Differential Lipid Signatures of Lumbar and Cisternal Cerebrospinal Fluid
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Liquid Chromatography with Mass Spectrometry (LC-MS) Analysis
2.3. Bioinformatics and Statistical Analyses
3. Results
3.1. Differential CSF Lipid Signature in Cisternal and Lumbar CSF
3.2. Lipids Groups Are Upregulated in Cisternal CSF Compared to Lumbar CSF
3.3. Select Lipids Are Upregulated in Each of the CSF Compartments
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cserr, H.F. Physiology of the choroid plexus. Physiol. Rev. 1971, 51, 273–311. [Google Scholar] [CrossRef] [PubMed]
- Cserr, H.F.; Cooper, D.N.; Milhorat, T.H. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp. Eye Res. 1977, 25 (Suppl. 1), 461–473. [Google Scholar] [CrossRef] [PubMed]
- Rostgaard, N.; Olsen, M.H.; Capion, T.; MacAulay, N.; Juhler, M. Inflammatory Markers as Predictors of Shunt Dependency and Functional Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage. Biomedicines 2023, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Toft-Bertelsen, T.L.; Andreassen, S.N.; Rostgaard, N.; Olsen, M.H.; Norager, N.H.; Capion, T.; Juhler, M.; MacAulay, N. Distinct Cerebrospinal Fluid Lipid Signature in Patients with Subarachnoid Hemorrhage-Induced Hydrocephalus. Biomedicines 2023, 11, 2360. [Google Scholar] [CrossRef] [PubMed]
- Rostgaard, N.; Olsen, M.H.; Ottenheijm, M.; Drici, L.; Simonsen, A.H.; Plomgaard, P.; Gredal, H.; Poulsen, H.H.; Zetterberg, H.; Blennow, K.; et al. Differential proteomic profile of lumbar and ventricular cerebrospinal fluid. Fluids Barriers CNS 2023, 20, 6. [Google Scholar] [CrossRef]
- Park, S.A.; Jang, Y.J.; Kim, M.K.; Lee, S.M.; Moon, S.Y. Promising Blood Biomarkers for Clinical Use in Alzheimer’s Disease: A Focused Update. J. Clin. Neurol. 2022, 18, 401–409. [Google Scholar] [CrossRef]
- Schindler, S.E. Fluid Biomarkers in Dementia Diagnosis. Contin. Lifelong Learn. Neurol. 2022, 28, 822–833. [Google Scholar] [CrossRef]
- Hussain, G.; Wang, J.; Rasul, A.; Anwar, H.; Imran, A.; Qasim, M.; Zafar, S.; Kamran, S.K.S.; Razzaq, A.; Aziz, N.; et al. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis. 2019, 18, 26. [Google Scholar] [CrossRef]
- Barrera, G.; Pizzimenti, S.; Dianzani, M.U. Lipid peroxidation: Control of cell proliferation, cell differentiation and cell death. Mol. Asp. Med. 2008, 29, 1–8. [Google Scholar] [CrossRef]
- Karimy, J.K.; Reeves, B.C.; Damisah, E.; Duy, P.Q.; Antwi, P.; David, W.; Wang, K.; Schiff, S.J.; Limbrick, D.D., Jr.; Alper, S.L.; et al. Inflammation in acquired hydrocephalus: Pathogenic mechanisms and therapeutic targets. Nat. Rev. Neurol. 2020, 16, 285–296. [Google Scholar] [CrossRef]
- Toft-Bertelsen, T.L.; Barbuskaite, D.; Heerfordt, E.K.; Lolansen, S.D.; Andreassen, S.N.; Rostgaard, N.; Olsen, M.H.; Norager, N.H.; Capion, T.; Rath, M.F.; et al. Lysophosphatidic acid as a CSF lipid in posthemorrhagic hydrocephalus that drives CSF accumulation via TRPV4-induced hyperactivation of NKCC1. Fluids Barriers CNS 2022, 19, 69. [Google Scholar] [CrossRef]
