Astragalus membranaceus: A Traditional Chinese Medicine with Multifaceted Impacts on Breast Cancer Treatment
Abstract
:1. Introduction
2. Breast Cancer Classification
3. Chemical Compounds in AM
4. Application of AM in the Treatment of Breast Cancer
4.1. Chemical Compounds
4.1.1. Calycosin
4.1.2. Formononetin
4.1.3. Astragaloside IV
4.1.4. Biochanin A
4.1.5. Other Compounds
No. | Name | Ref. | Subjects | Dose | IC50 Value | Effects |
---|---|---|---|---|---|---|
1 | Calycosin | [36] | MCF-7(+++) | 0–200 μM | 89.45 μM | RASD1↑, Bax/BCL-2↑, apoptosis↑ |
[39] | MCF-7(+++), ovariectomized mice | 0–32 μM, 1–4 mg/kg/Day | 33.6 μM, - | p-ERK1/2↑, apoptosis↓, proliferation↑ | ||
[29] | T47D(+++), MCF-7(+++), T47D(+++) xenograft tumor mouse model | 0–400 μM, 0–400 μM, - | 128.6 μM, 136.3 μM, - | BATF↓, TGFβ1↓, Ecadherin↑, N-cadherin↓, Vimentin↓, CD147↓, MMP-2↓, MMP-9↓, EMT↓, proliferation↓, invasion and migration↓ | ||
[30] | MCF-7(+++), T47D(+++), MDA-MB-231(---), SK-BR-3(--+) | 0–80 μM for all models | 56.1 μM, 58.4 μM, 75.6 μM, 92.5 μM | ERα-lncRNA HOTAIR↓, BRIP1↓ HuR↓, IGF2BP1↓ proliferation↓, apoptosis↑ | ||
[40] | HUVECs, HMEC-1, MCF-7(+++), T-47D(+++), MCF-7(+++) xenograft tumor mouse model | 1–60 μM, 1–60 μM, 1–60 μM, 1–60 μM, 8 mg/kg/Day | -, -, 77.6 μM, 111.8 μM, - | RP11-65M17.3↓, ERK1/2↓, Akt phosphorylation↓, BRIP1↓, PARP-1↑ proliferation↑ | ||
[31] | MCF-7(+++), T47D(+++) | 0–150 μM for all models | 665.1 μM, 882.0 μM | Foxp3↓, VEGF↓, MMP-9↓, invasion and migration↓ | ||
[32] | MDA-MB-231(---) | 150 μM | - | Rab27B↓, β-catenin and VEGF↓ invasion and migration↓ | ||
[33] | MDA-231(---), MDA435(---), MCF-7(+++), T-47D(+++) | 0–100 μM | 311.6 μM, 395.3 μM, 47.7 μM, 61.6 μM | IGF-1R↓, ERβ↑, p38MAPK↑, Akt↓, PARP-1↓ proliferation↓, apoptosis↑ | ||
[34] | MCF-7(+++), T-47D(+++), MDA-231(---), MDA-435(---) | 0–100 μM for all models | 50.8 μM, 63.1 μM, 258.3 μM, 342.4 μM | Erβ↑, IGF-1R↓, PARP-1↑, miR-375↓, proliferation↓, apoptosis↑ | ||
[38] | MCF-7(+++) | 0–100 μM | 52.0 μM | PI3K/Akt↓, HOTAIR↓, proliferation↓, apoptosis↑ | ||
[35] | MDA-MB-468(---), SK-BR-3(--+), MDA-MB-231(---), MCF-7(+++), T-47D(+++), MCF10A/MCF-7(+++) xenograft tumor mouse model, SK-BR-3(--+) xenograft tumor mouse model | 1–32 μM, 1–32 μM, 1–32 μM, 1–32 μM, 1–32 μM, 1–32 μM, 55 mg/kg, 55 mg/kg | 40.0 μM, 43.3 μM, -, 35.5 μM, 42.9 μM, 168.6 μM, -, - | p-SRC↓, p-EGFR↓, p-ERK1/2↓, p-Akt↓, R7-7↑, GPR30↓, proliferation↓ | ||
2 | Formononetin | [42] | MDA-MB-231(---), 4T1(+++), MDA-MB-231(---) xenograft tumor mouse model | 0–160 μM, 0–160 μM, 10–20 mg/kg | 638.1 μM, 2125.0 μM, - | PI3K/Akt↓, MMP-2↓, MMP-9↓, invasion and migration↓ |
[43] | MCF-7(+++), MDA-MB-468(---) | 0–100μM for all models | 151.9 μM, 163.5 μM | pSTING/STING↓, p-p65/p65↓, PD-L1↓, STING-NF-κB↓, proliferation↓, invasion↓ | ||
[44] | MCF7(+++), TNBC patients, MCF7(+++) xenograft tumor mouse model | 80 μM, -, - | - | BACH1↓, p53/PINK1/PARK2↑, BAX↑, caspase3↑, BCL↓, cytochrome C↑, caspases↑ apoptosis↑, invasion↓ | ||
[46] | MDA-MB-231(---), MDA-MB-231(---)/paclitaxel resistance, MDA-MB-231(---)/paclitaxel resistance xenograft tumor mouse model | 0–80 μM, 0–80 μM, 30 mg/kg/3 day | 1298.0 μM, 49.6 μM, - | miR-199a-3p↓, mTOR↑, drug resistance↓ | ||
[45] | MCF-7(+++), MCF-7(+++) xenograft tumor mouse model | 0–100 μM, 15–60 mg/kg/day | 56.0 μM, - | IGF1/IGF1R-PI3K/Akt↓, p-IGF-1R↓, p-Akt↓, cyclin D1↓, proliferation↓ | ||
[50] | MCF-7(+++), T-47D(+++), MDA-MB-435 S1(---) | 0–100 μM for all models | 51.3 μM, 65.9 μM, 177.6 μM | Ras-p38MAPK↑, p-p38↑, Bax/BCL-2↑, Ras↑, Raf-1↑, apoptosis↑ | ||
[48] | HUVECs, T-47D(+++), SK-BR-3(--+), MCF-7(+++) MDA-MB-231(---), MDA-MB-231(---) xenograft tumor mouse model | 0–150 μM, 0–150 μM, 0–150 μM, 0–150 μM, 0–150 μM, 100 mg/kg/day | 68 μM *, 31 μM *, 32 μM *, 27 μM *, 16 μM *, - | FGFR2 pathway↓, STAT3↓, PI3K↓, Akt↓, p-MMP-2/9↓, TGF-β↓, CD31↓, COX-2↓, angiopoietin-2↓, cell growth and angiogenesis↓ | ||
[49] | MCF-7(+++) xenograft tumor mouse model | 0.1–0.4 mg/g | - | PTEN↑, p-Akt↓, VEGF↓, angiogenesis↓, apoptosis↑ | ||
[47] | MDA-MB-231(---), BT-549(---), MCF-10A | 0–160 μM for all models | 200.9 μM, 349.4 μM, - | lncRNA AFAP1-AS1-miR-195/miR-545↓, proliferation↓, invasion and migration↓, drug resistance↓ | ||
[34] | MCF-7(+++), T-47D(+++), MDA-231(---), MDA-435(---) | 0–100 μM for all models | 75.0 μM, 75.3 μM, 211.2 μM, 342.4 μM | Erβ↑, IGF-1R↓, PARP-1↑, miR-375↓, proliferation↓, apoptosis↑ | ||
3 | Astragaloside IV | [12] | MDA-MB-231(---), MDA-MB-231(---) xenograft tumor mouse model | 0–100 μg/mL, 20 mg/kg/3 day | 78.0 μg/mL, - | Vav3↓, Rac1/MAPK↓, ERK1/2↓, JNK↓, MMP-2↓, MMP-9↓, proliferation and migration↓ |
[53] | MDA-MB-231/ADR(---), BT-549/ADR(---),MDA-MB-468/ADR(---) | 40 μg/mL for all models | - | Hsa-circ-0001982-miR-206/miR-613↓, drug resistance↓, glycolysis↓, invasion and migration↓ | ||
[54] | MCF-10A, MCF-7(+++), MDA-MB-231(---), MDA-MB-468(---), MDA-MB-231(---) xenograft tumor mouse model | 0–80 μg/mL, 0–80 μg/mL, 0–80 μg/mL, 0–80 μg/mL, 20 mg/kg/3 day | -, 70.5 μg/mL, 89.9 μg/mL, - | TRHDE-AS1↑, MMP-2↓, MMP-9↓, proliferation↓, migration↓ | ||
[55] | THP-1, MDA-MB-231(---), MCF-7(+++), MDA-MB-231(---) xenograft tumor mouse model | 0–100 μM, 0–100 μM, 0–100 μM, 0–100 μM, 40 mg/kg/day | - | TGF-β↓, Akt/FoxO1↓, TGF-β↓, M2 macrophage polarization↓, proliferation↓, invasion and migration↓ | ||
[52] | MCF-7(+++), MDA-MB-231(---) | 0–200 μM for all models | 32.41 μM | proliferation↓, apoptosis↑ | ||
