Co-Occurrence of Fusarium and Alternaria Metabolites in Brewing Barley Monitored during Two Consecutive Years (2019–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barley Samples
- were collected from trial fields of the Agricultural Institute in Osijek, Osijek (45°32′ N, 18°44′ E). Hulled barley varieties were treated in two different treatments resulting in 10 samples treated with treatment 1 (protiokonazol + tebuconazole; 1 L/ha) and 10 samples treated with treatment 2 (metconazole; 1 L/ha) at heading time. Ten samples were used as control and were not subjected to any treatments. Samples were collected during two consecutive seasons (2019 and 2020). Field experiments were conducted in randomized block designs (RCBDs) with six replications with plot size 7.56 m2. Soil properties and climatic conditions during the growing seasons (October–June) can be seen in Table 1. Barley subsamples (1 kg) were taken using a sample spear from a total sample packaged in 10 kg paper bags. Subsamples were taken from the bottom, middle, and top of the bagged barley mass. To obtain a uniform composite sample, the collected subsamples were then mixed in box A and divided into two boxes labeled B and C. Grains from box B were then weighed (200 g) into paper bags. Sampling was performed on cleaned and processed barley grains, and the obtained samples were kept refrigerated in sterile, dry containers. The same procedure was applied to every variety.
2.2. Analysis of Metabolites
2.3. Statistical Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, S.; Newton, A.C. Climate change, plant diseases and food security: An overview. Plant Pathol. 2011, 60, 2–14. [Google Scholar] [CrossRef]
- Parikka, P.; Hakala, K.; Tiilikkala, K. Expected shifts in Fusarium species’ composition on cereal grain in Northern Europe due to climatic change. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1543–1555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; van der Lee, T.; Waalwijk, C.; Chen, W.; Xu, J.; Xu, J.; Zhang, Y.; Feng, J. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS ONE 2012, 7, e31722. [Google Scholar] [CrossRef]
- Janhanger, J. Mycotoxins—An Increasing Problem?—The Effect of Climate Changes on Fusarium Mould Populations and the Occurrence of Fusarotoxins in Swedish Cereals; Independent Project in Food Science; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2018. [Google Scholar]
- Paterson, R.R.M.; Lima, N. Further mycotoxin effects from climate change. Food Res. Int. 2011, 44, 2555–2566. [Google Scholar] [CrossRef]
- European Food Safety Authority EFSA CONTAM Panel, 2020. Scientific opinion—Risk assessment of aflatoxins in food. EFSA J. 2020, 18, 6040. [Google Scholar]
- Langseth, W.; Elen, O. The occurrence of deoxynivalenol in Norwegian cereals—Differences between years and districts, 1988–1996. Acta Agric. Scand. B 1997, 47, 176–184. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1881/2006. Off. J. Eur. Union 2006, L 364/5, 5–24.
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32023R0915 (accessed on 4 September 2024).
- Berthiller, F.; Crews, C.; Dall’Asta, C.; Saeger, S.D.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked mycotoxins: A review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef]