- Crack, P.J.; Zhang, M.; Morganti-Kossmann, M.C.; Morris, A.J.; Wojciak, J.M.; Fleming, J.K.; Karve, I.; Wright, D.; Sashindranath, M.; Goldshmit, Y.; et al. Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes. J. Neuroinflamm. 2014, 11, 37. [Google Scholar] [CrossRef]
- Haussmann, R.; Homeyer, P.; Brandt, M.D.; Donix, M. Prognostic and diagnostic value of cerebrospinal fluid analysis in neurodegenerative dementia diseases. Nervenarzt 2022, 93, 1236–1242. [Google Scholar] [CrossRef]
- Doroszkiewicz, J.; Groblewska, M.; Mroczko, B. Molecular Biomarkers and Their Implications for the Early Diagnosis of Selected Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 4610. [Google Scholar] [CrossRef]
- Husain, N.; Husain, A.; Mishra, S.; Srivastava, P. Liquid biopsy in CNS tumors: Current status & future perspectives. Indian J. Pathol. Micr 2022, 65, 111–121. [Google Scholar] [CrossRef]
- Ghaith, H.S.; Nawar, A.A.; Gabra, M.D.; Abdelrahman, M.E.; Nafady, M.H.; Bahbah, E.; Ebada, M.A.; Ashraf, G.M.; Negida, A.; Barreto, G.E. A Literature Review of Traumatic Brain Injury Biomarkers. Mol. Neurobiol. 2022, 59, 4141–4158. [Google Scholar] [CrossRef]
- Chen, C.; Hu, C.; Zhou, W.; Chen, J.; Shi, Q.; Xiao, K.; Wang, Y.; Dong, X.P. Calmodulin level is significantly increased in the cerebrospinal fluid of patients with sporadic Creutzfeldt-Jakob disease. Eur. J. Neurol. 2021, 28, 1134–1141. [Google Scholar] [CrossRef]
- Abdulmawjood, A.; Schönenbrocher, H.; Bülte, M. Novel molecular method for detection of bovine-specific central nervous system tissues as bovine spongiform encephalopathy risk material in meat and meat products. J. Mol. Diagn. 2005, 7, 368–374. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol. 2022, 21, 726–734. [Google Scholar] [CrossRef]
- Simonsen, C.S.; Flemmen, H.O.; Lauritzen, T.; Berg-Hansen, P.; Moen, S.M.; Celius, E.G. The diagnostic value of IgG index versus oligoclonal bands in cerebrospinal fluid of patients with multiple sclerosis. Mult. Scler. J.—Exp. Transl. Clin. 2020, 6, 2055217319901291. [Google Scholar] [CrossRef]
- Van Gorkom, T.; Voet, W.; Van Arkel, G.H.J.; Heron, M.; Hoeve-Bakker, B.J.A.; Thijsen, S.F.T.; Kremer, K. Retrospective Evaluation of Various Serological Assays and Multiple Parameters for Optimal Diagnosis of Lyme Neuroborreliosis in a Routine Clinical Setting. Microbiol. Spectr. 2022, 10, e00061-22. [Google Scholar] [CrossRef] [PubMed]
- Pietikäinen, A.; Backman, I.; Henningsson, A.J.; Hytönen, J. Clinical performance and analytical accuracy of a C6 peptide-based point-of-care lateral flow immunoassay in Lyme borreliosis serology. Diagn. Microbiol. Infect. Dis. 2022, 103, 115657. [Google Scholar] [CrossRef] [PubMed]
- Lager, M.; Wilhelmsson, P.; Matussek, A.; Lindgren, P.E.; Henningsson, A.J. Molecular Detection of Bacteria in Cerebrospinal Fluid-Optimisation of Pre-Analytical Sample Handling for Increased Analytical Sensitivity. Diagnostics 2021, 11, 2088. [Google Scholar] [CrossRef] [PubMed]