4 | Biochanin A | [60] | T47D(+++), MCF-7(+++) | 0–50 μM for all models | 63.9 μM, 84.8 μM | miR-375↑, Erα↑, BCL-2↑, proliferation↑ |
[61,62] | SK-BR-3(--+), MCF-10A, NIH3T3 | 0–100 μM for all models | 72.6 μM, 1749 μM, - | Erk1/2↓, Akt↓, mTOR↓, NF-κB↓, HER-2↓, MMP-9↓, MT-MMP1↓, cellular viability and invasive capacity↓ | ||
[57] | SD rat | 500 μg/g/2 day | - | SOD↑, catalase↑, GPx↑, GST↑, DT-diaphorase/GSH↑, LDH/LPO↓, antioxidant capacity↑ | ||
[58] | T-47D(+++) | 0–40 μg/mL | 33.3 μg/mL | p53↑, cell division↓ | ||
5 | Genistein | [38] | MCF-7(+++) | 0–100 μM | 59.8 μM | PI3K/Akt↓, HOTAIR↓, proliferation↓, apoptosis↑ |
6 | Cyclocanthoside E, Astrasieversianin X, Macrophylosaponins B and D | [52] | MCF-7(+++), MDA-MB-231(---) | 0–200 μM for all models | cyclocanthoside E (54.74 μM *), astrasieversianin X (61.27 μM *), macrophylosaponins B (20.77 μM *), macrophylosaponins D (3.89 μM *) | proliferation↓, apoptosis↑ |
7 | Astragaloside III | [63] | MCF-7(+++), MCF-7(+++) xenograft tumor mouse model | 0–100 ng/mL, 0–20 mg/kg/2 day | 10.2 ng/mL, - | apoptosis↑ |
8 | Cycloartane glycosides | [64] | MCF-7(+++) | 1–50 μM | - | cell viability↓ |
9 | Diosmetin-7-O-rutinoside | [65] | MCF-10A, MCF-7(+++), MDA-MB-231(---) | - | 8.66 μg/m *, 13.65 μg/mL *, 12.89 μg/mL * | cellular necrosis↑ |
10 | Astragaloside I, astragaloside II, astragaloside III | [67] | MDA-MB-231(---) | - | astragaloside I (0.209 mg/mL *), astragaloside II (0.205 mg/mL *), astragaloside III (0.194 mg/mL *) | cell viability↓, apoptosis↑ |
11 | Ononin | [66] | MDA-MB-231(---), 4 T1(---), MDA-MB-231(---) xenograft tumor mouse model | 0–10 mM, 0–10 mM, 1–10 mg/kg/i.p | 2.864 mM, 2.031 mM, - | Nrf2/SLC7A11↓, malondialdehyde↑, SOD↓, ROS↑, cell viability↓, apoptosis↑ |
4.2. AM Extracts in the Treatment of Breast Cancer
4.2.1. AM Polysaccharides
4.2.2. Total Flavonoids from AM
4.2.3. AM Water or Alcohol Extracts
No. | Name | Ref. | Subjects | Dose | IC50 Value | Effects |
---|---|---|---|---|---|---|
1 | AM polysaccharides | [69] | MCF-7(+++), MDA-MB-231(---) | 800 μg/mL for all models | 836.7 μg/mL, 668.1 μg/mL | Wnt/β-catenin↓, snail↓, vimentin↓, E-cadherin↑, proliferation↓, invasion and migration↓ |
[84] | MCF-7(+++), RAW264.7 | 0–1 mg/mL for all models | - | NO↑, TNF-α↑, Bax/BCL-2↑, apoptosis↑ | ||
[70] | 4T-1(---) xenograft tumor mouse model | 0–200 mg/kg/day | - | EGFR↓, ANXA1↑, apoptosis↑, cell growth↓ | ||
[71] | MCF-7(+++), MDA-MB-231(---) | 0–2 mg/mL for all models | 2.089 mg/mL, 0.823 mg/mL | Cyclin B1↓, CDC6↓, p53↑, proliferation↓, invasion and migration↓ | ||
[74] | 4T-1(---) xenograft tumor mouse model | 300 mg/kg/day | - | migration↓ | ||
[73] | RAW 264.7, TLR4 deficient mice, myd88 deficient mice, EAC xenograft tumor mouse model | 400 μg/mL, 500 mg/kg/day, 500 mg/kg/day, 500 mg/kg/day | - | TLR4-MyD88↑, NO↑, IL-1β↑, IL-6↑, TNF-α↑, cellular immune response↑ | ||
[72] | MDA-MB-231(---) | 0–2 mg/mL | 1.08 mg/mL | PIK3CG/Akt/BCL2↓, p-Akt↓, cell viability↓, invasion↓ | ||
[75] | RAW264.7, 4T-1(---), 4T-1(---) xenograft tumor mouse model | 0–1000 μg/mL, 0–1000 μg/mL, 100–200 mg/kg/day | - | TNF-α↑, IFN-γ↑, Bax/BCL-2↑, caspase-9↑, caspase-3↑, cellular immune response↑ | ||
2 | The supernatant liquid of AM polysaccharide-treated RAW264.7 cell | [76] | RAW264.7, MCF-7(+++) tissue-engineered tumor model | 0, 500, 1000 μg/mL (AM polysaccharide) | - | TNF-α↑, NO↑, cellular immune response↑, BCL-2↓, Bax↑, apoptosis↑ |
3 | AM flavonoids | [77] | MDA-MB-468(---), MDA-MB-361(---), BT20(---), MDA-MB-468(---), MDAMB-361(---), BT20(---) xenograft tumor mouse model | 0–2 mg/mL, 0–2 mg/mL, 0–2 mg/mL, 0–400 mg/kg, 0–400 mg/kg, 0–400 mg/kg | 1.300 mg/mL, 2.847 mg/mL, 2.982 mg/mL, -, -, - | BCL-2↑, caspase-9↑, BRCA1↑, FAK↓, apoptosis↑, invasion and migration↓ |
4 | Water extract of AM | [78] | DMBA-induced rat breast cancer model | 0–240 mg/kg/day | - | CA15.3↓, p53↓, MDA↓, calcium ions↓, PCNA↓, CAT↑, exert prophylactic effect, reduce the pathological deformity of breast cancer tissue |
[79] | MCF-7(+++), SK-BR-3(--+), MDA-MB-231(---) | 0–100 μg/mL for all models | 61.1 μg/mL, 86.8 μg/mL, 58.7 μg/mL | p-PI3K↓, p-GSK3β↓, p-Akt↓, p-mTOR↓, total-mtor↑, proliferation↓, apoptosis↑ | ||
[85] | MDA-231(---), AGS, KATO-III, HT29, Mel7, Mel14 | 0–100 μg/mL for all models | -, 34.9 μg/mL, -, -, -, - | cell growth↓ | ||
5 | 70% ethanol extract of AM | [80] | MCF-7(+++) scaffold-based 3D model | 0–2000 μg/mL | 253.2 μg/mL * | caspase-3↑, caspase-8↑, caspase-9↑, Ki-67↓, proliferation↓, apoptosis↑ |
6 | AM injection | [81] | MDA-MB-231(---) | 0–200 mg/mL | 3.5 mg/mL | proliferation↓, apoptosis↑ |
[82] | MDA-MB-468(---) | 0–1 g/mL | - | EGFR↓, p53↓, proliferation↓, apoptosis↑ | ||
7 | AM tincture | [83] | breast cancer patients | 10 mL/day | - | maintaining the numbers of peripheral blood white blood cells and absolute neutrophils in breast cancer patients after chemotherapy |
4.3. Traditional Chinese Medicine Formulas Containing AM
No. | Prescription | Ref. | Subjects | Dose | IC50 Value | Effects |
---|---|---|---|---|---|---|
1 | SH003 (containing AM, Angelica sinensis, and Trichosanthes kirilowii with 1:1:1 ratio) | [86] | Hs578T(---), MDA-MB-231(---), ZR-751(++-), MCF-7(+++), T-47D(+++) | 0–200 μg/mL for all models | 124.4 μg/mL, 115.0 μg/mL, 165.4 μg/mL, 477.3 μg/mL, - | PARP cleavage protein↑, p73↑, apoptosis↑ |