- HauserHahn, I.; Dutzmann, S.; Freissleben, R.; Meissner, R.; Goehlich, F. Prosaro- a new fungicide for control of Fusarium and mycotoxins in cereals. Cereal Res. Commun. 2008, 36, 711–712. [Google Scholar]
- Horky, P.; Skalickova, S.; Caslavova, I.; Deering, A.J.; Nevrkla, P.; Slama, P.; Trojan, V.; Skladanka, J. Effect of fungicidal treatment and storage condition on content of selected mycotoxins in barley. Kvasny Prum. 2018, 64, 212–216. [Google Scholar] [CrossRef]
- Rickes da Luz, S.; Pazdiora, P.C.; Dallagnol, L.J.; Dors, G.C.; Clasen Chaves, F. Mycotoxin and fungicide residues in wheat grains from fungicide-treated plants measured by a validated LC-MS method. Food Chem. 2017, 220, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Havlová, P.; Lancová, K.; Vánová, M.; Havel, J.; Hajslová, J. The effect of fungicidal treatment on selected quality parameters of barley and malt. J. Agric. Food Chem. 2006, 54, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Kleber, A.; Gruber-Dorninger, C.; Platzer, A.; Payet, C.; Novak, B. Effect of Fungicide Treatment on Multi-Mycotoxin Occurrence in French Wheat during a 4-Year Period. Toxins 2023, 15, 443. [Google Scholar] [CrossRef] [PubMed]
- Daou, R.; Joubrane, K.; Maroun, R.G.; Rabbaa Khabbaz, L.; Ismail, A.; El Khoury, A. Mycotoxins: Factors influencing production and control strategies. AIMS Agric. Food 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Penagos-Tabares, F.; Sulyok, M.; Nagl, V.; Faas, J.; Krska, R.; Khiaosa-Ard, R.; Zebeli, Q. Mixtures of mycotoxins, phytoestrogens and pesticides co-occurring in wet spent brewery grains (BSG) intended for dairy cattle feeding in Austria. Food Add. Contam A 2022, 39, 1855–1877. [Google Scholar] [CrossRef]
- Freire, F.D.C.O.; da Rocha, M.E.B. Impact of mycotoxins on human health. In Fungal Metabolites; Mérillon, J.M., Ramawat, K., Eds.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2016; pp. 239–261. [Google Scholar]
- Kabak, B. The fate of mycotoxins during thermal food processing. J. Sci. Food Agric. 2009, 89, 549–554. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public. Health 2017, 14, 632. [Google Scholar] [CrossRef]
- Umesha, S.; Manukumar, H.M.; Chandrasekhar, B.; Shivakumara, P.; Shiva Kumar, J.; Raghava, S.; Avinash, P.; Shirin, M.; Bharathi, T.R.; Rajini, S.B.; et al. Aflatoxins and food pathogens: Impact of biologically active aflatoxins and their control strategies. J. Sci. Food Agric. 2017, 97, 1698–1707. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Instig. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Cinar, A.; Onbas, E. Mycotoxins: The hidden danger in foods. In Mycotoxins and Food Safety; Sabuncuoglu, S., Ed.; IntechOpen: London, UK, 2019; p. 2020. [Google Scholar]
- Battilani, P.; Palumbo, R.; Giorni, P.; Dall’Asta, C.; Dellafiora, L.; Gkrillas, A.; Toscano, P.; Crisci, A.; Brera, C.; De Santis, B. Mycotoxin mixtures in food and feed: Holistic innovative, flexible risk assessment modelling approach: MYCHIF. EFSA Support. 2020, 17, 1757E. [Google Scholar] [CrossRef]
- Pack, E.D.; Meyerhoff, K.; Schmale, D.G. III. Tracking zearalenone and type-b trichothecene mycotoxins in the commercial production of beer and brewers’ spent grains. J. Am. Soc. Brew. Chem. 2021, 80, 180–189. [Google Scholar] [CrossRef]
- [EC] European Commission. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. Off. J. Eur. Union L 2002, 140, 10–21. [Google Scholar]
