Evolution During Bottle Ageing of Wines Macerated with Toasted Vine-Shoots and Micro-Oxygenation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine
2.2. SEGs and MOX Treatments
2.3. Wine Analysis
2.3.1. General Oenological Parameters
2.3.2. Determination of Volatile Compounds by SBSE-GC-MS
2.3.3. Determination of Low Molecular Weight Phenolic Compounds by HPLC-DAD
2.3.4. Sensory Analysis of the Wines
2.4. Data Analysis
3. Results and Discussion
3.1. Oenological Parameters
3.2. Evolution of Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Carot, J.M.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Assessment of Vine-Shoots in a Model Wines as Enological Additives. Food Chem. 2019, 288, 86–95. [Google Scholar] [CrossRef]
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Cabrita, M.J.; García, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Winemaking with Vine-Shoots. Modulating the Composition of Wines by Using Their Own Resources. Food Res. Int. 2019, 121, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Cebrián-Tarancón, C.; Fernández-Roldán, F.; Sánchez-Gómez, R.; Alonso, G.L.; Salinas, M.R. Pruned Vine-Shoots as a New Enological Additive to Differentiate the Chemical Profile of Wines. Food Res. Int. 2022, 156, 111195. [Google Scholar] [CrossRef] [PubMed]
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Salinas, M.R.; Alonso, G.L.; Oliva, J.; Zalacain, A. Toasted Vine-Shoot Chips as Enological Additive. Food Chem. 2018, 263, 96–103. [Google Scholar] [CrossRef]
- Fanzone, M.; Catania, A.; Assof, M.; Jofré, V.; Prieto, J.; Quiroga, D.G.; Sottano, J.L.; Sari, S. Application of Vine-shoot Chips during Winemaking and Aging of Malbec and Bonarda Wines. Beverages 2021, 7, 51. [Google Scholar] [CrossRef]
- Noviello, M.; Paradiso, V.M.; Natrella, G.; Gambacorta, G.; Faccia, M.; Caponio, F. Application of Toasted Vine-Shoot Chips and Ultrasound Treatment in the Ageing of Primitivo Wine. Ultrason. Sonochem. 2024, 104, 106826. [Google Scholar] [CrossRef]
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Fernández-Roldán, F.; Alonso, G.L.; Salinas, M.R. Evolution in the Bottling of Cabernet Sauvignon Wines Macerated with Their Own Toasted Vine-Shoots. J. Agric. Food Chem. 2023, 72, 1864–1877. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Cebrián-Tarancón, C.; Fernández-Roldán, F.; Alonso, G.L.; Salinas, M.R. Toasted Vine-Shoots as an Alternative Enological Tool. Impact on the Sensory Profile of Tempranillo Wines during Bottle Aging. J. Agric. Food Chem. 2023, 72, 1914–1927. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Effect of Vine-Shoots Toasting on the Generation of High Added Value Volatiles. Flavour. Fragr. J. 2016, 31, 293–301. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Effect of Toasting on Non-Volatile and Volatile Vine-Shoots Low Molecular Weight Phenolic Compounds. Food Chem. 2016, 204, 499–505. [Google Scholar] [CrossRef]