[87] | MCF-7(+++), T-47D(+++), SK-BR-3(--+), BT-20(---), MDA-MB-231(---), GBL-60/MDA-MB-231(---) xenograft tumor mouse model | 0–500 μg/mL, 0–500 μg/mL, 0–500 μg/mL, 0–500 μg/mL, 0–500 μg/mL, 500 mg/kg/day | 63.5 μg/mL, 405.2 μg/mL, 532.8 μg/mL, -, 105.4 μg/mL, 201.6 μg/mL, - | STAT3-IL-6↓, PARP cleavages↑, p-STAT3↓, IL-6↓, cyclin D↓, MMP-9↓, VEGF↓, survivin↓, cell growth↓, invasion and migration↓ | ||
[88] | MDA-MB-231(---), HCC-38(---)/MDA-MB-231(---) xenograft tumor mouse model | 0–500 μg/mL, 0–500 μg/mL, 500 mg/kg/day | 47.2 μg/mL, 144.7 μg/mL,- | cathepins↓, STAT3-mtor↓, p62↑, p62/SQSTM1↑, ROS↑, cell growth↓, apoptosis↑ | ||
[89] | MCF-7(+++), MCF-7(+++)/paclitaxel-resistant | 0–1000 μg/mL, | 47.2 μg/mL, 144.7 μg/mL | STAT3↓, P-gp↓, MRPs↓, VEGF↓, MMP-2↓, drug resistance↓ | ||
2 | KSG-002 (containing AM and Angelica sinensis with 3:1 ratio) | [90] | MCF-10A, MDA-MB-231(---), BT-20(---), Raw264.7/MDA-MB-231(---) xenograft tumor mouse model, | 0–500 μg/mL, 0–500 μg/mL, 0–500 μg/mL, 0–500 μg/mL, 500 mg/kg/day | - | NF-κB↓, TNF-α↓, iNOS↓, COX-2↓, MMP-9↓, Fas↓, proliferation and migration↓ |
3 | RLT-03 (containing AM, Lonicerae japonicae Flos, Trichosanthes kirilowii, and Imperata cylindrica) | [13] | 4T-1(---), EMT-6(---), BT-549(---), MDA-MB-231(---), EMT6(---) xenograft tumor mouse model | 0–7.5 mg/mL, 0–7.5 mg/mL, 0–7.5 mg/mL, 0–7.5 mg/mL, 20mg/g/day | 2.387 mg/mL *, 2.002 mg/mL *, 2.583 mg/mL *, 0.638 mg/mL *, - | RTK ligands↓, VEGF↓, EGF↓, IL-10↓, TGF-β↓, CD34↓, proliferation↓, apoptosis↑ |
4 | Sanhuang decoction (containing AM, Rheum palmatum, and Curcuma longa with 3:1:1 ratio) | [92] | MCF-7(+++) xenograft tumor mouse model | 6.4 g/kg/2 day | - | PI3K/Akt/mTOR↓, Nrf2↑, TNF-α↑, IL-6↓, SOD↓, TAOC↓, MDA↓, VEGF↓, MMP-2↓, MMP-9↓, apoptosis↑, regulating inflammation and oxidative stress |
5 | BreastDefend™ (containing Coriolus versicolor, Ganoderma lucidum, Phellinus linteus, Scutellaria barbata, AM, Curcuma longa, diindolylmethane, and quercetin) | [14] | MDA-MB-231(---) xenograft tumor mouse model | 0–400 mg/kg | - | PLAU↓, CXCR4↓, migration↓ |
6 | AM and Vaccaria hispanic with 1:1 ratio | [94] | MCF7(+++), A549, T24, PANC-1, U-2 OS | 0–2 mg/mL for all models | 0.5 mg/mL, 0.7 mg/mL, 1.0 mg/mL, 0.7 mg/mL, 0.2 mg/mL | Akt↑, ERK1/2↑, p21↓, p27↓, apoptosis↑ |
7 | Fangji Huangqi decoction (containing Stephania tetrandra, AM, Glycyrrhiza uralensis, Atractylodes macrocephala with 4:5:2:3 ratio) | [93] | MB-MDA-231 | 0–64 mg/mL | 5.28 mg/mL * | apoptosis↑ |
4.4. Combination Therapy Involving AM
No. | Combination (Dose) | Subjects | Effects | Ref. |
---|---|---|---|---|
1 | Formononetin (0–150 μM, 50 mg/kg/day) Everolimus (0–2000 nM, 2 mg/kg/day) | MDA-MB-468(---)/MDA-MB-468(---) xenograft tumor mouse model | mTORC2↓, p-mTOR↓, p-p70S6K↓, PTEN↑, p-4EBP-1↑, proliferation↓, apoptosis↑, enhancing the effect of everolimus in inhibiting the growth of breast cancer cells | [95] |
2 | Astragaloside IV (0–90 μM, 0–90 μM, 50 mg/kg/day) Paclitaxel (0–70 nM, 0–70 nM, 10 mg/kg/day) | MCF-7(+++), MDA-MB-231(---), MDA-MB-231(---) xenograft tumor mouse model | CAV-1↓, eNOS/NO/ONOO−↑, p-ERK1/2↓, p-JNK↓, p-p38↑, enhancing paclitaxel sensitivity in breast cancer cells | [97] |
3 | Astragaloside IV (0–60 nM, 0–60 nM, 40 mg/kg/2 day) Paclitaxel (0–1 μM, 0–1 μM, 5 mg/kg/2 day) | MCF7(+++) with stemness, xenograft tumor mouse model using MCF-7(+++) with/without stemness | Sox2/Nanog↓, breast cancer plasticity↓, drug resistance↓ | [99] |
4 | Astragaloside IV (0–60 μM, 15 mg/kg/day) α-Solanine (0–64 μM, 5 mg/kg/day) Neferine (0–80 μM, 10 mg/kg/day) 2,3,5,6-tetramethylpyrazine (0–750 μM, 5 mg/kg/day) | MDA-MB-231(---)/MDA-MB-231(---) xenograft tumor mouse model | ATG16L1↑, ATG9B↑, ATG4D↑, TMEM74↓, TNF↓, HB-EGF↓, thrombospondin-2↓, amphiregulin↓, leptin↓, IGFBP-9↓, EGF↓, coagulation factor III↓, MMP-9↓, serpin E1↑, PF4↑, proliferation and migration↓, autophagy↑ | [98] |
5 | AM polysaccharides (0–100 μg/mL, 40 mg/kg/day) Paclitaxel (10 μM, 20 mg/kg/week) | 4T1(---), 4T1(---) xenograft tumor mouse model, RAW 264.7 | P-H2A↓, PARP↓, Chk1↓, p53↓, p21↓, BCL-Xl↑, MCL-1↑, the toxicity of paclitaxel to normal cells↓ | [104] |
6 | AM polysaccharides (200 mg/kg) 5-FU (20 mg/kg) | 4T-1(---) xenograft tumor mouse model | The antitumor effect of 5-FU↑, the immunosuppressive effect of 5-FU on the immune system↓ | [75] |
7 | Shenqi Fuzheng injection (0–320 μL/mL, 0–60 mg/kg/day) Cisplatin, (0–120 μM, 2 mg/kg/day) | MDA-MB-231/DDP(---) + M2,/MDA-MB-231/DDP(---) + M2 xenograft tumor mouse model | PI3K pathway↑, P-gp↓, ABCG2↓, CD206↓, CD86↑, PGE2, IL-6, CCL1↓, BCL-2↓, Bax↑, drug resistance↓, anti-tumor effect↑ | [100] |
8 | Astragaloside IV (15–30 μg/mL, 15–30 μg/mL) Doxorubicin (1 μM, 1 μM) | MCF-7(+++), neonatal rat cardiomyocytes | PI3K/Akt↑, ROS↓, LDH↓, CK-MB↓, cytochrome C↓, doxorubicin-induced decrease in ATP↓, SDH↑, ATP synthase activity↑, doxorubicin-induced mitochondrial damage and dysfunction↓, the cardiotoxicity of doxorubicin on cardiomyocytes↓ | [103] |
9 | Extract from AM, Angelica sinensis, and Trichosanthes kirilowii (0–500 μg/mL, -) Doxorubicin (0–1000 nM, -) | MDA-MB-231(---), MDA-MB-231(---) xenograft tumor mouse model | Bax↑, Caspases↑, PARP cleavages↑, BCL-2↓ | [105] |
10 | Extract from AM, Angelica sinensis, and Trichosanthes kirilowii (0–500 μg/mL, 0–500 μg/mL) Paclitaxel (0–1000 nM, 0–1000 nM) Tamoxifen (0–20 μM, 0–20 μM) | MCF-7(+++), paclitaxel-resistant MCF-7(+++) | P-gp↓, drug resistance↓ | [106] |
11 | Formononetin (0–160 μM) Metformin (0–300 μM) | MCF-7(+++) | ERK1/2↓, BCL-2↓, p-ERK1/2↓, proliferation↓ | [96] |
