Investigating MerR’s Selectivity: The Crosstalk Between Cadmium and Copper Under Elevated Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth
2.2. Gene Cloning and Plasmid Constructions for Allele Replacement
2.3. Gene Transfer and Strain Selection
2.4. Construction of R. gelatinosus cadR− and copRcadR− Strains
2.5. Construction of Plasmids for High Level Expression of CadR and CopR in E. coli
2.6. Overexpression and Purification of His-Tagged Proteins
2.7. Electrophoretic Mobility Shift Assays
2.8. Western Blot and Immunodetection
3. Results
3.1. Copper Tolerance Determinants in R. gelatinosus Are Under the Control of at Least Two MerR Regulators
3.2. Unexpectedly, the Cd2+ Regulator CadR Controls the Expression Level of the Cu+ Tolerance Proteins CopI and CopA
3.3. Induction of CopI in Response to the Concomitant Presence of Cu+ and Cd2+
3.4. CadR and CopR Binds In Vitro to the Promoter Region of copA and cadA
3.5. Copper and Cadmium Cross-Tolerance: Cu+ Alleviates the Cd2+ Toxicity in cadR− Mutant
3.6. The Enhanced Growth in the Presence of CdCl2 and CuSO4 Is Associated with an Increased CadA Expression
3.7. Cd2+ and Cu+ Tolerance in R. gelatinosus Involves Two Distinct ATPases but Share CadR, a Common Sentinel to Deal with Excess Cd2+ and Cu+
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capdevila, D.A.; Edmonds, K.A.; Giedroc, D.P. Metallochaperones and metalloregulation in bacteria. Essays Biochem. 2017, 61, 177–200. [Google Scholar] [PubMed]
- Chandrangsu, P.; Rensing, C.; Helmann, J.D. Metal homeostasis and resistance in bacteria. Nat. Rev. Microbiol. 2017, 15, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Arguello, J.M.; Eren, E.; Gonzalez-Guerrero, M. The structure and function of heavy metal transport P1B-ATPases. Biometals 2007, 20, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Palmgren, M.G.; Nissen, P. P-type ATPases. Annu. Rev. Biophys. 2011, 40, 243–266. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Jacobsen, F.E.; Giedroc, D.P. Metal Transporters and Metal Sensors: How Coordination Chemistry Controls Bacterial Metal Homeostasis. Chem. Rev. 2009, 109, 4644–4681. [Google Scholar] [CrossRef]
- Changela, A.; Chen, K.; Xue, Y.; Holschen, J.; Outten, C.E.; O’Halloran, T.V.; Mondragon, A. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 2003, 301, 1383–1387. [Google Scholar] [CrossRef]
- Philips, S.J.; Canalizo-Hernandez, M.; Yildirim, I.; Schatz, G.C.; Mondragon, A.; O’Halloran, T.V. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 2015, 349, 877–881. [Google Scholar] [CrossRef]
- Outten, F.W.; Huffman, D.L.; Hale, J.A.; O’Halloran, T.V. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 2001, 276, 30670–30677. [Google Scholar] [CrossRef]
- Ma, Z.; Cowart, D.M.; Scott, R.A.; Giedroc, D.P. Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis. Biochemistry 2009, 48, 3325–3334. [Google Scholar] [CrossRef]
- Osman, D.; Foster, A.W.; Chen, J.; Svedaite, K.; Steed, J.W.; Lurie-Luke, E.; Huggins, T.G.; Robinson, N.J. Fine control of metal concentrations is necessary for cells to discern zinc from cobalt. Nat. Commun. 2017, 8, 1884. [Google Scholar] [CrossRef]
- Pennella, M.A.; Shokes, J.E.; Cosper, N.J.; Scott, R.A.; Giedroc, D.P. Structural elements of metal selectivity in metal sensor proteins. Proc. Natl. Acad. Sci. USA 2003, 100, 3713–3718. [Google Scholar] [CrossRef] [PubMed]
- Giedroc, D.P.; Arunkumar, A.I. Metal sensor proteins: Nature’s metalloregulated allosteric switches. Dalton Trans. 2007, 29, 3107–3120. [Google Scholar] [CrossRef] [PubMed]
