Estrogen Regulates Ca2+ to Promote Mitochondrial Function Through G-Protein-Coupled Estrogen Receptors During Oocyte Maturation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethics Statement
2.2. Collection and Culture of Mouse Oocytes
2.3. Ca2+ Staining
2.4. Detection of Oocyte Mitochondrial Peroxide and Mitochondrial Membrane Potential
2.5. Western Blot Analysis
2.6. Statistical Analysis
3. Results
3.1. Estrogen Affects Ca2+ Levels in Mouse Oocytes
3.2. Estrogen Affects Mouse Oocyte Ca2+ Levels via Membrane Receptors
3.3. Estrogen Alleviates the Inhibitory Effect of BAPTA-AM on Oocyte Maturation in Mice
3.4. Estrogen Alleviates the Inhibitory Effect of BAPTA-AM on Mitochondrial Function in Mouse Oocytes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaffe, L.A.; Egbert, J.R. Regulation of Mammalian Oocyte Meiosis by Intercellular Communication Within the Ovarian Follicle. Annu. Rev. Physiol. 2017, 79, 237–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Machaty, Z. Calcium Influx in Mammalian Eggs. Reproduction 2013, 145, R97–R105. [Google Scholar] [CrossRef] [PubMed]
- Putney, J.W.; Steinckwich-Besançon, N.; Numaga-Tomita, T.; Davis, F.M.; Desai, P.N.; D’Agostin, D.M.; Wu, S.; Bird, G.S. The Functions of Store-Operated Calcium Channels. Biochim Biophys Acta Mol. Cell Res. 2017, 1864, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, S.C.; Korach, K.S. Estrogen Receptors: Structure, Mechanisms and Function. Rev. Endocr. Metab. Disord. 2002, 3, 193–200. [Google Scholar] [CrossRef]
- Carmeci, C.; Thompson, D.A.; Ring, H.Z.; Francke, U.; Weigel, R.J. Identification of a Gene (GPR30) with Homology to the G-Protein-Coupled Receptor Superfamily Associated with Estrogen Receptor Expression in Breast Cancer. Genomics 1997, 45, 607–617. [Google Scholar] [CrossRef]
- Li, Y.-R.; Ren, C.-E.; Zhang, Q.; Li, J.-C.; Chian, R.-C. Expression of G Protein Estrogen Receptor (GPER) on Membrane of Mouse Oocytes during Maturation. J. Assist. Reprod. Genet. 2013, 30, 227–232. [Google Scholar] [CrossRef]
- Zhang, M.; Su, Y.-Q.; Sugiura, K.; Wigglesworth, K.; Xia, G.; Eppig, J.J. Estradiol Promotes and Maintains Cumulus Cell Expression of Natriuretic Peptide Receptor 2 (NPR2) and Meiotic Arrest in Mouse Oocytes In Vitro. Endocrinology 2011, 152, 4377–4385. [Google Scholar] [CrossRef]
- Chuang, S.-C.; Chen, C.-H.; Chou, Y.-S.; Ho, M.-L.; Chang, J.-K. G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells. Int. J. Mol. Sci. 2020, 21, 6490. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, S.; Xu, R.; Tang, Y.; Liu, J.; Li, C.; Wei, J.; Yao, R.; Zhao, X.; Wei, Q.; et al. Mechanisms of Estradiol-Induced EGF-like Factor Expression and Oocyte Maturation via G Protein-Coupled Estrogen Receptor. Endocrinology 2020, 161, bqaa190. [Google Scholar] [CrossRef]
- Park, S.-J.; Ahmad, F.; Philp, A.; Baar, K.; Williams, T.; Luo, H.; Ke, H.; Rehmann, H.; Taussig, R.; Brown, A.L.; et al. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP phosphodiesterases. Cell 2012, 148, 421–433. [Google Scholar] [CrossRef]
- Hao, X.; Wang, Y.; Kong, N.; Zhang, Y.; Zhao, Y.; Xia, G.; Zhang, M. Epidermal Growth Factor-Mobilized Intracellular Calcium of Cumulus Cells Decreases Natriuretic Peptide Receptor 2 Affinity for Natriuretic Peptide Type C and Induces Oocyte Meiotic Resumption in the Mouse. Biol. Reprod. 2016, 95, 45. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, J.; Naftolin, F. Aromatase: Contributions to Physiology and Disease in Women and Men. Physiology 2016, 31, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Toft, D.; Gorski, J. A Receptor Molecule for Estrogens: Isolation from the Rat Uterus and Preliminary Characterization. Proc. Natl. Acad. Sci. USA 1966, 55, 1574–1581. [Google Scholar] [CrossRef]