12 | Astragaloside IV (0–8 μg/mL, 0–8 μg/mL, 0.6–0.8mg/kg/day) Oxymatrine (0–4 μg/mL, 0–4 μg/mL, 1.2–1.6 mg/kg/day) | CTLL-2, 4T-1(---), NIH3T3/4T-1(---) xenograft tumor mouse model | FAP↓, α-SMA↓, CAF activation↓, T cells infiltrate through CAFs↑, the antitumor effect of immune cells↑ | [101] |
13 | Biochanin A (30–70 μM, 30–70 μM) Ginsenoside Rh2 (30–70 μM, 30–70 μM) | MDA-MB-231(---), MCF-7(+++) | p-p53↑, p-p38↑, p-ASK1↑, TRAF2↓ proliferation↓, enhancing the inhibition of cell invasion and migration↑ | [102] |
14 | Biochanin A (5, 15 mg/kg/day) Quercetin (5 mg/kg/day) Epigallocatechin-3-gallate (5 mg/kg/day) | MCF-7(+++) xenograft tumor mouse model | Tumor size↓ | [107] |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Bray, F.; Laversanne, M.; Sung, H.Y.A.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA–Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, G. Editorial: Methods in breast cancer. Front. Oncol. 2023, 13, 1304941. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, G.; Scardina, L.; Visconti, G.; Hayashi, A.; Masetti, R. Editorial: Update of Current Evidences in Breast Cancer Surgery. Front. Oncol. 2022, 12, 928467. [Google Scholar] [CrossRef]
- van Maaren, M.C.; de Munck, L.; de Bock, G.H. 10 year survival after breast-conserving surgery plus radiotherapy compared with mastectomy in early breast cancer in the Netherlands: A population-based study. Lancet Oncol. 2016, 17, 1158–1170. [Google Scholar] [CrossRef] [PubMed]
- Kunkler, I.H.; Williams, L.J.; Jack, W.J.L.; Cameron, D.A.; Dixon, J.M.; Investigators, P.I. Breast-conserving surgery with or without irradiation in women aged 65 years or older with early breast cancer (PRIME II): A randomised controlled trial. Lancet Oncol. 2015, 16, 266–273. [Google Scholar] [CrossRef]
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res. 2017, 50, 33. [Google Scholar] [CrossRef]
- Bedir, E.; Pugh, N.; Calis, I.; Pasco, D.S.; Khan, I.A. Immunostimulatory effects of cycloartane-type triterpene glycosides from Astragalus species. Biol. Pharm. Bull. 2000, 23, 834–837. [Google Scholar] [CrossRef]
- Block, K.I.; Mead, M.N. Immune system effects of echinacea, ginseng, and astragalus: A review. Integr. Cancer Ther. 2003, 2, 247–267. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Zu, Y.-G.; Fu, Y.-J.; Luo, M.; Zhao, C.-J.; Wang, W.; Zhao, B.-S.; Li, J.; Efferth, T. Preparation and antioxidant activity of Radix Astragali residues extracts rich in calycosin and formononetin. Biochem. Eng. J. 2011, 56, 84–93. [Google Scholar] [CrossRef]
- Wei, J.; Wen-yuan, G.; Pei-gen, X. Antidiabetic drugs of plant origin used in China: Compositions, pharmacology, and hypoglycemic mechanisms. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Medica 2003, 28, 108–113. [Google Scholar]
- Wang, R.-T.; Shan, B.-E.; Li, Q.-X. Extracorporeal experimental study on immuno-modulatory activity of Astragalus memhranaceus extract. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi = Chin. J. Integr. Tradit. West. Med. 2002, 22, 453–456. [Google Scholar]
- Jiang, K.; Lu, Q.; Li, Q.; Ji, Y.; Chen, W.; Xue, X. Astragaloside IV inhibits breast cancer cell invasion by suppressing Vav3 mediated Rac1/MAPK signaling. Int. Immunopharmacol. 2017, 42, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Cuiping, C.; Pu, R.; Weihua, Y. Study on the Anticancer Effect of an Astragaloside- and Chlorogenic Acid-Containing Herbal Medicine (RLT-03) in Breast Cancer. Evid. Based Complement. Altern. Med. 2020, 2020, 1515081. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Thyagarajan-Sahu, A.; Loganathan, J.; Eliaz, I.; Terry, C.; Sandusky, G.E.; Sliva, D. BreastDefend™ prevents breast-to-lung cancer metastases in an orthotopic animal model of triple-negative human breast cancer. Oncol. Rep. 2012, 28, 1139–1145. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Burstein, H.J.; Chew, H.; Dang, C.; et al. Breast Cancer, Version 3.2022. J. Natl. Compr. Cancer Netw. 2022, 20, 691–722. [Google Scholar] [CrossRef]
- Harbeck, N.; Gnant, M. Breast cancer. Lancet 2017, 389, 1134–1150. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thuerlimann, B.; Senn, H.J.; Panel Members. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Coates, A.S.; Winer, E.P.; Goldhirsch, A.; Gelber, R.D.; Gnant, M.; Piccart-Gebhart, M.; Thuerlimann, B.; Senn, H.J.; Panel Members. Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann. Oncol. 2015, 26, 1533–1546. [Google Scholar] [CrossRef]
- Wahba, H.A.; El-Hadaad, H.A. Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med. 2015, 12, 106–116. [Google Scholar] [CrossRef]
- Sheng, Z.; Jiang, Y.; Liu, J.; Yang, B. UHPLC-MS/MS Analysis on Flavonoids Composition in Astragalus membranaceus and Their Antioxidant Activity. Antioxidants 2021, 10, 1852. [Google Scholar] [CrossRef]
- Wang, C.-J.; He, F.; Huang, Y.-F.; Ma, H.-L.; Wang, Y.-P.; Cheng, C.-S.; Cheng, J.-L.; Lao, C.-C.; Chen, D.-A.; Zhang, Z.-F.; et al. Discovery of chemical markers for identifying species, growth mode and production area of Astragali Radix by using ultra-high-performance liquid chromatography coupled to triple quadrupole mass spectrometry. Phytomedicine 2020, 67, 153155. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Gu, M.; Kong, W.; Lin, Z.; Mao, J.; Zhang, M.; Jiang, L.; Liu, C.; Wang, Y.; et al. High-Throughput Phytochemical Unscrambling of Flowers Originating from Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) P. K. Hsiao and Astragalus membranaceus (Fisch.) Bug. by Applying the Intagretive Plant Metabolomics Method Using UHPLC-Q-TOF-MS/MS. Molecules 2023, 28, 6115. [Google Scholar] [CrossRef]