- Rubalcava, M.A.; Sotelo, J. Differences between Ventricular and Lumbar Cerebrospinal-Fluid in Hydrocephalus Secondary to Cysticercosis. Neurosurgery 1995, 37, 668–671. [Google Scholar] [CrossRef] [PubMed]
- Bergman, J.; Svenningsson, A.; Liv, P.; Bergenheim, T.; Burman, J. Location matters: Highly divergent protein levels in samples from different CNS compartments in a clinical trial of rituximab for progressive MS. Fluids Barriers CNS 2020, 17, 49. [Google Scholar] [CrossRef]
- Minta, K.; Jeppsson, A.; Brinkmalm, G.; Portelius, E.; Zetterberg, H.; Blennow, K.; Tullberg, M.; Andreasson, U. Lumbar and ventricular CSF concentrations of extracellular matrix proteins before and after shunt surgery in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2021, 18, 23. [Google Scholar] [CrossRef]
- Jeppsson, A.; Zetterberg, H.; Blennow, K.; Wikkelso, C. Idiopathic normal-pressure hydrocephalus Pathophysiology and diagnosis by CSF biomarkers. Neurology 2013, 80, 1385–1392. [Google Scholar] [CrossRef]
- Pyykkö, O.T.; Lumela, M.; Rummukainen, J.; Nerg, O.; Seppälä, T.T.; Herukka, S.K.; Koivisto, A.M.; Alafuzoff, I.; Puli, L.; Savolainen, S.; et al. Cerebrospinal Fluid Biomarker and Brain Biopsy Findings in Idiopathic Normal Pressure Hydrocephalus. PLoS ONE 2014, 9, e91974. [Google Scholar] [CrossRef]
- Toft-Bertelsen, T.L.; Andreassen, S.N.; Simonsen, A.H.; Hasselbalch, S.G.; MacAulay, N. The CSF lipid profile in patients with probable idiopathic normal pressure hydrocephalus differs from control but does not differ between shunt responders and non-responders. Brain Commun. 2024, 6, fcae388. [Google Scholar] [CrossRef]
- Slomka, A.; Korbal, P.; Piekus, N.; Zekanowska, E. The use of cluster and principal component analysis in the estimation of iron status in term newborns. J. Matern.-Fetal Neonatal Med. 2013, 26, 482–486. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Thissen, D.; Steinberg, L.; Kuang, D. Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. J. Educ. Behav. Stat. 2002, 27, 77–83. [Google Scholar] [CrossRef]
- Hermann, P.; Haller, P.; Goebel, S.; Bunck, T.; Schmidt, C.; Wiltfang, J.; Zerr, I. Total and Phosphorylated Cerebrospinal Fluid Tau in the Differential Diagnosis of Sporadic Creutzfeldt-Jakob Disease and Rapidly Progressive Alzheimer’s Disease. Viruses 2022, 14, 276. [Google Scholar] [CrossRef] [PubMed]
- Morello, M.; Mastrogiovanni, S.; Falcione, F.; Rossi, V.; Bernardini, S.; Casciani, S.; Viola, A.; Reali, M.; Pieri, M. Laboratory Diagnosis of Intrathecal Synthesis of Immunoglobulins: A Review about the Contribution of OCBs and K-index. Int. J. Mol. Sci. 2024, 25, 5170. [Google Scholar] [CrossRef]
- He, S.; Xiong, Y.; Tu, T.; Feng, J.; Fu, Y.; Hu, X.; Wang, N.; Li, D. Diagnostic performance of metagenomic next-generation sequencing for the detection of pathogens in cerebrospinal fluid in pediatric patients with central nervous system infection: A systematic review and meta-analysis. BMC Infect. Dis. 2024, 24, 103. [Google Scholar] [CrossRef] [PubMed]