- Del Alamo-Sanza, M.; Nevares, I.; Martínez-Gil, A.; Rubio-Bretón, P.; Garde-Cerdán, T. Impact of Long Bottle Aging (10 Years) on Volatile Composition of Red Wines Micro-Oxygenated with Oak Alternatives. LWT—Food Sci. Technol. 2019, 101, 395–403. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Nevares, I.; Martínez-Gil, A.M.; Del Alamo-Sanza, M. Oxygen Consumption by Red Wines under Different Micro-Oxygenation Strategies and Q. Pyrenaica Chips. Effects on Color and Phenolic Characteristics. Beverages 2018, 4, 69. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Del Alamo-Sanza, M.; Martínez-Gil, A.M.; Nevares, I. Red Wine Aging by Different Micro-Oxygenation Systems and Oak Wood—Effects on Anthocyanins, Copigmentation and Color Evolution. Processes 2020, 8, 1250. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; del Alamo-Sanza, M.; Nevares, I.; Sánchez-Gómez, R.; Gallego, L. Effect of Size, Seasoning and Toasting Level of Quercus Pyrenaica Willd. Wood on Wine Phenolic Composition during Maturation Process with Micro-Oxygenation. Food Res. Int. 2020, 128, 108703. [Google Scholar] [CrossRef] [PubMed]
- Nevares, I.; Del Alamo Sanza, M. Wine Aging Technologies. In Recent Advances in Wine Stabilization and Conservation Technologies; Nova Science Publishers: Hauppauge, NY, USA, 2016; pp. 209–245. [Google Scholar] [CrossRef]
- Oberholster, A.; Elmendorf, B.L.; Lerno, L.A.; King, E.S.; Heymann, H.; Brenneman, C.E.; Boulton, R.B. Barrel Maturation, Oak Alternatives and Micro-Oxygenation: Influence on Red Wine Aging and Quality. Food Chem. 2015, 173, 1250–1258. [Google Scholar] [CrossRef]
- Pizarro, C.; Rodríguez-Tecedor, S.; Esteban-Díez, I.; Pérez-Del-Notario, N.; González-Sáiz, J.M. Experimental Design Approach to Evaluate the Impact of Oak Chips and Micro-Oxygenation on the Volatile Profile of Red Wines. Food Chem. 2014, 148, 357–366. [Google Scholar] [CrossRef]
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; María Martínez-Gil, A.; del Alamo-Sanza, M.; Nevares, I.; Rosario Salinas, M. Chemical and Sensorial Profile of Tempranillo Wines Elaborated with Toasted Vine-Shoots of Different Varieties and Micro-Oxygenation. Food Chem. 2024, 453, 139607. [Google Scholar] [CrossRef]
- Fernández De Simón, B.; Cadahía, E.; Hernández, T.; Estrella, I. Evolution of Oak-Related Volatile Compounds in a Spanish Red Wine during 2 Years Bottled, after Aging in Barrels Made of Spanish, French and American Oak Wood. Anal. Chim. Acta 2006, 563, 198–203. [Google Scholar] [CrossRef]
- Guadalupe, Z.; Ayestarán, B. Changes in the Color Components and Phenolic Content of Red Wines from Vitis vinifera L. Cv. “Tempranillo” during Vinification and Aging. Eur. Food Res. Technol. 2008, 228, 29–38. [Google Scholar] [CrossRef]
- del Álamo, M.; Nevares, I.; Gallego, L.; Martin, C.; Merino, S. Aging Markers from Bottled Red Wine Aged with Chips, Staves and Barrels. Anal. Chim. Acta 2008, 621, 86–99. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, Z.; Han, Y.; Duan, Y.; Shi, B.; Ma, W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules 2023, 28, 6522. [Google Scholar] [CrossRef] [PubMed]
- OIV. Compendium of International Methods of Wine and Must Analysis; OIV: Dijon, France, 2022. [Google Scholar]
- ISO 3591:1977; Análisis Sensorial. Utensilios. Copa Para La degustación de Vino. ISO: Geneva, Switzerland, 1977. Available online: https://standards.iteh.ai/catalog/standards/iso/889dede0-644b-4ef9-bd1a-1e1b38012e23/iso-3591-1977?srsltid=AfmBOopAm52U_D1nIjmKIb60skMapTgG_GfbkbGeh-fivdyXuX0NrZSb (accessed on 10 September 2024).
- ISO 6658:1997; Sensory Analysis. Methodology. General Guidance. ISO: Geneva, Switzerland, 1997. Available online: https://standards.iteh.ai/catalog/standards/sist/c90dc11c-b820-4b94-a18d-0466281d18f5/sist-iso-6658-1997?srsltid=AfmBOoqhrQuZJfmT2LZOK8SLowm9JZEBNall3-U0oEDPvUX05p6yYv-x (accessed on 10 September 2024).