- Song, J.-Z.; Yiu, H.H.W.; Qiao, C.-F.; Han, Q.-B.; Xu, H.-X. Chemical comparison and classification of Radix Astragali by determination of isoflavonoids and astragalosides. J. Pharm. Biomed. Anal. 2008, 47, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Li, W.; Tang, C.; Jiang, J. Astragaloside IV, as a potential anticancer agent. Front. Pharmacol. 2023, 14, 1065505. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.-J.; Lai, W.-F. Chemical and Biological Properties of Biochanin A and Its Pharmaceutical Applications. Pharmaceutics 2023, 15, 1105. [Google Scholar] [CrossRef]
- Sohel, M.; Zahra Shova, F.T.; Shuvo, S.; Mahjabin, T.; Mojnu Mia, M.; Halder, D.; Islam, H.; Roman Mogal, M.; Biswas, P.; Saha, H.R.; et al. Unveiling the potential anti-cancer activity of calycosin against multivarious cancers with molecular insights: A promising frontier in cancer research. Cancer Med. 2024, 13, e6924. [Google Scholar] [CrossRef]
- Jiang, D.; Rasul, A.; Batool, R.; Sarfraz, I.; Hussain, G.; Mateen Tahir, M.; Qin, T.; Selamoglu, Z.; Ali, M.; Li, J.; et al. Potential Anticancer Properties and Mechanisms of Action of Formononetin. BioMed Res. Int. 2019, 28. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Wang, H.B.; Wang, S.F.; Wang, D.Q. [Research achievements on biological activities of calycosin]. Zhongguo Zhong Yao Za Zhi 2015, 40, 4339–4345. [Google Scholar]
- Zhang, Z.; Lin, M.; Wang, J.; Yang, F.; Yang, P.; Liu, Y.; Chen, Z.; Zheng, Y. Calycosin inhibits breast cancer cell migration and invasion by suppressing EMT via BATF/TGF-β1. Aging 2021, 13, 16009–16023. [Google Scholar] [CrossRef]
- Li, Y.; Miao, H.; Wei, W.; Tian, J.; Chen, J. Inhibitory effect of calycosin on breast cancer cell progression through downregulating lncRNA HOTAIR and downstream targets: HuR and IGF2BP1. Acta Biochim. Biophys. Sin. 2023, 55, 225–236. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Feng, C.; Wu, G.; Ye, Y.; Tian, J. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression. Cell. Physiol. Biochem. 2017, 44, 1775–1784. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Niu, M.; Qin, J.; Wang, Y.; Tian, J. Inactivation of Rab27B-dependent signaling pathway by calycosin inhibits migration and invasion of ER-negative breast cancer cells. Gene 2019, 709, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hou, R.; Zhang, X.; Ye, Y.; Wang, Y.; Tian, J. Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS ONE 2014, 9, e91245. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, X.; Ye, Y.; Wang, Y.; Tian, J. Estrogen Receptor Beta-Mediated Proliferative Inhibition and Apoptosis in Human Breast Cancer by Calycosin and Formononetin. Cell. Physiol. Biochem. 2013, 32, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wang, Y.; Zhang, X.; Ren, Q.; Li, R.; Huang, Y.; Lu, H.; Chen, J. Calycosin inhibits the in vitro and in vivo growth of breast cancer cells through WDR7-7-GPR30 Signaling. J. Exp. Clin. Cancer Res. 2017, 36, 153. [Google Scholar] [CrossRef]
- Tian, J.; Duan, Y.X.; Bei, C.Y.; Chen, J. Calycosin Induces Apoptosis by Upregulation of RASD1 in Human Breast Cancer Cells MCF-7. Horm. Metab. Res. 2013, 45, 593–598. [Google Scholar] [CrossRef]
- Chen, J.; Xiong, W.-B.; Xiong, Y.; Wu, Y.-Y.; Chen, X.-J.; Shao, Z.-J.; Liu, L.-T.; Kuang, W.-J.; Tan, X.-S.; Zhou, L.-M. Calycosin Stimulates Proliferation of Estrogen Receptor-Positive Human Breast Cancer Cells Through Downregulation of Bax Gene Expression and Upregulation of Bcl-2 Gene Expression at Low Concentrations. J. Parenter. Enter. Nutr. 2011, 35, 763–769. [Google Scholar] [CrossRef]
- Chen, J.; Lin, C.; Yong, W.; Ye, Y.; Huang, Z. Calycosin and Genistein Induce Apoptosis by Inactivation of HOTAIR/p-Akt Signaling Pathway in Human Breast Cancer MCF-7 Cells. Cell. Physiol. Biochem. 2015, 35, 722–728. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.; Hou, R.; Shao, Z.; Wu, Y.; Chen, X.; Zhou, L. Calycosin promotes proliferation of estrogen receptor-positive cells via estrogen receptors and ERK1/2 activation in vitro and in vivo. Cancer Lett. 2011, 308, 144–151. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, W.; Hou, M.; Tian, J.; Zhang, X.; Ren, Q.; Huang, Y.; Chen, J. Calycosin stimulates the proliferation of endothelial cells, but not breast cancer cells, via a feedback loop involving RP11-65M17.3, BRIP1 and ERα. Aging 2021, 13, 11026–11042. [Google Scholar] [CrossRef]
- Lou, Y.; Guo, Z.; Zhu, Y.; Zhang, G.; Wang, Y.; Qi, X.; Lu, L.; Liu, Z.; Wu, J. Astragali radix and its main bioactive compounds activate the Nrf2-mediated signaling pathway to induce P-glycoprotein and breast cancer resistance protein. J. Ethnopharmacol. 2019, 228, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Xu, L.; Ye, M.; Liao, M.; Du, H.; Chen, H. Formononetin Inhibits Migration and Invasion of MDA-MB-231 and 4T1 Breast Cancer Cells by Suppressing MMP-2 and MMP-9 Through PI3K/AKT Signaling Pathways. Horm. Metab. Res. 2014, 46, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Z.; Liu, Z. Formononetin Restrains Tumorigenesis of Breast Tumor by Restraining STING-NF-κB and Interfering with the Activation of PD-L1. Discov. Med. 2024, 36, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, L.; He, Y.; Sun, T. Formononetin enhances the chemosensitivity of triple negative breast cancer via BTB domain and CNC homolog 1-mediated mitophagy pathways. Acta Biochim. Pol. 2023, 70, 533–539. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, J.; Xin, M.; Huang, W.; Chen, X. Formononetin Induces Cell Cycle Arrest of Human Breast Cancer Cells via IGF1/PI3K/Akt Pathways In Vitro and In Vivo. Horm. Metab. Res. 2011, 43, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, S.; Chen, F.; Hu, J.; Yuan, S.; Li, C.; Wang, X.; Zhang, W.; Tang, R. Formononetin ameliorates the drug resistance of Taxol resistant triple negative breast cancer by inhibiting autophagy. Am. J. Transl. Res. 2021, 13, 497–514. [Google Scholar]