- Samavat, H.; Kurzer, M.S. Estrogen Metabolism and Breast Cancer. Cancer Lett. 2015, 356, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Diamante, G.; Menjivar-Cervantes, N.; Leung, M.S.; Volz, D.C.; Schlenk, D. Contribution of G Protein-Coupled Estrogen Receptor 1 (GPER) to 17β-Estradiol-Induced Developmental Toxicity in Zebrafish. Aquat. Toxicol. 2017, 186, 180–187. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, J.; He, Y.; Huang, P.; Yue, L. Fast Action of Estrogen on Intracellular Calcium in Dormant Mouse Blastocyst and Its Possible Mechanism. Fertil. Steril. 2009, 91, 611–615. [Google Scholar] [CrossRef]
- Gao, D.D.; Lan, C.F.; Cao, X.N.; Chen, L.; Lei, T.L.; Peng, L.; Xu, J.W.; Qiu, Z.E.; Wang, L.L.; Sun, Q.; et al. G protein-coupled estrogen receptor promotes acrosome reaction via regulation of Ca2+ signaling in mouse sperm†. Biol. Reprod. 2022, 107, 1026–1034. [Google Scholar] [CrossRef]
- Pang, Y.; Dong, J.; Thomas, P. Estrogen Signaling Characteristics of Atlantic Croaker G Protein-Coupled Receptor 30 (GPR30) and Evidence It Is Involved in Maintenance of Oocyte Meiotic Arrest. Endocrinology 2008, 149, 3410–3426. [Google Scholar] [CrossRef]
- Doolan, C.M.; Harvey, B.J. A Galphas Protein-Coupled Membrane Receptor, Distinct from the Classical Oestrogen Receptor, Transduces Rapid Effects of Oestradiol on [Ca2+]i in Female Rat Distal Colon. Mol. Cell Endocrinol. 2003, 199, 87–103. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, D.; Varin, A.; Nicolas, V.; Courilleau, D.; Mateo, P.; Caubere, C.; Rouet, P.; Gomez, A.M.; Vandecasteele, G.; et al. A Cardiac Mitochondrial cAMP Signaling Pathway Regulates Calcium Accumulation, Permeability Transition and Cell Death. Cell Death Dis. 2016, 7, e2198. [Google Scholar] [CrossRef]
- Okumura, S.; Fujita, T.; Cai, W.; Jin, M.; Namekata, I.; Mototani, Y.; Jin, H.; Ohnuki, Y.; Tsuneoka, Y.; Kurotani, R.; et al. Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J. Clin. Investig. 2014, 124, 2785–2801. [Google Scholar] [CrossRef] [PubMed]
- Baljinnyam, E.; De Lorenzo, M.S.; Xie, L.-H.; Iwatsubo, M.; Chen, S.; Goydos, J.S.; Nowycky, M.C.; Iwatsubo, K. Exchange Protein Directly Activated by Cyclic AMP Increases Melanoma Cell Migration by a Ca2+-Dependent Mechanism. Cancer Res. 2010, 70, 5607–5617. [Google Scholar] [CrossRef] [PubMed]
- Baljinnyam, E.; Umemura, M.; De Lorenzo, M.S.; Xie, L.-H.; Nowycky, M.; Iwatsubo, M.; Chen, S.; Goydos, J.S.; Iwatsubo, K. Gβγ Subunits Inhibit Epac-Induced Melanoma Cell Migration. BMC Cancer 2011, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Szanda, G.; Wisniewski, É.; Rajki, A.; Spät, A. Mitochondrial cAMP Exerts Positive Feedback on Mitochondrial Ca2+ Uptake via the Recruitment of Epac. J. Cell Sci. 2018, 131, jcs.215178. [Google Scholar] [CrossRef] [PubMed]
- Formoso, K.; Lezoualc’h, F.; Mialet-Perez, J. Role of EPAC1 Signalosomes in Cell Fate: Friends or Foes? Cells 2020, 9, 1954. [Google Scholar] [CrossRef]
- Fazal, L.; Laudette, M.; Paula-Gomes, S.; Pons, S.; Conte, C.; Tortosa, F.; Sicard, P.; Sainte-Marie, Y.; Bisserier, M.; Lairez, O.; et al. Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death. Circ. Res. 2017, 120, 645–657. [Google Scholar] [CrossRef]
- Talmon, M.; Rossi, S.; Lim, D.; Pollastro, F.; Palattella, G.; Ruffinatti, F.A.; Marotta, P.; Boldorini, R.; Genazzani, A.A.; Fresu, L.G. Absinthin, an Agonist of the Bitter Taste Receptor hTAS2R46, Uncovers an ER-to-Mitochondria Ca2+-Shuttling Event. J. Biol. Chem. 2019, 294, 12472–12482. [Google Scholar] [CrossRef]
- Kato, Y.; Yokoyama, U.; Yanai, C.; Ishige, R.; Kurotaki, D.; Umemura, M.; Fujita, T.; Kubota, T.; Okumura, S.; Sata, M.; et al. Epac1 Deficiency Attenuated Vascular Smooth Muscle Cell Migration and Neointimal Formation. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2617–2625. [Google Scholar] [CrossRef]