- Garita-Cambronero, J.; Hijosa-Valsero, M.; Paniagua-García, A.I.; Díez-Antolínez, R. Revisiting the Production of L(+)-Lactic Acid from Vine Shoots: Bioconversion Improvements by Employing Thermotolerant Bacteria. Appl. Microbiol. Biotechnol. 2021, 105, 9385–9402. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Bayón, M.A.; G-Alegría, E.; Polo, M.C.; Tenorio, C.; Martín-Álvarez, P.J.; Calvo De La Banda, M.T.; Ruiz-Larrea, F.; Moreno-Arribas, M.V. Wine Volatile and Amino Acid Composition after Malolactic Fermentation: Effect of Oenococcus Oeni and Lactobacillus Plantarum Starter Cultures. J. Agric. Food Chem. 2005, 53, 8729–8735. [Google Scholar] [CrossRef] [PubMed]
- Khoyratty, S.; Kodja, H.; Verpoorte, R. Vanilla Flavor Production Methods: A Review. Ind. Crops Prod. 2018, 125, 433–442. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Lapeña, A.C.; Escudero, A.; Astrain, J.; Baron, C.; Pardo, I.; Polo, L.; Ferrer, S.; Cacho, J.; Ferreira, V. Effect of Micro-Oxygenation on the Evolution of Aromatic Compounds in Wines: Malolactic Fermentation and Ageing in Wood. LWT—Food Sci. Technol. 2009, 42, 391–401. [Google Scholar] [CrossRef]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on Varietal Aromas during Wine Making: A Review of the Impact of Varietal Aromas on the Flavor of Wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The Actual and Potential Aroma of Winemaking Grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef]
- Skouroumounis, G.K.; Sefton, M.A. Acid-Catalyzed Hydrolysis of Alcohols and Their β-D-Glucopyranosides. J. Agric. Food Chem. 2000, 48, 2033–2039. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Micro-Oxygenation and Oak Chip Treatments of Red Wines: Effects on Colour-Related Phenolics, Volatile Composition and Sensory Characteristics. Part II: Merlot Wines. Food Chem. 2011, 124, 738–748. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative Determination of the Odorants of Young Red Wines from Different Grape Varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Paniagua-García, A.I.; Díez-Antolínez, R. Assessment of Vine Shoots and Surplus Grape Must for Succinic Acid Bioproduction. Appl. Microbiol. Biotechnol. 2022, 106, 4977–4994. [Google Scholar] [CrossRef] [PubMed]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Vine-Shoot Waste Aqueous Extracts for Re-Use in Agriculture Obtained by Different Extraction Techniques: Phenolic, Volatile, and Mineral Compounds. J. Agric. Food Chem. 2014, 62, 10861–10872. [Google Scholar] [CrossRef] [PubMed]