- [EC] European Commission. Commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding (2006/576/EC). Off. J. Eur. Union L 2006, 229, 7–9. [Google Scholar]
- [EC] European Commission. Commission recommendation 2012/154/EU of 15 March 2012 on the monitoring of the presence of ergot alkaloids in feed and food. Off. J. Eur. Union L 2012, 77, 20–21. [Google Scholar]
- [EC] European Commission. Commission recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products (2013/165/EU). Off. J. Eur. Union L 2013, 91, 12–15. [Google Scholar]
- Yoshida, M.; Nakajima, T.; Tomimura, K.; Suzuki, F.; Arai, M.; Miyasaka, A. Effect of the Timing of Fungicide Application on Fusarium Head Blight and Mycotoxin Contamination in Wheat. Plant Dis. 2012, 96, 845–851. [Google Scholar] [CrossRef]
- Scarpino, V.; Reyneri, A.; Sulyok, M.; Krska, R.; Blandino, M. Effect of Fungicide Application to Control Fusarium Head Blight and 20 Fusarium and Alternaria Mycotoxins in Winter Wheat (Triticum aestivum L.). World Mycotoxin J. 2015, 8, 499–510. [Google Scholar] [CrossRef]
- Habschied, K.; Krska, R.; Sulyok, M.; Šarkanj, B.; Krstanović, V.; Lalić, A.; Šimić, G.; Mastanjević, K. Screening of Various Metabolites in Six Barley Varieties Grown under Natural Climatic Conditions (2016–2018). Microorganisms 2019, 7, 532. [Google Scholar] [CrossRef]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute and shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef]
- Tucker, J.R.; Badea, A.; Blagden, R.; Pleskach, K.; Tittlemier, S.A.; Fernando, W.G.D. Deoxynivalenol-3-Glucoside content is highly associated with deoxynivalenol levels in two-row barley genotypes of importance to Canadian barley breeding programs. Toxins 2019, 11, 319. [Google Scholar] [CrossRef]
- Andersen, B.; Krøger, E.; Roberts, R.G. Chemical and morphological segregation of Alternaria arborescens, A. infectoria and A. tenuissima species-groups. Mycol. Res. 2002, 10, 170–182. [Google Scholar] [CrossRef]
- Larsen, T.O.; Perry, N.B.; Andersen, B. Infectopyrone, a potential mycotoxin from Alternaria infectoria. Tetrahedron Lett. 2003, 44, 4511–4513. [Google Scholar] [CrossRef]
- Kulcsár, S.; Kövesi, B.; Balogh, K.; Zándoki, E.; Ancsin, Z.; Erdélyi, M.; Mézes, M. The Co-Occurrence of T-2 Toxin, Deoxynivalenol, and Fumonisin B1 Activated the Glutathione Redox System in the EU-Limiting Doses in Laying Hens. Toxins 2023, 15, 305. [Google Scholar] [CrossRef]
- Kosalec, I.; Šafranić, A.; Pepeljnjak, S.; Bačun-Družina, V.; Ramić, S.; Kopjar, N. Genotoxicity of tryptophol in a battery of short-term assays on human white blood cells in vitro. Basic Clin. Pharmacol. Toxicol. 2008, 102, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Arendt, E.K.; Zannini, E. 4-Barley. In Cereal Grains for the Food and Beverage Industries; Arendt, E.K., Zannini, E., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2013; pp. 155–201e. ISBN 978-0-85709-413-1. [Google Scholar]
- Landry, J.; Delhaye, S. The Tryptophan Contents of Wheat, Maize and Barley Grains as a Function of Nitrogen Content. J. Cereal Sci. 1993, 18, 259–266. [Google Scholar] [CrossRef]
- Knežević, D.; Đukić, N.; Madic, M.; Paunović, A.; Zecevic, V. Comparison of amino acids contents in barley and wheat. Res. J. Agric. Sci. 2007, 39, 71–76. [Google Scholar]