- Wu, J.; Xu, W.; Ma, L.; Sheng, J.; Ye, M.; Chen, H.; Zhang, Y.; Wang, B.; Liao, M.; Meng, T.; et al. Formononetin relieves the facilitating effect of lncRNA AFAP1-AS1-miR-195/miR-545 axis on progression and chemo-resistance of triple-negative breast cancer. Aging 2021, 13, 18191–18222. [Google Scholar] [CrossRef]
- Wu, X.Y.; Xu, H.; Wu, Z.F.; Chen, C.; Liu, J.Y.; Wu, G.N.; Yao, X.Q.; Liu, F.K.; Li, G.; Shen, L. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models. Oncotarget 2015, 6, 44563–44578. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, Y.; Chen, Y.; Xu, Z.; Ding, J. Effects of Formononetin on PTEN/AKT Signaling Pathway and Angiogenesis of Transplanted Tumor in Nude Mice with Breast Cancer Cells. Indian J. Pharm. Sci. 2023, 85, 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Sun, L. Formononetin-induced Apoptosis by Activation of Ras/p38 Mitogen-activated Protein Kinase in Estrogen Receptor-positive Human Breast Cancer Cells. Horm. Metab. Res. 2012, 44, 943–948. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Wang, Y.; Ye, Y.; Huang, Z. Differential ability of formononetin to stimulate proliferation of endothelial cells and breast cancer cells via a feedback loop involving MicroRNA-375, RASD1, and ERα. Mol. Carcinog. 2018, 57, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Ogutcu, G.; Tulay, P.; Kuener, A.; Calis, I.; Senol, H. The Effect of Cycloartane-Type of Saponins from Astragalus Species on the Proliferation of MCF-7 and MDA-MB-231 Breast Cancer Cells. Turk. Onkol. Derg.-Turk. J. Oncol. 2023, 38, 350–357. [Google Scholar] [CrossRef]
- Li, H.; Xia, Z.; Liu, L.; Pan, G.; Ding, J.; Liu, J.; Kang, J.; Li, J.; Jiang, D.; Liu, W. Astragalus IV Undermines Multi-Drug Resistance and Glycolysis of MDA-MB-231/ADR Cell Line by Depressing hsa_circ_0001982-miR-206/miR-613 Axis. Cancer Manag. Res. 2021, 13, 5821–5833. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zheng, W.; Jin, L. Astragaloside IV inhibits cell proliferation and metastasis of breast cancer via promoting the long noncoding RNA TRHDE-AS1. J. Nat. Med. 2021, 75, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hao, J.; Wang, L.; Zheng, X.; Xie, C.; Liu, H.; Wu, J.; Qiao, S.; Shi, J. Astragaloside IV antagonizes the malignant progression of breast cancer induced by macrophage M2 polarization through the TGF-β-regulated Akt/Foxo1 pathway. Pathol. Res. Pract. 2023, 249, 154766. [Google Scholar] [CrossRef]
- Hsu, J.T.; Ying, C.W.; Chen, C.J. Regulation of inducible nitric oxide synthase by dietary phytoestrogen in MCF-7 human mammary cancer cells. Reprod. Nutr. Dev. 2000, 40, 11–18. [Google Scholar] [CrossRef]
- Mishra, P.; Kale, R.K.; Kar, A. Chemoprevention of mammary tumorigenesis and chemomodulation of the antioxidative enzymes and peroxidative damage in prepubertal Sprague Dawley rats by Biochanin A. Mol. Cell. Biochem. 2008, 312, 1–9. [Google Scholar] [CrossRef]
- Ying, C.W.; Hsu, J.T.; Hung, H.C.; Lin, D.H.; Chen, L.F.O.; Wang, L.K. Growth and cell cycle regulation by isoflavones in human breast carcinoma cells. Reprod. Nutr. Dev. 2002, 42, 55–64. [Google Scholar] [CrossRef]
- Wang, C.; Kurzer, M.S. Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr. Cancer 1997, 28, 236–247. [Google Scholar] [CrossRef]
- Chen, J.; Ge, B.; Wang, Y.; Ye, Y.; Zeng, S.; Huang, Z. Biochanin A Promotes Proliferation that Involves a Feedback Loop of MicroRNA-375 and Estrogen Receptor Alpha in Breast Cancer Cells. Cell. Physiol. Biochem. 2015, 35, 639–646. [Google Scholar] [CrossRef]
- Sehdev, V.; Lai, J.C.K.; Bhushan, A. Biochanin A Modulates Cell Viability, Invasion, and Growth Promoting Signaling Pathways in HER-2-Positive Breast Cancer Cells. J. Oncol. 2009, 2009, 121458. [Google Scholar] [CrossRef] [PubMed]
- Sehdev, V. Biochanin A and Manganese Modulate Oncogenic Signaling and Antioxidant Function in HER-2-Positive Breast Cancer Cells; Proquest, Umi Dissertation Publishing: Ann Arbor, MI, USA, 2009. [Google Scholar]
- Wang, S.; Tang, L.; Chen, F. Astragaloside III from Astragalus membranaceus Antagonizes Breast Cancer Growth. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 183–186. [Google Scholar] [CrossRef]
- Gulcemal, D.; Alankus-Caliskan, O.; Perrone, A.; Ozgokce, F.; Piacente, S.; Bedir, E. Cycloartane glycosides from Astragalus aureus. Phytochemistry 2011, 72, 761–768. [Google Scholar] [CrossRef]
- Kalayci, B.; Ozek, N.S.; Aysin, F.; Ozbek, H.; Kazaz, C.; Onal, M.; Guvenalp, Z. Evaluation of cytotoxic and apoptotic effects of the extracts and phenolic compounds of Astragalus globosus Vahl and Astragalus breviflorus DC. Saudi Pharm. J. 2023, 31, 101682. [Google Scholar] [CrossRef]
- Gong, G.; Wan, Y.; Liu, Y.; Zhang, Z.; Zheng, Y. Ononin triggers ferroptosis-mediated disruption in the triple negative breast cancer both in vitro and in vivo. Int. Immunopharmacol. 2024, 132, 111959. [Google Scholar] [CrossRef]
- Ionkova, I.; Momekov, G.; Proksch, P. Effects of cycloartane saponins from hairy roots of Astragalus membranaceus Bge., on human tumor cell targets. Fitoterapia 2010, 81, 447–451. [Google Scholar] [CrossRef]