- Macomber, L.; Imlay, J.A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 8344–8349. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.F.; Imlay, J.A. Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl. Environ. Microbiol. 2012, 78, 3614–3621. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Cheng, Z.; Pang, Y.; Landry, A.P.; Li, J.; Lu, J.; Ding, H. Copper binding in IscA inhibits iron-sulphur cluster assembly in Escherichia coli. Mol. Microbiol. 2014, 93, 629–644. [Google Scholar] [CrossRef]
- Azzouzi, A.; Steunou, A.S.; Durand, A.; Khalfaoui-Hassani, B.; Bourbon, M.L.; Astier, C.; Bollivar, D.W.; Ouchane, S. Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu+-ATPase mutant copA− of Rubrivivax gelatinosus. Mol. Microbiol. 2013, 88, 339–351. [Google Scholar] [CrossRef]
- Djoko, K.Y.; McEwan, A.G. Antimicrobial action of copper is amplified via inhibition of heme biosynthesis. ACS Chem. Biol. 2013, 8, 2217–2223. [Google Scholar] [CrossRef]
- Durand, A.; Azzouzi, A.; Bourbon, M.L.; Steunou, A.S.; Liotenberg, S.; Maeshima, A.; Astier, C.; Argentini, M.; Saito, S.; Ouchane, S. c-type cytochrome assembly is a key target of copper toxicity within the bacterial periplasm. mBio 2015, 6, e01007–e01015. [Google Scholar] [CrossRef]
- Steunou, A.S.; Babot, M.; Durand, A.; Bourbon, M.L.; Liotenberg, S.; Miotello, G.; Armengaud, J.; Ouchane, S. Discriminating Susceptibility of Xanthine Oxidoreductase Family to Metals. Microbiol. Spectr. 2023, 11, e0481422. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning, A Laboratory Manual, 2nd ed.; Cold Spring Harbor: New York, NY, USA, 1989. [Google Scholar]
- Haan, C.; Behrmann, I. A cost effective non-commercial ECL-solution for Western blot detections yielding strong signals and low background. J. Immunol. Methods 2007, 318, 11–19. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Steunou, A.S.; Durand, A.; Bourbon, M.L.; Babot, M.; Tambosi, R.; Liotenberg, S.; Ouchane, S. Cadmium and Copper Cross-Tolerance. Cu(+) Alleviates Cd(2+) Toxicity, and Both Cations Target Heme and Chlorophyll Biosynthesis Pathway in Rubrivivax gelatinosus. Front. Microbiol. 2020, 11, 893. [Google Scholar] [CrossRef] [PubMed]
- Teitzel, G.M.; Geddie, A.; De Long, S.K.; Kirisits, M.J.; Whiteley, M.; Parsek, M.R. Survival and growth in the presence of elevated copper: Transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 7242–7256. [Google Scholar] [CrossRef]
- Rohaun, S.K.; Imlay, J.A. The vulnerability of radical SAM enzymes to oxidants and soft metals. Redox Biol. 2022, 57, 102495. [Google Scholar] [CrossRef]
- Andruzzi, L.; Nakano, M.; Nilges, M.J.; Blackburn, N.J. Spectroscopic studies of metal binding and metal selectivity in Bacillus subtilis BSco, a Homologue of the Yeast Mitochondrial Protein Sco1p. J. Am. Chem. Soc. 2005, 127, 16548–16558. [Google Scholar] [CrossRef]
- Liu, T.; Reyes-Caballero, H.; Li, C.; Scott, R.A.; Giedroc, D.P. Multiple metal binding domains enhance the Zn(II) selectivity of the divalent metal ion transporter AztA. Biochemistry 2007, 46, 11057–11068. [Google Scholar] [CrossRef]
- Caille, O.; Rossier, C.; Perron, K. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J. Bacteriol. 2007, 189, 4561–4568. [Google Scholar] [CrossRef]
- Ibanez, M.M.; Checa, S.K.; Soncini, F.C. A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. J. Bacteriol. 2015, 197, 1606–1613. [Google Scholar] [CrossRef]
- Liu, T.; Nakashima, S.; Hirose, K.; Shibasaka, M.; Katsuhara, M.; Ezaki, B.; Giedroc, D.P.; Kasamo, K. A novel cyanobacterial SmtB/ArsR family repressor regulates the expression of a CPx-ATPase and a metallothionein in response to both Cu(I)/Ag(I) and Zn(II)/Cd(II). J. Biol. Chem. 2004, 279, 17810–17818. [Google Scholar] [CrossRef]