- Biasucci, D.G.; Sergi, P.G.; Bilotta, F.; Dauri, M. Diagnostic Accuracy of Procalcitonin in Bacterial Infections of the CNS: An Updated Systematic Review, Meta-Analysis, and Meta-Regression. Crit. Care Med. 2024, 52, 112–124. [Google Scholar] [CrossRef]
- Lee, B.; Mahmud, I.; Pokhrel, R.; Murad, R.; Yuan, M.; Stapleton, S.; Bettegowda, C.; Jallo, G.; Eberhart, C.G.; Garrett, T.; et al. Medulloblastoma cerebrospinal fluid reveals metabolites and lipids indicative of hypoxia and cancer-specific RNAs. Acta Neuropathol. Commun. 2022, 10, 25. [Google Scholar] [CrossRef]
- Byeon, S.K.; Madugundu, A.K.; Jain, A.P.; Bhat, F.A.; Jung, J.H.; Renuse, S.; Darrow, J.; Bakker, A.; Albert, M.; Moghekar, A.; et al. Cerebrospinal fluid lipidomics for biomarkers of Alzheimer’s disease. Mol. Omics 2021, 17, 454–463. [Google Scholar] [CrossRef]
- Brandner, S.; Thaler, C.; Lewczuk, P.; Lelental, N.; Buchfelder, M.; Kleindienst, A. Neuroprotein Dynamics in the Cerebrospinal Fluid: Intraindividual Concomitant Ventricular and Lumbar Measurements. Eur. Neurol. 2013, 70, 189–194. [Google Scholar] [CrossRef]
- Benninghaus, A.; Balédent, O.; Lokossou, A.; Castelar, C.; Leonhardt, S.; Radermacher, K. Enhanced in vitro model of the CSF dynamics. Fluids Barriers CNS 2019, 16, 11. [Google Scholar] [CrossRef]
- Puy, V.; Zmudka-Attier, J.; Capel, C.; Bouzerar, R.; Serot, J.M.; Bourgeois, A.M.; Ausseíl, J.; Balédent, O. Interactions between Flow Oscillations and Biochemical Parameters in the Cerebrospinal Fluid. Front. Aging Neurosci. 2016, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Seymour, R.S. Model analogues in the study of cephalic circulation. Comp. Biochem. Phys. A 2000, 125, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Ngo, M.T.; Harley, B.A.C. Progress in mimicking brain microenvironments to understand and treat neurological disorders. Apl. Bioeng. 2021, 5, 020920. [Google Scholar] [CrossRef] [PubMed]
- Reiber, H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin. Chim. Acta 2001, 310, 173–186. [Google Scholar] [CrossRef]
- Djukic, M.; Spreer, A.; Lange, P.; Bunkowski, S.; Wiltfang, J.; Nau, R. Small cisterno-lumbar gradient of phosphorylated Tau protein in geriatric patients with suspected normal pressure hydrocephalus. Fluids Barriers CNS 2016, 13, 15. [Google Scholar] [CrossRef]
- Tumani, H.; Huss, A.; Bachhuber, F. The cerebrospinal fluid and barriers—Anatomic and physiologic considerations. Cerebrospinal Fluid Neurol. Disord. 2018, 146, 21–32. [Google Scholar] [CrossRef]
- Mollenhauer, B.; Trautmann, E.; Otte, B.; Ng, J.; Spreer, A.; Lange, P.; Sixel-Döring, F.; Hakimi, M.; VonSattel, J.P.; Nussbaum, R.; et al. α-Synuclein in human cerebrospinal fluid is principally derived from neurons of the central nervous system. J. Neural Transm. 2012, 119, 739–746. [Google Scholar] [CrossRef]
- Pifferi, F.; Laurent, B.; Plourde, M. Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Front. Physiol. 2021, 12, 645646. [Google Scholar] [CrossRef]
- Igarashi, M.; DeMar, J.C.; Ma, K.Z.; Chang, L.; Bell, J.M.; Rapoport, S.I. Docosahexaenoic acid synthesis from α-linolenic acid by rat brain is unaffected by dietary n-3 PUFA deprivation. J. Lipid Res. 2007, 48, 1150–1158. [Google Scholar] [CrossRef]
- Lacombe, R.J.S.; Chouinard-Watkins, R.; Bazinet, R.P. Brain docosahexaenoic acid uptake and metabolism. Mol. Asp. Med. 2018, 64, 109–134. [Google Scholar] [CrossRef]
- Hamilton, J.A.; Hillard, C.J.; Spector, A.A.; Watkins, P.A. Brain uptake and utilization of fatty acids, lipids and lipoproteins: Application to neurological disorders. J. Mol. Neurosci. 2007, 33, 2–11. [Google Scholar] [CrossRef]
- Rapoport, S.I.; Chang, M.C.J.; Spector, A.A. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J. Lipid Res. 2001, 42, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Smith, Q.R.; Nagura, H. Fatty acid uptake and incorporation in brain: Studies with the perfusion model. J. Mol. Neurosci. 2001, 16, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Lun, M.P.; Johnson, M.B.; Broadbelt, K.G.; Watanabe, M.; Kang, Y.J.; Chau, K.F.; Springel, M.W.; Malesz, A.; Sousa, A.M.M.; Pletikos, M.; et al. Spatially Heterogeneous Choroid Plexus Transcriptomes Encode Positional Identity and Contribute to Regional CSF Production. J. Neurosci. 2015, 35, 4903–4916. [Google Scholar] [CrossRef] [PubMed]
- Hirsch-Reinshagen, V.; Zhou, S.; Burgess, B.L.; Bernier, L.; McIsaac, S.A.; Chan, J.Y.; Tansley, G.H.; Cohn, J.S.; Hayden, M.R.; Wellington, C.L. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J. Biol. Chem. 2004, 279, 41197–41207. [Google Scholar] [CrossRef]
- Karasinska, J.M.; Rinninger, F.; Lütjohann, D.; Ruddle, P.; Franciosi, S.; Kruit, J.K.; Singaraja, R.R.; Hirsch-Reinshagen, V.; Fan, J.; Brunham, L.R.; et al. Specific Loss of Brain ABCA1 Increases Brain Cholesterol Uptake and Influences Neuronal Structure and Function. J. Neurosci. 2009, 29, 3579–3589. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toft-Bertelsen, T.L.; Andreassen, S.N.; Norager, N.H.; Simonsen, A.H.; Hasselbalch, S.G.; Juhler, M.; MacAulay, N. Differential Lipid Signatures of Lumbar and Cisternal Cerebrospinal Fluid. Biomolecules 2024, 14, 1431. https://doi.org/10.3390/biom14111431
Toft-Bertelsen TL, Andreassen SN, Norager NH, Simonsen AH, Hasselbalch SG, Juhler M, MacAulay N. Differential Lipid Signatures of Lumbar and Cisternal Cerebrospinal Fluid. Biomolecules. 2024; 14(11):1431. https://doi.org/10.3390/biom14111431
Chicago/Turabian StyleToft-Bertelsen, Trine L., Søren Norge Andreassen, Nicolas H. Norager, Anja Hviid Simonsen, Steen Gregers Hasselbalch, Marianne Juhler, and Nanna MacAulay. 2024. "Differential Lipid Signatures of Lumbar and Cisternal Cerebrospinal Fluid" Biomolecules 14, no. 11: 1431. https://doi.org/10.3390/biom14111431
APA StyleToft-Bertelsen, T. L., Andreassen, S. N., Norager, N. H., Simonsen, A. H., Hasselbalch, S. G., Juhler, M., & MacAulay, N. (2024). Differential Lipid Signatures of Lumbar and Cisternal Cerebrospinal Fluid. Biomolecules, 14(11), 1431. https://doi.org/10.3390/biom14111431