- Tran, Q.-K. Reciprocality Between Estrogen Biology and Calcium Signaling in the Cardiovascular System. Front. Endocrinol. 2020, 11, 568203. [Google Scholar] [CrossRef]
- Wakai, T.; Mehregan, A.; Fissore, R.A. Ca2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs. Cold Spring Harb. Perspect. Biol. 2019, 11, a035162. [Google Scholar] [CrossRef]
- Mo, G.; Li, R.; Swider, Z.; Leblanc, J.; Bement, W.M.; Liu, X.J. A Localized Calcium Transient and Polar Body Abscission. Cell Cycle 2022, 21, 2239–2254. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.L. Sirt1 and the Mitochondria. Mol Cells. 2016, 39, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-L.; Xu, J.-J.; Ni, Y.-H.; Chen, X.-C.; Zhang, H.-X.; Zhang, X.-M.; Liu, W.-J.; Luo, L.-L.; Fu, Y.-C. SIRT1 Activator (SRT1720) Improves the Follicle Reserve and Prolongs the Ovarian Lifespan of Diet-Induced Obesity in Female Mice via Activating SIRT1 and Suppressing mTOR Signaling. J. Ovarian Res. 2014, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Iljas, J.D.; Wei, Z.; Homer, H.A. Sirt1 Sustains Female Fertility by Slowing Age-Related Decline in Oocyte Quality Required for Post-Fertilization Embryo Development. Aging Cell 2020, 19, e13204. [Google Scholar] [CrossRef]
- Campbell, C.T.; Kolesar, J.E.; Kaufman, B.A. Mitochondrial Transcription Factor a Regulates Mitochondrial Transcription Initiation, DNA Packaging, and Genome Copy Number. Biochim. Biophys. Acta 2012, 1819, 921–929. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, R.; Hao, S.; Luo, P.; Wang, P.; Almatari, Y.; Guo, L.; Guo, L. Up-Regulation of SIRT1 Induced by 17beta-Estradiol Promotes Autophagy and Inhibits Apoptosis in Osteoblasts. Aging 2021, 13, 23652–23671. [Google Scholar] [CrossRef]
- Mei, R.; Lou, P.; You, G.; Jiang, T.; Yu, X.; Guo, L. 17β-Estradiol Induces Mitophagy Upregulation to Protect Chondrocytes via the SIRT1-Mediated AMPK/mTOR Signaling Pathway. Front. Endocrinol. 2021, 11, 615250. [Google Scholar] [CrossRef]
- Fang, X.; Xia, W.; Li, S.; Qi, Y.; Liu, M.; Yu, Y.; Li, H.; Li, M.; Tao, C.; Wang, Z.; et al. SIRT2 Is Critical for Sheep Oocyte Maturation through Regulating Function of Surrounding Granulosa Cells. Int. J. Mol. Sci. 2022, 23, 5013. [Google Scholar] [CrossRef]
- Liang, D.; Zhuo, Y.; Guo, Z.; He, L.; Wang, X.; He, Y.; Li, L.; Dai, H. SIRT1/PGC-1 Pathway Activation Triggers Autophagy/Mitophagy and Attenuates Oxidative Damage in Intestinal Epithelial Cells. Biochimie 2020, 170, 10–20. [Google Scholar] [CrossRef]
- Nevoral, J.; Landsmann, L.; Stiavnicka, M.; Hosek, P.; Moravec, J.; Prokesova, S.; Rimnacova, H.; Koutna, E.; Klein, P.; Hoskova, K.; et al. Epigenetic and Non-Epigenetic Mode of SIRT1 Action during Oocyte Meiosis Progression. J. Anim. Sci. Biotechnol. 2019, 10, 67. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Li, J.; Li, Y.; Cheng, M.; Zhang, H.; Ma, B. Estrogen Regulates Ca2+ to Promote Mitochondrial Function Through G-Protein-Coupled Estrogen Receptors During Oocyte Maturation. Biomolecules 2024, 14, 1430. https://doi.org/10.3390/biom14111430
Liu Q, Li J, Li Y, Cheng M, Zhang H, Ma B. Estrogen Regulates Ca2+ to Promote Mitochondrial Function Through G-Protein-Coupled Estrogen Receptors During Oocyte Maturation. Biomolecules. 2024; 14(11):1430. https://doi.org/10.3390/biom14111430
Chicago/Turabian StyleLiu, Qingyang, Jingmei Li, Yanxue Li, Ming Cheng, Hui Zhang, and Baohua Ma. 2024. "Estrogen Regulates Ca2+ to Promote Mitochondrial Function Through G-Protein-Coupled Estrogen Receptors During Oocyte Maturation" Biomolecules 14, no. 11: 1430. https://doi.org/10.3390/biom14111430
APA StyleLiu, Q., Li, J., Li, Y., Cheng, M., Zhang, H., & Ma, B. (2024). Estrogen Regulates Ca2+ to Promote Mitochondrial Function Through G-Protein-Coupled Estrogen Receptors During Oocyte Maturation. Biomolecules, 14(11), 1430. https://doi.org/10.3390/biom14111430