- Xie, J.-H.; Jin, M.-L.; Morris, G.A.; Zha, X.-Q.; Chen, H.-Q.; Yi, Y.; Li, J.-E.; Wang, Z.-J.; Gao, J.; Nie, S.-P.; et al. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. 1), S60–S84. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Sun, S.; Xu, W.; Yu, B.; Wang, G.; Wang, H. Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Mol. Med. Rep. 2020, 21, 1819–1832. [Google Scholar] [CrossRef]
- Li, W.; Hu, X.; Li, Y.; Song, K. Cytotoxicity and growth-inhibiting activity of Astragalus polysaccharides against breast cancer via the regulation of EGFR and ANXA1. J. Nat. Med. 2021, 75, 854–870. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Wang, K.; Zhuang, J.; Chu, F.; Gao, C.; Liu, L.; Feng, F.; Zhou, C.; Zhang, W.; et al. Identifying the Antiproliferative Effect of Astragalus Polysaccharides on Breast Cancer: Coupling Network Pharmacology with Targetable Screening from the Cancer Genome Atlas. Front. Oncol. 2019, 9, 368. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Zhuang, J.; Gao, C.; Li, H.; Liu, L.; Feng, F.; Zhou, C.; Yao, K.; Deng, L.; et al. The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method. Front. Pharmacol. 2019, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, Z.; Wang, Z.; Yu, S.; Long, T.; Zhou, X.; Bao, Y. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo. Sci. Rep. 2017, 7, 44822. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Pang, S.; Liu, X.; Mao, Y.; Wu, C.; Zhang, H. Effect of dietary phytochemicals on the progression of breast cancer metastasis based on the in vivo detection of circulating tumor cells. J. Funct. Foods 2020, 65, 103752. [Google Scholar] [CrossRef]
- Li, W.; Hu, X.; Wang, S.; Jiao, Z.; Sun, T.; Liu, T.; Song, K. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int. J. Biol. Macromol. 2020, 145, 985–997. [Google Scholar] [CrossRef]
- Li, W.; Hu, X.; Wang, S.; Wang, H.; Parungao, R.; Wang, Y.; Liu, T.; Song, K. Detection and Evaluation of Anti-Cancer Efficiency of Astragalus Polysaccharide Via a Tissue Engineered Tumor Model. Macromol. Biosci. 2018, 18, 1800223. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, H.; Zhu, Z.; Zhang, Q.; Ma, X.; Cui, Z.; Yao, T. Effects and mechanism of flavonoids from Astragalus complanatus on breast cancer growth. Naunyn-Schmiedebergs Arch. Pharmacol. 2015, 388, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Mehraban, F.; Mostafazadeh, M.; Sadeghi, H.; Azizi, A.; Touri, M.A.; Gramizadeh, B.; Barati, V.; Sadeghi, H. Anticancer activity of Astragalus ovinus against 7, 12 dimethyl benz (a) anthracene (DMBA)-induced breast cancer in rats. Avicenna J. Phytomedicine 2020, 10, 533–545. [Google Scholar]
- Zhou, R.; Chen, H.; Chen, J.; Chen, X.; Wen, Y.; Xu, L. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complement. Altern. Med. 2018, 18, 83. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Ebrahimi-Barough, S.; Kamian, S.; Azami, M.; Mehri, M.; Abdi, M.; Ai, J. Fabrication and Characterization of a Three-Dimensional Fibrin Gel Model to Evaluate Anti-Proliferative Effects of Astragalus hamosus Plant Extract on Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2022, 23, 731–741. [Google Scholar] [CrossRef]
- Liu, P.; Zhou, R.; Tan, M. Effects of Astragalus injection on proliferation and apoptosis of basa-l like breast cancer cell line MDA-MB-23. Chin. J. Breast Dis. 2009, 3, 181–186. [Google Scholar]
- Ye, M.N.; Chen, H.F. [Effects of Astragalus injection on proliferation of basal-like breast cancer cell line MDA-MB-468]. Zhong Xi Yi Jie He Xue Bao = J. Chin. Integr. Med. 2008, 6, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Minnaar, C.-A. The Efficacy of Astragalus membranaceous Tincture at Maintaining the Circulating Leucocyte and Absolute Neutrophil Counts of Breast Cancer Patients Undergoing Chemotherapeutic Treatment. Master’s Thesis, University of Johannesburg, Johannesburg, South Africa, 2008. [Google Scholar]
- Li, W.; Song, K.; Wang, S.; Zhang, C.; Zhuang, M.; Wang, Y.; Liu, T. Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Dong, H.F.; Oppenheim, J.J.; Howard, O.M. Effects of astragali radix on the growth of different cancer cell lines. World J. Gastroenterol. 2003, 9, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.K.; Kim, S.-M.; Hong, S.-W.; Moon, J.-H.; Shin, J.-S.; Kim, J.H.; Hwang, I.-Y.; Jung, S.-A.; Lee, D.-H.; Lee, E.Y.; et al. SH003 selectively induces p73-dependent apoptosis in triple-negative breast cancer cells. Mol. Med. Rep. 2016, 14, 3955–3960. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Kim, M.-S.; Kang, S.; Lee, S.Y.; Kim, J.H.; Choi, Y.K.; Oh, S.; Ko, S.-G. Herbal extract SH003 suppresses tumor growth and metastasis of MDA-MB-231 breast cancer cells by inhibiting STAT3-IL-6 signaling. Cancer Res. 2019, 79, 2603. [Google Scholar] [CrossRef]
- Choi, Y.K.; Cho, S.G.; Choi, Y.J.; Yun, Y.J.; Lee, K.M.; Lee, K.; Yoo, H.H.; Shin, Y.C.; Ko, S.G. SH003 suppresses breast cancer growth by accumulating p62 in autolysosomes. Oncotarget 2017, 8, 88386–88400. [Google Scholar] [CrossRef]
- Seo, H.-S.; Ku, J.M.; Lee, H.-J.; Woo, J.-K.; Cheon, C.; Kim, M.; Jang, B.-H.; Shin, Y.C.; Ko, S.-G. SH003 reverses drug resistance by blocking signal transducer and activator of transcription 3 (STAT3) signaling in breast cancer cells. Biosci. Rep. 2017, 37, BSR20170125. [Google Scholar] [CrossRef]