- Cebrián, C.; Sánchez-Gómez, R.; Salinas, M.R.; Alonso, G.L.; Zalacain, A. Effect of Post-Pruning Vine-Shoots Storage on the Evolution of High-Value Compounds. Ind. Crops Prod. 2017, 109, 730–736. [Google Scholar] [CrossRef]
SEGs Variety | SEGs Dose | MOX Dose | Code |
---|---|---|---|
Tempranillo | Low | Low | TE12-LOTR |
Tempranillo | Low | High | TE12-HOTR |
Tempranillo | High | Low | TE24-LOTR |
Tempranillo | High | High | TE24-HOTR |
Cabernet Sauvignon | Low | Low | CS12-LOTR |
Cabernet Sauvignon | Low | High | CS12-HOTR |
Cabernet Sauvignon | High | Low | CS24-LOTR |
Cabernet Sauvignon | High | High | CS24-HOTR |
*** | Bottle Ageing Time (Months) | TE12-LOTR | TE12-HOTR | TE24-LOTR | TE24-HOTR | CS12-LOTR | CS12-HOTR | CS24-LOTR | CS24-HOTR |
---|---|---|---|---|---|---|---|---|---|
AC (% v/v) | 3 | 14.3 ± 0.0 d | 14.3 ± 0.0 d | 14.2 ± 0.0 bc | 14.2 ± 0.0 a | 14.2 ± 0.1 bc | 14.2 ± 0.0 c | 14.2 ± 0.0 b | 14.2 ± 0.0 ab |
6 | 14.3 ± 0.0 d | 14.3 ± 0.0 cd | 14.3 ± 0.0 abc | 14.3 ± 0.0 ab | 14.3 ± 0.1 bcd | 14.3 ± 0.0 ab | 14.3 ± 0.0 a | 14.3 ± 0.0 abc | |
TA (g/L) | 3 | 4.0 ± 0.0 ab | 4.0 ± 0.0 bc | 4.0 ± 0.1 bc | 4.0 ± 0.0 ab | 4.0 ± 0.0 ab | 4.1 ± 0.3 c | 3.9 ± 0.0 ab | 3.9 ± 0.0 a |
6 | 3.9 ± 0.0 c | 4.0 ± 0.1 bc | 4.0 ± 0.1 bc | 3.9 ± 0.0 abc | 4.0 ± 0.1 abc | 4.1 ± 0.4 c | 3.8 ± 0.0 a | 3.8 ± 0.0 ab | |
pH | 3 | 4.2 ± 0.0 ab | 4.2 ± 0.0 a | 4.2 ± 0.0 bc | 4.2 ± 0.0 c | 4.2 ± 0.0 ab | 4.2 ± 0.0 a | 4.2 ± 0.0 a | 4.3 ± 0.0 c |
6 | 4.1 ± 0.0 a | 4.1 ± 0.0 a | 4.1 ± 0.0 a | 4.1 ± 0.0 a | 4.1 ± 0.0 a | 4.1 ± 0.1 a | 4.1 ± 0.0 a | 4.1 ± 0.0 a | |
VA (g/L) | 3 | 0.8 ± 0.0 a | 0.8 ± 0.0 abcd | 0.8 ± 0.1 cd | 0.8 ± 0.0 bcd | 0.7 ± 0.0 a | 0.9 ± 0.1 d | 0.8 ± 0.0 ab | 0.8 ± 0.0 abc |
6 | 0.8 ± 0.0 a | 0.8 ± 0.0 ab | 0.8 ± 0.0 abc | 0.9 ± 0.1 c | 0.8 ± 0.0 ab | 0.9 ± 0.1 c | 0.8 ± 0.0 bc | 0.9 ± 0.0 c | |
Reducing sugars (g/L) | 3 | 1.8 ± 0.0 a | 1.8 ± 0.1 a | 2.4 ± 0.2 b | 2.4 ± 0.4 b | 1.9 ± 0.2 a | 1.7 ± 0.2 a | 2.4 ± 0.2 b | 2.4 ± 0.2 b |
6 | 1.9 ± 0.0 a | 1.8 ± 0.1 a | 2.3 ± 0.1 b | 2.5 ± 0.3 b | 1.8 ± 0.1 a | 1.8 ± 0.5 a | 2.5 ± 0.1 b | 2.5 ± 0.3 b | |
Total SO2 (mg/L) | 3 | 62.0 ± 3.6 c | 63.3 ± 1.4 cd | 52.0 ± 1.8 a | 58.0 ± 5.0 b | 66.0 ± 0.9 de | 68.3 ± 1.4 e | 57.7 ± 3.6 b | 56.7 ± 1.9 b |
6 | 63.0 ± 0.9 bc | 64.0 ± 1.8 c | 57.3 ± 1.4 bc | 60.3 ± 2.1 bc | 61.3 ± 2.2 bc | 59.7 ± 2.2 bc | 56.0 ± 1.8 b | 47.0 ± 18.6 a |
TE12-3m | TE24-3m | CS12-3m | CS24-3m | |||||
---|---|---|---|---|---|---|---|---|
LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | |
Volatile compounds (µg/L) | ||||||||
Acids | ||||||||
Decanoic acid | *** | ** | ** | *** | ** | * | ||
Hexanoic acid | *** | *** | *** | ** | ** | ** | ||
Octanoic acid | *** | ** | ** | ** | ** | *** | ** | |
Alcohols | ||||||||
Benzyl alcohol | *** | *** | *** | *** | *** | *** | *** | *** |
1-Hexanol | * | * | ** | ** | ||||
Nonanol | *** | *** | *** | *** | *** | *** | *** | *** |
Esters | ||||||||
Ethyl cinnamate | * | *** | *** | *** | *** | *** | *** | |
Ethyl lactate | * | ** | ** | *** | * | ** | ** | |
Ethyl vanillate | ** | ** | *** | *** | *** | *** | *** | *** |
Terpenes | ||||||||
Geraniol | ** | ** | ||||||
Geranyl acetone | ** | *** | *** | *** | *** | *** | * | |
Linalool | *** | *** | *** | * | *** | *** | *** | *** |
Nerolidol | *** | *** | *** | *** | *** | ** | *** | *** |
α-Terpineol | ** | *** | *** | *** | *** | *** | *** | *** |
Volatile phenols | ||||||||
Eugenol | *** | *** | *** | *** | ** | |||
Phenolic compounds (mg/L) | ||||||||
trans-Caffeic acid | *** | *** | *** | *** | *** | *** | *** | *** |
Syringic acid | *** | *** | ** | ** | *** | *** | *** | *** |
Vanillic acid | ** | ** | * | * |
TE12-3m | TE24-3m | TE SEGs Dose | CS12-3m | CS24-3m | CS SEGs Dose | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | |
Volatile compounds (µg/L) | ||||||||||||
Acids | ||||||||||||
Decanoic acid | 67.3 ± 4.0 (19.1, b) | 48.9 ± 5.9 (−0.1, a) | 63.4 ± 6.8 (12.9, b) | 48.9 ± 4.9 (8.2, a) | A, A | A, B | 77.3 ± 9.1 (18.4, b) | 51.3 ± 3.2 (−1.7, a) | 52.9 ± 6.8 (8.4, a) | 45.3 ± 8.2 (8.5, a) | B, A | A, B |
Hexanoic acid | 1798.3 ± 65.3 (538.6, b) | 1597.9 ± 65.3 (167.1, a) | 2204.6 ± 196.6 (672.2, b) | 1744.8 ± 197.4 (264.6, a) | A, A | A, A | 1890.0 ± 209.1 (163.6, -) | 1621.8 ± 96.8 (13.2, -) | 2225.8 ± 275.0 (332.6, a) | 1859.8 ± 238.5 (293.0, a) | A, B | A, B |
Octanoic acid | 668.8 ± 7.0 (188.5, b) | 593.6 ± 53.3 (71.9, a) | 674.2 ± 105.6 (145.1, b) | 616.9 ± 112.4 (131.0, a) | A, A | A, A | 686.6 ± 55.2 (116.9, b) | 584.9 ± 41.9 (19.0, a) | 637.5 ± 67.2 (118.2, a) | 580.9 ± 95.2 (127.6, a) | A, A | A, B |
Alcohols | ||||||||||||
Benzyl alcohol | 1592.3 ± 71.1 (759.2, a) | 1563.6 ± 192.8 (651.6, a) | 2443.7 ± 375.2 (1430.2, b) | 2147.6 ± 300.7 (1152.7, a) | A, B | A, B | 1732.2 ± 185.5 (761.0, a) | 1552.9 ± 74.6 (483.5, a) | 2079.1 ± 315.5 (996.9, a) | 1910.0 ± 231.3 (942.2, a) | A, A | A, B |
1-Hexanol | 1950.2 ± 75.2 (151.9, a) | 1960.5 ± 191.4 (201.6, a) | 1840.6 ± 140.4 (−0.1, -) | 2031.0 ± 200.4 (85.8, -) | B, A | A, A | 1915.0 ± 63.4 (27.5, -) | 1966.6 ± 105.8 (8.2, -) | 2083.8 ± 178.9 (260.9, a) | 2055.4 ± 250.6 (260.4, a) | A, B | A, B |
