jia-qun Li, Chang-peng Cui, Di Wu and Bai-yan Li
Biomolecules 2024, 14(10), 1311; https://doi.org/10.3390/biom14101311 - 16 Oct 2024
Viewed by 570
Abstract
Multi-drug therapies are common in cardiovascular disease intervention; however, io channel/pump coordination has not been tested electrophysiologically. Apparently, inward currents were not elicited by Yoda1/10 nM or Dobutamine/100 nM alone in Ah-type baroreceptor neurons, but were by their combination. To verify this, electroneurography [...] Read more.
Multi-drug therapies are common in cardiovascular disease intervention; however, io channel/pump coordination has not been tested electrophysiologically. Apparently, inward currents were not elicited by Yoda1/10 nM or Dobutamine/100 nM alone in Ah-type baroreceptor neurons, but were by their combination. To verify this, electroneurography and the whole-cell patch-clamp technique were performed. The results showed that Ah- and C-volley were dramatically increased by the combination at 0.5 V and 5 V, in contrast to A-volley, as consistent with repetitive discharge elicited by step and ramp with markedly reduced current injection/stimulus intensity. Notably, a frequency-dependent action potential (AP) duration was increased with Iberiotoxin-sensitive K+ component. Furthermore, an increased peak in AP measured in phase plots suggested enhanced Na+ influx, cytoplasmic Ca2+ accumulation through reverse mode of Na+/Ca2+ exchanger, and, consequently, functional KCa1.1 up-regulation. Strikingly, the Yoda1- or Dbtm-mediated small/transient Na+/K+-pump currents were robustly increased by their combination, implying a quick ion equilibration that may also be synchronized by hyperpolarization-induced voltage-sag, enabling faster repetitive firing. These novel findings demonstrate multi-channel/pump collaboration together to integrate neurotransmission at the cellular level for baroreflex, providing an afferent explanation in sexual dimorphic blood pressure regulation, and raising the caution regarding the individual drug concentration in multi-drug therapies to optimize efficacy and minimize toxicity. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop