Biochemical Characterization of an Arabinoside Monophosphate Specific 5′-Nucleotidase-like Enzyme from Streptomyces antibioticus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Gene, Strains and Plasmids
2.3. Site-Directed Mutagenesis
2.4. Preparation of Recombinant Protein
2.5. MALDI-TOF Assays
2.6. Activity Assays
2.7. Effect of Metal Ions and pH on Enzyme Activity
2.8. Substrate Range
2.9. Kinetic Parameters
2.10. Sequence Alignment and Molecule Simulation
2.11. Phylogenetic Tree
3. Results and Discussion
3.1. Sequence and Phylogeny Analysis of PenF
3.2. Characterization and Activity Assay of PenF
3.3. Effect of Chemical Agents on Enzyme Activity
3.4. Substrate Specificity and Catalytic Activity of PenF
3.5. PenF Structural Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zimmermann, H. 5′-Nucleotidase: Molecular structure and functional aspects. Biochem. J. 1992, 285 Pt 2, 345–365. [Google Scholar] [CrossRef] [PubMed]
- Bogan, K.L.; Brenner, C. 5′-Nucleotidases and their new roles in NAD+ and phosphate metabolism. N. J. Chem. 2010, 34, 845–853. [Google Scholar] [CrossRef]
- Zakataeva, N.P. Microbial 5′-nucleotidases: Their characteristics, roles in cellular metabolism, and possible practical applications. Appl. Microbiol. Biotechnol. 2021, 105, 7661–7681. [Google Scholar] [CrossRef] [PubMed]
- Weiss, B. The deoxycytidine pathway for thymidylate synthesis in Eschetichia coli. J. Bacteriol. 2007, 189, 7922–7926. [Google Scholar] [CrossRef] [PubMed]
- Yusupova, Y.R.; Skripnikova, V.S.; Kivero, A.D.; Zakataeva, N.P. Expression and purification of the 5′-nucleotidase YitU from Bacillus species: Its enzymatic properties and possible applications in biotechnology. Appl. Microbiol. Biotechnol. 2020, 104, 2957–2972. [Google Scholar] [CrossRef]
- Skladanowski, A.C. The role of soluble 5′-nucleotidases in the conversion of nucleotide analogs: Metabolic and therapeutic aspects. Curr. Med. Chem. 2013, 20, 4249–4259. [Google Scholar] [CrossRef]
- Isono, K. Nucleoside antibiotics: Structure, biological activity, and biosynthesis. J. Antibiot. 1988, 41, 1711–1739. [Google Scholar] [CrossRef]
- Niu, G.; Tan, H. Nucleoside antibiotics: Biosynthesis, regulation, and biotechnology. Trends Microbiol. 2015, 23, 110–119. [Google Scholar] [CrossRef]
- Niu, G.; Li, Z.; Huang, P.; Tan, H. Engineering nucleoside antibiotics toward the development of novel antimicrobial agents. J. Antibiot. 2019, 72, 906–912. [Google Scholar] [CrossRef]
- Shiraishi, T.; Kuzuyama, T. Recent advances in the biosynthesis of nucleoside antibiotics. J. Antibiot. 2019, 72, 913–923. [Google Scholar] [CrossRef]
- McErlean, M.; Liu, X.; Cui, Z.; Gust, B.; Van Lanen, S.G. Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat. Prod. Rep. 2021, 38, 1362–1407. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Kinney, W.A.; Van Lanen, S. Nature′s combinatorial biosynthesis and recently engineered production of nucleoside antibiotics in Streptomyces. World J. Microbiol. Biotechnol. 2017, 33, 66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Kong, L.; Gong, R.; Iorio, M.; Donadio, S.; Deng, Z.; Sosio, M.; Chen, W. Biosynthesis of C-nucleoside antibiotics in actinobacteria: Recent advances and future developments. Microb. Cell Factories 2022, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-A.; Ko, Y.; Zeng, J.; Geng, Y.; Ren, D.; Ogasawara, Y.; Irani, S.; Zhang, Y.; Liu, H.-W. Identification of the formycin A biosynthetic gene cluster from Streptomyces kaniharaensis illustrates the interplay between biological pyrazolopyrimidine formation and de novo purine biosynthesis. J. Am. Chem. Soc. 2019, 141, 6127–6131. [Google Scholar] [CrossRef]
- Ren, D.; Ruszczycky, M.W.; Ko, Y.; Wang, S.-A.; Ogasawara, Y.; Kim, M.; Liu, H.-W. Characterization of the coformycin biosynthetic gene cluster in Streptomyces kaniharaensis. Proc. Natl. Acad. Sci. USA 2020, 117, 10265–10270. [Google Scholar] [CrossRef]
- Chen, Z.; Sato, S.; Geng, Y.; Zhang, J.; Liu, H.-W. Identification of the early steps in herbicidin biosynthesis reveals an atypical mechanism of C-Glycosylation. J. Am. Chem. Soc. 2022, 144, 15653–15661. [Google Scholar] [CrossRef]