Nonanol | 3.8 ± 0.0 (3.2, b) | 3.1 ± 0.4 (1.1, a) | 3.6 ± 0.9 (1.5, a) | 3.3 ± 0.7 (2.0, a) | B, A | A, B | 4.7 ± 0.5 (2.5, a) | 3.3 ± 0.4 (0.8, a) | 4.0 ± 0.5 (2.3, a) | 3.9 ± 0.6 (2.4, a) | A, A | A, B |
Esters | ||||||||||||
Ethyl cinnamate | 0.5 ± 0.0 (0.3, b) | 0.4 ± 0.1 (0.2, a) | 0.5 ± 0.1 (0.3, a) | 0.5 ± 0.1 (0.3, a) | A, A | A, B | 0.4 ± 0.1 (0.2, b) | 0.4 ± 0.2 (0.2, a) | 0.5 ± 0.1 (0.2, a) | 0.4 ± 0.1 (0.2, a) | A, A | A, A |
Ethyl lactate | 5980.4 ± 169.9 (918.0, a) | 5650.7 ± 696.7 (1298.3, b) | 5574.5 ± 353.9 (483.4, a) | 5925.1 ± 613.3 (1352.1, b) | A, A | A, A | 6038.2 ± 442.3 (506.5, a) | 5420.4 ± 211.3 (625.7, a) | 6025.7 ± 534.5 (839.4, a) | 5380.8 ± 625.7 (722.2, a) | A, A | A, A |
Ethyl vanillate | 215.6 ± 16.5 (79.8, b) | 203.1 ± 29.2 (44.4, a) | 222.4 ± 30.1 (69.7, b) | 187.8 ± 15.4 (34.3, a) | A, A | A, A | 224.6 ± 16.4 (67.8, b) | 201.9 ± 17.8 (31.9, a) | 230.9 ± 37.9 (72.9, b) | 203.1 ± 27.3 (50.6, a) | A, A | A, A |
Terpenes | ||||||||||||
Geraniol | 9.4 ± 0.2 (1.4, a) | 8.9 ± 0.8 (1.2, a) | 9.5 ± 0.7 (0.9, -) | 9.4 ± 1.4 (0.6, -) | A, A | A, A | 9.2 ± 0.9 (1.0, -) | 10.0 ± 1.4 (1.0, -) | 10.4 ± 0.9 (0.9, -) | 10.0 ± 1.1 (0.4, -) | A, A | A, A |
Geranyl acetone | 1.7 ± 0.1 (0.3, a) | 1.6 ± 0.1 (0.3, a) | 1.8 ± 0.1 (0.3, a) | 1.7 ± 0.1 (0.2, a) | A, A | A, A | 1.8 ± 0.1 (0.3, a) | 1.7 ± 0.1 (0.3, a) | 1.9 ± 0.1 (0.2, b) | 1.7 ± 0.1 (-0.1, a) | B, A | B, A |
Linalool | 5.4 ± 0.4 (1.3, b) | 5.3 ± 0.3 (1.2, a) | 5.7 ± 0.7 (1.6, b) | 5.1 ± 0.8 (0.8, a) | A, A | A, A | 5.4 ± 0.4 (1.3, b) | 5.5 ± 0.8 (1.2, a) | 5.5 ± 0.3 (1.4, a) | 5.3 ± 0.5 (1.3, a) | A, A | A, A |
Nerolidol | 1.7 ± 0.1 (0.3, a) | 1.7 ± 0.1 (0.3, a) | 2.2 ± 0.6 (0.4, a) | 1.7 ± 0.1 (0.3, a) | A, A | A, A | 1.7 ± 0.1 (0.2, a) | 1.7 ± 0.2 (0.2, a) | 1.6 ± 0.1 (0.3, a) | 1.6 ± 0.1 (0.2, a) | A, A | A, A |
α-Terpineol | 9.7 ± 0.5 (3.0, a) | 9.7 ± 0.8 (2.8, a) | 11.0 ± 1.1 (3.8, a) | 10.0 ± 0.9 (2.8, a) | A, B | A, A | 9.9 ± 0.9 (2.9, a) | 10.2 ± 1.4 (3.1, b) | 10.4 ± 0.8 (3.4, a) | 10.3 ± 0.8 (3.4, a) | A, A | A, A |
Volatile phenols | ||||||||||||
Eugenol | 10.7 ± 0.4 (2.8, b) | 10.0 ± 0.6 (1.9, a) | 12.4 ± 1.2 (3.6, b) | 11.9 ± 1.7 (3.3, a) | A, A | A, B | 9.2 ± 0.9 (1.3, a) | 8.5 ± 1.0 (0.7, a) | 8.6 ± 1.0 (0.6, a) | 8.3 ± 1.1 (0.7, a) | A, A | A, A |
Phenolic compounds (mg/L) | ||||||||||||
Phenolic acids | ||||||||||||