- Moore, C.M.; Gaballa, A.; Hui, M.; Ye, R.W.; Helmann, J.D. Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol. Microbiol. 2005, 57, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Solovieva, I.M.; Entian, K.D. Metalloregulation in Bacillus subtilis: The copZ chromosomal gene is involved in cadmium resistance. FEMS Microbiol. Lett. 2004, 236, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Nakashima, S.; Shibasaka, M.; Katsuhara, M.; Kasamo, K. A novel histidine-rich CPx-ATPase from the filamentous cyanobacterium Oscillatoria brevis related to multiple-heavy-metal cotolerance. J. Bacteriol. 2002, 184, 5027–5035. [Google Scholar] [CrossRef] [PubMed]
- Gaballa, A.; Helmann, J.D. Bacillus subtilis CPx-type ATPases: Characterization of Cd, Zn, Co and Cu efflux systems. Biometals 2003, 16, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.M.; Helmann, J.D. Metal ion homeostasis in Bacillus subtilis. Curr. Opin. Microbiol. 2005, 8, 188–195. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Li, W.; Zheng, X.; Li, X. Genomic Insights Into Cadmium Resistance of a Newly Isolated, Plasmid-Free Cellulomonas sp. Strain Y8. Front. Microbiol. 2021, 12, 784575. [Google Scholar] [CrossRef]
- Hong, Y.; Mackenzie, E.S.; Firth, S.J.; Bolton, J.R.F.; Stewart, L.J.; Waldron, K.J.; Djoko, K.Y. Mis-regulation of Zn and Mn homeostasis is a key phenotype of Cu stress in Streptococcus pyogenes. Met. Integr. Biometal Sci. 2023, 15, mfad064. [Google Scholar] [CrossRef]
- Steunou, A.S.; Bourbon, M.L.; Babot, M.; Durand, A.; Liotenberg, S.; Yamaichi, Y.; Ouchane, S. Increasing the copper sensitivity of microorganisms by restricting iron supply, a strategy for bio-management practices. Microb. Biotechnol. 2020, 13, 1530–1545. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, P.; Wang, H.; Yu, Z.H.; Au-Yeung, H.Y.; Hirayama, T.; Sun, H.; Yan, A. Zinc excess increases cellular demand for iron and decreases tolerance to copper in Escherichia coli. J. Biol. Chem. 2019, 294, 16978–16991. [Google Scholar] [CrossRef]
- Uffen, R.L. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc. Natl. Acad. Sci. USA 1976, 73, 3298–3302. [Google Scholar] [CrossRef]
- Prentki, P.; Krisch, H.M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 1984, 29, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Dennis, J.J.; Zylstra, G.J. Plasposons: Modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl. Environ. Microbiol. 1998, 64, 2710–2715. [Google Scholar] [CrossRef] [PubMed]
- Kovach, M.E.; Phillips, R.W.; Elzer, P.H.; Roop, R.M., 2nd; Peterson, K.M. pBBR1MCS: A broad-host-range cloning vector. Biotechniques 1994, 16, 800–802. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steunou, A.S.; Durand, A.; Liotenberg, S.; Bourbon, M.-L.; Ouchane, S. Investigating MerR’s Selectivity: The Crosstalk Between Cadmium and Copper Under Elevated Stress Conditions. Biomolecules 2024, 14, 1429. https://doi.org/10.3390/biom14111429
Steunou AS, Durand A, Liotenberg S, Bourbon M-L, Ouchane S. Investigating MerR’s Selectivity: The Crosstalk Between Cadmium and Copper Under Elevated Stress Conditions. Biomolecules. 2024; 14(11):1429. https://doi.org/10.3390/biom14111429
Chicago/Turabian StyleSteunou, Anne Soisig, Anne Durand, Sylviane Liotenberg, Marie-Line Bourbon, and Soufian Ouchane. 2024. "Investigating MerR’s Selectivity: The Crosstalk Between Cadmium and Copper Under Elevated Stress Conditions" Biomolecules 14, no. 11: 1429. https://doi.org/10.3390/biom14111429
APA StyleSteunou, A. S., Durand, A., Liotenberg, S., Bourbon, M. -L., & Ouchane, S. (2024). Investigating MerR’s Selectivity: The Crosstalk Between Cadmium and Copper Under Elevated Stress Conditions. Biomolecules, 14(11), 1429. https://doi.org/10.3390/biom14111429