- Woo, S.M.; Choi, Y.K.; Cho, S.G.; Park, S.; Ko, S.G. A New Herbal Formula, KSG-002, Suppresses Breast Cancer Growth and Metastasis by Targeting NF- κ B-Dependent TNF α Production in Macrophages. Evid. Based Complement. Altern. Med. 2013, 2013, 728258. [Google Scholar] [CrossRef]
- Cleator, S.; Heller, W.; Coombes, R.C. Triple-negative breast cancer: Therapeutic options. Lancet Oncol. 2007, 8, 235–244. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Yao, C.; Bian, W.H.; Chen, X.; Xue, J.X.; Zhu, Z.Y.; Ying, Y.; Xu, Y.L.; Wang, C. Effects of Astragaloside IV on treatment of breast cancer cells execute possibly through regulation of Nrf2 via PI3K/AKT/mTOR signaling pathway. Food Sci. Nutr. 2019, 7, 3403–3413. [Google Scholar] [CrossRef]
- Yang, J.; Hao, Y.; Wang, F.; Pei, X. Effects of Fangji Huangqi decoction to triple negative breast cancer MB-MDA-231 in vitro. Shaanxi J. Tradit. Chin. Med. 2021, 42, 152–155. [Google Scholar]
- Cohen, Z.; Maimon, Y.; Samuels, N.; Brand, H.; Sulkes, A.; Brenner, B.; Berger, R. Strong Synergic Growth Inhibition and Death Induction of Cancer Cells by Astragalus membranaceus and Vaccaria hispanica Extract. Cancers 2022, 14, 5833. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, W.; Li, T.; Tang, R.; Li, C.; Yuan, S.; Fan, D. Formononetin Enhances the Tumoricidal Effect of Everolimus in Breast Cancer MDA-MB-468 Cells by Suppressing the mTOR Pathway. Evid. Based Complement. Altern. Med. 2019, 2019, 9610629. [Google Scholar] [CrossRef]
- Xin, M.; Wang, Y.; Ren, Q.; Guo, Y. Formononetin and metformin act synergistically to inhibit growth of MCF-7 breast cancer cells in vitro. Biomed. Pharmacother. 2019, 109, 2084–2089. [Google Scholar] [CrossRef]
- Zheng, Y.; Dai, Y.; Liu, W.; Wang, N.; Cai, Y.; Wang, S.; Zhang, F.; Liu, P.; Chen, Q.; Wang, Z. Astragaloside IV enhances taxol chemosensitivity of breast cancer via caveolin-1-targeting oxidant damage. J. Cell. Physiol. 2019, 234, 4277–4290. [Google Scholar] [CrossRef]
- Li, Q.-W.; Zhang, G.-L.; Hao, C.-X.; Ma, Y.-F.; Sun, X.; Zhang, Y.; Cao, K.-X.; Li, B.-X.; Yang, G.-W.; Wang, X.-M. SANT, a novel Chinese herbal monomer combination, decreasing tumor growth and angiogenesis via modulating autophagy in heparanase overexpressed triple-negative breast cancer. J. Ethnopharmacol. 2021, 266, 113430. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Li, H.; Ren, L.; Xie, H.; Chen, L.; Liang, Y.; Hu, Y.; Selistre-de-Araujo, H.S.; Boussios, S.; Jhawar, S.R.; et al. Astragaloside IV enhances the sensitivity of breast cancer stem cells to paclitaxel by inhibiting stemness. Transl. Cancer Res. 2023, 12, 3703–3717. [Google Scholar] [CrossRef]
- Yan, B.; Shi, R.; Lu, Y.-Y.; Fang, D.-D.; Ye, M.-N.; Zhou, Q.-M. Shenqi Fuzheng injection reverses M2 macrophage-mediated cisplatin resistance through the PI3K pathway in breast cancer. PLoS ONE 2023, 18, e0279752. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wei, L.; Mao, D.; Che, X.; Ye, X.; Liu, Y.; Chen, Y. Combination of oxymatrine (Om) and astragaloside IV (As) enhances the infiltration and function of TILs in triple-negative breast cancer (TNBC). Int. Immunopharmacol. 2023, 125, 111026. [Google Scholar] [CrossRef]
- Ren, G.; Shi, Z.; Teng, C.; Yao, Y. Antiproliferative Activity of Combined Biochanin A and Ginsenoside Rh2 on MDA-MB-231 and MCF-7 Human Breast Cancer Cells. Molecules 2018, 23, 2908. [Google Scholar] [CrossRef]
- Jia, Y.; Zuo, D.; Li, Z.; Liu, H.; Dai, Z.; Cai, J.; Pang, L.; Wu, Y. Astragaloside IV Inhibits Doxorubicin-Induced Cardiomyocyte Apoptosis Mediated by Mitochondrial Apoptotic Pathway via Activating the PI3K/Akt Pathway. Chem. Pharm. Bull. 2014, 62, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.-R.; Li, Z.-P.; Zhang, Q.-W.; Li, L.-F.; Liu, H.-B.; Ma, D.-L.; Leung, C.-H.; Lu, A.-P.; Bian, Z.-X.; Han, Q.-B. Astragalus Polysaccharide RAP Selectively Attenuates Paclitaxel-Induced Cytotoxicity Toward RAW 264.7 Cells by Reversing Cell Cycle Arrest and Apoptosis. Front. Pharmacol. 2019, 9, 1580. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.-M.; Kim, A.J.; Choi, Y.K.; Shin, Y.C.; Cho, S.-G.; Ko, S.-G. Synergistic Effect of SH003 and Doxorubicin in Triple-negative Breast Cancer. Phytother. Res. 2016, 30, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Cho, S.-G.; Kim, M.K.; Lee, H.J.; Moon, S.H.; Jang, H.J.; Ko, S.-G. SH003 enhances paclitaxel chemosensitivity in MCF-7/PAX breast cancer cells through inhibition of MDR1 activity. Mol. Cell. Biochem. 2017, 426, 1–8. [Google Scholar] [CrossRef]
- Moon, Y.J.; Shin, B.S.; An, G.; Morris, M.E. Biochanin A inhibits breast cancer tumor growth in a murine xenograft model. Pharm. Res. 2008, 25, 2158–2163. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Tian, X. Astragalus membranaceus: A Traditional Chinese Medicine with Multifaceted Impacts on Breast Cancer Treatment. Biomolecules 2024, 14, 1339. https://doi.org/10.3390/biom14101339
Tang Z, Tian X. Astragalus membranaceus: A Traditional Chinese Medicine with Multifaceted Impacts on Breast Cancer Treatment. Biomolecules. 2024; 14(10):1339. https://doi.org/10.3390/biom14101339
Chicago/Turabian StyleTang, Zhong, and Xuefei Tian. 2024. "Astragalus membranaceus: A Traditional Chinese Medicine with Multifaceted Impacts on Breast Cancer Treatment" Biomolecules 14, no. 10: 1339. https://doi.org/10.3390/biom14101339
APA StyleTang, Z., & Tian, X. (2024). Astragalus membranaceus: A Traditional Chinese Medicine with Multifaceted Impacts on Breast Cancer Treatment. Biomolecules, 14(10), 1339. https://doi.org/10.3390/biom14101339