trans-Caffeic acid | 11.5 ± 0.1 (6.1, a) | 12.4 ± 0.8 (6.8, a) | 10.7 ± 1.0 (5.3, a) | 11.4 ± 1.1 (6.1, a) | B, A | A, A | 11.3 ± 1.4 (5.8, a) | 11.7 ± 1.6 (6.4, a) | 9.5 ± 1.2 (4.4, a) | 10.6 ± 1.2 (5.7, a) | B, A | A, A |
Syringic acid | 7.1 ± 0.2 (0.2, a) | 7.2 ± 0.3 (0.3, a) | 7.0 ± 0.2 (0.2, a) | 7.0 ± 0.3 (0.3, a) | B, A | A, A | 7.4 ± 0.3 (0.9, a) | 7.4 ± 0.3 (1.0, a) | 7.2 ± 0.2 (1.0, a) | 7.0 ± 0.3 (0.8, a) | A, A | A, A |
Vanillic acid | 4.0 ± 0.1 (0.2, a) | 3.9 ± 0.1 (0.3, a) | 3.9 ± 0.2 (0.2, a) | 3.9 ± 0.1 (0.0, a) | A, A | B, A | 3.9 ± 0.1 (0.2, a) | 3.9 ± 0.1 (0.2, a) | 3.9 ± 0.1 (0.1, a) | 3.9 ± 0.2 (0.1, a) | B, A | A, A |
TE12-6m | TE24-6m | CS12-6m | CS24-6m | |||||
---|---|---|---|---|---|---|---|---|
LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | |
Aldehydes | ||||||||
Benzaldehyde | *** | ** | *** | *** | * | *** | * | |
Alcohols | ||||||||
2-Phenylethyl alcohol | *** | *** | ||||||
Esters | ||||||||
Diethyl succinate | *** | * | ** | *** | ** | *** | ||
Ethyl butyrate | * | |||||||
Ethyl hexanoate | ** | ** | ** | * | ||||
Hexyl acetate | * | * | *** | ** | *** | |||
Isoamyl acetate | * | *** | *** | ** | * | |||
2-Phenylethyl acetate | ** | *** | ** | * | *** | *** | ||
Volatile phenols | ||||||||
Guaiacol | *** | ** | *** | ** | *** | *** | ** | *** |
Vanillin | *** | * | *** | *** | * | *** |
TE12-6m | TE24-6m | TE-SEGs Dose | CS12-6m | CS24-6m | CS-SEGs Dose | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | LOTR | HOTR | |
Aldehydes | ||||||||||||
Benzaldehyde | 4.3 ± 0.3 (−2.3, a) | 4.2 ± 0.5 (−1.2, b) | 5.4 ± 0.7 (−2.2, b) | 4.8 ± 0.6 (−2.6, a) | A, A | A, B | 7.1 ± 0.5 (−0.8, b) | 4.9 ± 0.6 (−2.4, a) | 11.8 ± 1.6 (2.8, b) | 8.2 ± 1.0 (−0.1, a) | A, B | B, A |
Alcohols | ||||||||||||
2-Phenylethyl alcohol | 8437.0 ± 333.6 (289.8, a) | 8577.7 ± 417.7 (607.1, a) | 9267.2 ± 1210.9 (276.7, a) | 8394.8 ± 449.9 (52.5, a) | A, A | A, A | 8915.9 ± 370.2 (1251.6, a) | 8885.5 ± 592.5 (1599.9, a) | 8967.5 ± 723.7 (440.0, a) | 9555.7 ± 1369.9 (1253.5, a) | A, A | A, A |
Esters | ||||||||||||
Diethyl succinate | 2617.5 ± 141.5 (−553.5, a) | 2874.2 ± 286.0 (−69.1, b) | 3370.1 ± 269.9 (71.5, a) | 3370.9 ± 255.9 (382.6, b) | A, B | A, B | 3512.4 ± 151.6 (413.0, a) | 3746.6 ± 322.1 (823.6, b) | 4201.2 ± 107.1 (561.5, a) | 4559.7 ± 522.1 (1204.3, b) | A, A | A, A |
Ethyl butyrate | 143.7 ± 14.6 (−13.3, a) | 136.7 ± 9.0 (−0.0, b) | 149.6 ± 16.0 (8.1, b) | 128.8 ± 11.2 (−2.3, a) | A, A | A, A | 148.0 ± 10.9 (17.6, a) | 142.0 ± 27.7 (21.3, a) | 145.3 ± 24.3 (−15.0, a) | 148.7 ± 20.6 (11.3, b) | B, A | A, A |