Season | Mean Precipitation (mm) | Total Precipitation (mm) | Mean Temperature (°C) |
---|---|---|---|
2018/19 | 52.66 | 473.90 | 9.6 |
2019/20 | 40.96 | 369.60 | 9.9 |
2019 | 2020 | |
---|---|---|
Temperature (°C) | ||
May | 14.0 | 15.3 |
June | 23.1 | 20.2 |
Precipitation (mm) | ||
May | 150.8 | 112.8 |
June | 53.3 | 73.5 |
Variety/Tretament/Year | Deoxynivalenol | Culmorin | 15-Hydroxyculmorin | 5-Hydroxyculmorin | Aurofusarin | Siccanol | Infectopyron | Tryptophol |
---|---|---|---|---|---|---|---|---|
µg/kg | ||||||||
ZLATKO_2019_1 | 278 b | 205 c | 345 b | 313 b | 6.26 b | 153 d | 51.8 e | 20.5 d |
ZLATKO_2019_2 | 256 c | 222 a | 94.3 c | <LOQ | <LOD | <LOD | <LOQ | 102 a |
ZLATKO_2019_3 | 447 a | 219 b | 370 a | 415 a | 177 a | 793 a | 327 a | 25.9 c |
ZLATKO_2020_1 | <LOD | <LOD | <LOD | <LOD | <LOD | 182 c | 129 d | 19.9 d |
ZLATKO_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | 234 b | 212 b | 39.6 b |
ZLATKO_2020_3 | <LOD | <LOD | <LOD | <LOD | <LOD | 139 e | 206 c | 25.5 c |
BARUN_2019_1 | 1046 a | 737 a | 810 a | 1237 a | 200 a | 1242 a | 313 a | 38.6 a |
BARUN_2019_2 | 245 c | 176 c | 174 c | 84.6 c | 15.2 c | 224 c | 47.9 e | 31.9 c |
BARUN_2019_3 | 873 b | 443 b | 657 b | 922 b | 190 b | 753 b | 238 b | 32.7 b |
BARUN_2020_1 | <LOD | <LOD | <LOD | <LOD | <LOD | 166 e | 195 c | 21.4 d |
BARUN_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | 170 d | 148 d | 14.7 e |
BARUN_2020_3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
BRAV0_2019_1 | 131 c | 75.7 c | 116 c | 202 c | 6.39 c | 159 c | 57.6 d | 28.4 c |
BRAV0_2019_2 | 853 a | 483 b | 670 a | 697 b | 111 a | 816 a | 423 a | 42.5 b |
BRAV0_2019_3 | 809 b | 542 a | 497 b | 811 a | 93.7 b | 692 b | 250 b | 52.6 a |
BRAV0_2020_1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 114 c | 19.3 d |
BRAV0_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | 77.8 e | <LOQ | 15.6 e |
BRAV0_2020_3 | <LOD | <LOD | <LOD | <LOD | <LOD | 89.1 d | <LOQ | <LOQ |
CASANOVA_2019_1 | 1567 a | 691 a | 935 a | 1455 a | 195 a | 763 b | 316 b | 26.7 c |
CASANOVA_2019_2 | 648 c | 251 c | 580 b | 810 b | 164 b | 649 c | 202 e | 33.0 a |
CASANOVA_2019_3 | 791 b | 394 b | 437 c | 640 c | 39.6 c | 1019 a | 386 a | 31.9 b |
CASANOVA_2020_1 | <LOD | <LOD | <LOD | <LOD | <LOD | 171 d | 297 c | 16.6 e |
CASANOVA_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | 87 f | 63.6 f | 20.8 d |
CASANOVA_2020_3 | <LOD | <LOD | <LOD | <LOD | <LOD | 148 e | 273 d | 14.7 f |
MAXIM_2019_1 | 570 b | 338 b | 344 b | 516 b | 160 b | 694 c | 306 c | 29.7 b |
MAXIM_2019_2 | 432 c | 282 c | 279 c | 292 c | 196 a | 977 a | 343 b | 24.7 c |
MAXIM_2019_3 | 1518 a | 619 a | 837 a | 990 a | 47.6 c | 798 b | 358 a | 22.0 d |
MAXIM_2020_1 | <LOD | <LOD | <LOD | <LOD | <LOD | 177 d | 190 d | <LOD |
MAXIM_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | 161 e | 170 e | 30.9 a |
MAXIM_2020_3 | <LOD | <LOD | <LOD | <LOD | <LOD | 59.5 f | <LOQ | <LOD |
MAESTRO_2019_1 | 1603 b | 1071 b | 1024 b | 516 b | 320 b | 618 c | 267 d | 18.9 d |
MAESTRO_2019_2 | 1159 c | 262 c | 845 c | 292 c | 165 c | 901 b | 536 b | 52.0 a |
MAESTRO_2019_3 | 2659 a | 1393 a | 2627 a | 990 a | 444 a | 1054 a | 401 a | 25.3 c |
MAESTRO_2020_1 | <LOD | <LOD | <LOD | <LOD | <LOD | 222 d | 350 c | 30.0 b |