- Whitley, R.; Alford, C.; Hess, F.; Buchanan, R. Vidarabine: A preliminary review of its pharmacological properties and therapeutic use. Drugs 1980, 20, 267–282. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, R.; Lou, T.; Zhao, P.; Wang, S. Pentostatin biosynthesis pathway elucidation and its application. Fermentation 2022, 8, 459. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Tan, H.; Zhao, Z. PCR-based strategy for construction of multi-site-saturation mutagenic expression library. J. Microbiol. Methods 2007, 71, 225–230. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed]
- Langton, M.; Sun, S.; Ueda, C.; Markey, M.; Chen, J.; Paddy, I.; Jiang, P.; Chin, N.; Milne, A.; Pandelia, M.-E. The HD-domain metalloprotein superfamily: An apparent common protein scaffold with diverse chemistries. Catalysts 2020, 10, 1191. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wan, D.; Xu, G.; Wang, G.; Ma, H.; Wang, T.; Gao, Y.; Qi, J.; Chen, X.; Zhu, J.; et al. An unusual protector-protege strategy for the biosynthesis of purine nucleoside antibiotics. Cell Chem. Biol. 2017, 24, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T.; Hoshino, R.; Ueda, K. Characterization of 5′-nucleotidases secreted from Streptomyces. Appl. Microbiol. Biotechnol. 2023, 107, 2289–2302. [Google Scholar] [CrossRef] [PubMed]
- Corvini, P.F.X.; Gautier, H.; Rondags, E.; Vivier, H.; Goergen, J.L.; Germain, P. Intracellular pH determination of pristinamycin-producing Streptomyces pristinaespiralis by image analysis. Microbiology 2000, 146 Pt 10, 2671–2678. [Google Scholar] [CrossRef]
- Aravind, L.; Koonin, E.V. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 1998, 23, 469–472. [Google Scholar] [CrossRef]
- Zimmerman, M.D.; Proudfoot, M.; Yakunin, A.; Minor, W. Structural insight into the mechanism of substrate specificity and catalytic activity of an HD-domain phosphohydrolase: The 5′-deoxyribonucleotidase YfbR from Escherichia coli. J. Mol. Biol. 2008, 378, 215–226. [Google Scholar] [CrossRef]
- Yang, J.; Wang, F.; Yang, D.; Zhou, K.; Liu, M.; Gao, Z.; Liu, P.; Dong, Y.; Zhang, J.; Liu, Q. Structural and biochemical characterization of the yeast HD domain containing protein YGK1 reveals a metal-dependent nucleoside 5′-monophosphatase. Biochem. Biophys. Res. Commun. 2018, 501, 674–681. [Google Scholar] [CrossRef]
Strain/Plasmid | Genotype | Resource |
---|---|---|
Strains | ||
BL21(DE3) | F-, dcm, ompT, hsdS (rB−, mB−), gal, λ(DE3) | Lab collection |
DH5α | F− φ80lacZ∆M15 ∆(lacZYA-argF) U169 deoR recA1 endA1 hsdR17(rK−, mK+) phoA supE44 λ− thi-1 gyrA96 relA1 | Lab collection |
Plasmid | ||
pET28a-PenF | pET28a with penF gene inserted between Nde I and Xho I sites, C-term 6*His | This study |
pET28a-PenF-R140A | pET28a with R140A mutant of PenF | This study |
pET28a-PenF-F144A | pET28a with F144A mutant of PenF | This study |
pET28a-PenF-H174A | pET28a with H174A mutant of PenF | This study |
pET28a-PenF-K178A | pET28a with K178A mutant of PenF | This study |
Substrate | Vmax (μM/min) | kcat (min−1) | Km (μM) | kcat/Km (mM−1·min−1) |
---|---|---|---|---|
dAMP | 11.9 | 2.4 | 344 | 7.0 |
Ara-AMP | 169.5 | 33.9 | 71.5 | 474.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, X.; Zhang, X.; Tang, X.; Su, W.; Wang, Z.; Wang, H. Biochemical Characterization of an Arabinoside Monophosphate Specific 5′-Nucleotidase-like Enzyme from Streptomyces antibioticus. Biomolecules 2024, 14, 1368. https://doi.org/10.3390/biom14111368
Liu Y, Liu X, Zhang X, Tang X, Su W, Wang Z, Wang H. Biochemical Characterization of an Arabinoside Monophosphate Specific 5′-Nucleotidase-like Enzyme from Streptomyces antibioticus. Biomolecules. 2024; 14(11):1368. https://doi.org/10.3390/biom14111368
Chicago/Turabian StyleLiu, Yuxue, Xiaobei Liu, Xiaojing Zhang, Xiaoting Tang, Weiwei Su, Zhenyu Wang, and Hailei Wang. 2024. "Biochemical Characterization of an Arabinoside Monophosphate Specific 5′-Nucleotidase-like Enzyme from Streptomyces antibioticus" Biomolecules 14, no. 11: 1368. https://doi.org/10.3390/biom14111368
APA StyleLiu, Y., Liu, X., Zhang, X., Tang, X., Su, W., Wang, Z., & Wang, H. (2024). Biochemical Characterization of an Arabinoside Monophosphate Specific 5′-Nucleotidase-like Enzyme from Streptomyces antibioticus. Biomolecules, 14(11), 1368. https://doi.org/10.3390/biom14111368