Ethyl hexanoate | 251.3 ± 12.1 (7.0, a) | 233.5 ± 14.4 (18.0, a) | 271.8 ± 37.0 (61.4, b) | 239.8 ± 12.5 (26.0, a) | A, B | A, A | 253.9 ± 9.2 (23.9, b) | 235.7 ± 0.2 (8.0, a) | 280.5 ± 18.4 (−1.2, a) | 272.7 ± 38.9 (38.2, b) | A, A | A, B |
Hexyl acetate | 1.2 ± 0.1 (0.2, a) | 1.1 ± 0.1 (0.1, a) | 1.4 ± 0.1 (0.2, a) | 1.2 ± 0.1 (0.1, a) | A, A | A, A | 1.2 ± 0.1 (0.2, a) | 1.4 ± 0.1 (0.2, a) | 1.3 ± 0.2 (−0.0, a) | 1.4 ± 0.1 (0.3, b) | B, A | A, A |
Isoamyl acetate | 235.5 ± 28.7 (−15.5, a) | 204.5 ± 30.0 (3.4, a) | 286.0 ± 37.0 (39.8, a) | 224.7 ± 28.9 (50.5, b) | A, B | A, B | 259.5 ± 19.6 (54.0, b) | 237.9 ± 17.7 (32.9, a) | 262.9 ± 37.4 (−16.2, a) | 244.1 ± 29.3 (32.6, b) | B, A | A, A |
2-Phenylethyl acetate | 12.8 ± 0.6 (2.0, a) | 10.9 ± 1.0 (2.4, a) | 14.5 ± 1.3 (0.7, a) | 10.8 ± 0.7 (2.1, b) | A, A | A, A | 12.2 ± 1.4 (2.3, a) | 12.5 ± 1.2 (3.3, a) | 13.1 ± 1.0 (1.1, a) | 13.4 ± 1.3 (2.9, b) | A, A | A, A |
Volatile phenols | ||||||||||||
Guaiacol | 13.4 ± 4.7 (6.6, b) | 10.5 ± 2.5 (4.3, a) | 10.6 ± 1.2 (3.0, b) | 9.4 ± 1.4 (2.5, a) | B, A | A, A | 10.1 ± 0.9 (2.1, a) | 10.6 ± 0.9 (4.2, a) | 10.8 ± 2.1 (2.4, a) | 25.4 ± 4.7 (16.0, b) | A, A | A, B |
Vanillin | 148.9 ± 19.8 (21.8, a) | 132.9 ± 21.3 (38.0, b) | 162.5 ± 25.9 (24.2, a) | 155.1 ± 23.4 (29.3, a) | A, A | A, A | 128.5 ± 16.7 (33.2, a) | 123.1 ± 14.9 (46.3, b) | 147.6 ± 11.2 (18.6, a) | 169.9 ± 24.9 (53.0, b) | A, A | A, A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Martínez-Gil, A.M.; del Álamo-Sanza, M.; Nevares, I.; Salinas, M.R. Evolution During Bottle Ageing of Wines Macerated with Toasted Vine-Shoots and Micro-Oxygenation. Biomolecules 2024, 14, 1372. https://doi.org/10.3390/biom14111372
Cebrián-Tarancón C, Sánchez-Gómez R, Martínez-Gil AM, del Álamo-Sanza M, Nevares I, Salinas MR. Evolution During Bottle Ageing of Wines Macerated with Toasted Vine-Shoots and Micro-Oxygenation. Biomolecules. 2024; 14(11):1372. https://doi.org/10.3390/biom14111372
Chicago/Turabian StyleCebrián-Tarancón, Cristina, Rosario Sánchez-Gómez, Ana María Martínez-Gil, Maria del Álamo-Sanza, Ignacio Nevares, and Maria Rosario Salinas. 2024. "Evolution During Bottle Ageing of Wines Macerated with Toasted Vine-Shoots and Micro-Oxygenation" Biomolecules 14, no. 11: 1372. https://doi.org/10.3390/biom14111372
APA StyleCebrián-Tarancón, C., Sánchez-Gómez, R., Martínez-Gil, A. M., del Álamo-Sanza, M., Nevares, I., & Salinas, M. R. (2024). Evolution During Bottle Ageing of Wines Macerated with Toasted Vine-Shoots and Micro-Oxygenation. Biomolecules, 14(11), 1372. https://doi.org/10.3390/biom14111372