MAESTRO_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | 144 e | 114 e | 18.6 d |
MAESTRO_2020_3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOQ | <LOQ |
BEPO_2019_1 | 1444 a | 645 a | 973 a | 1284 a | 142 c | 764 b | 242 c | 25.7 d |
BEPO_2019_2 | 1231 b | 589 b | 732 b | 1105 b | 172 a | 760 c | 244 b | 27.9 c |
BEPO_2019_3 | 835 c | 414 c | 492 c | 554 c | 167 b | 936 a | 235 d | 22.1 e |
BEPO_2020_1 | <LOD | <LOD | <LOD | <LOD | <LOD | 137 e | 287 a | 33.7 b |
BEPO_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOQ | 128 e | 42.2 a |
BEPO_2020_3 | <LOD | <LOD | <LOD | <LOD | <LOD | 161 d | 129 e | 25.1 d |
FAVORIT_2019_1 | 196 c | 107 c | 128 c | 71.8 c | 331 a | 876 b | 265 b | 21.2 d |
FAVORIT_2019_2 | 867 b | 483 b | 667 b | 853b | 148 c | 921 a | 295 a | 37.6 a |
FAVORIT_2019_3 | 1809 a | 1357 a | 932 a | 1094 a | 279 b | 655 c | 213 c | 25.6 c |
FAVORIT_2020_1 | <LOD | <LOD | <LOD | <LOD | <LOD | 103 e | 164 d | 19.9 e |
FAVORIT_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOQ | 141 e | 27.6 b |
FAVORIT_2020_3 | <LOD | <LOD | <LOD | <LOD | <LOD | 129 d | 118 f | 19.2 e |
LORD_2019_1 | 2134 a | 486 b | 1946 a | 1715 b | 341 a | 625 c | 409 a | 31.9 a |
LORD_2019_2 | 837 c | 368 c | 838 c | 1008 c | 314 b | 934 b | 218 e | 26.9 c |
LORD_2019_3 | 1667 b | 500 a | 1278 b | 1742 a | 144 c | 1261 a | 348 b | 25.2 d |
LORD_2020_1 | <LOD | <LOD | <LOD | <LOD | <LOD | 110 f | 68.4 f | 20.9 f |
LORD_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | 137 e | 265 c | 22.8 e |
LORD_2020_3 | <LOD | <LOD | <LOD | <LOD | <LOD | 312 d | 250 d | 30.5 b |
OLIVER_2019_1 | 771 c | 312 c | 619 c | 637 c | 140 b | 7220 b | 217 d | 44.3 b |
OLIVER_2019_2 | 1469 a | 318 b | 1047 a | 1104 a | 282 a | 530 c | 492 a | 36.7 c |
OLIVER_2019_3 | 927 b | 417 a | 722 b | 776 b | 95.6 c | 7610 a | 250 c | 21.2 d |
OLIVER_2020_1 | <LOD | <LOD | <LOD | <LOD | <LOD | 106 d | 298 b | 20.2 d |
OLIVER_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | 58.8 e | 121 e | 20.4 d |
OLIVER_2020_2 | <LOD | <LOD | <LOD | <LOD | <LOD | 58.8 e | 118 f | 48.67 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habschied, K.; Mastanjević, K.; Babić, J.; Krska, R.; Sulyok, M.; Lalić, A.; Šimić, G.; Kovač, T. Co-Occurrence of Fusarium and Alternaria Metabolites in Brewing Barley Monitored during Two Consecutive Years (2019–2020). Biomolecules 2024, 14, 1156. https://doi.org/10.3390/biom14091156
Habschied K, Mastanjević K, Babić J, Krska R, Sulyok M, Lalić A, Šimić G, Kovač T. Co-Occurrence of Fusarium and Alternaria Metabolites in Brewing Barley Monitored during Two Consecutive Years (2019–2020). Biomolecules. 2024; 14(9):1156. https://doi.org/10.3390/biom14091156
Chicago/Turabian StyleHabschied, Kristina, Krešimir Mastanjević, Jurislav Babić, Rudolf Krska, Michael Sulyok, Alojzije Lalić, Gordana Šimić, and Tihomir Kovač. 2024. "Co-Occurrence of Fusarium and Alternaria Metabolites in Brewing Barley Monitored during Two Consecutive Years (2019–2020)" Biomolecules 14, no. 9: 1156. https://doi.org/10.3390/biom14091156
APA StyleHabschied, K., Mastanjević, K., Babić, J., Krska, R., Sulyok, M., Lalić, A., Šimić, G., & Kovač, T. (2024). Co-Occurrence of Fusarium and Alternaria Metabolites in Brewing Barley Monitored during Two Consecutive Years (2019–2020). Biomolecules, 14(9), 1156. https://doi.org/10.3390/biom14091156