Unraveling the Immune Web: Advances in SMI Capsular Fibrosis from Molecular Insights to Preclinical Breakthroughs
Abstract
:1. Introduction
2. Molecular Mechanisms of SMI-Associated Capsular Fibrosis
3. Genomics and Proteomics in SMI-Associated Capsular Fibrosis
3.1. Genomic Insights into SMI-Associated Capsular Fibrosis
3.1.1. Genomic Profiling of Capsular Fibrosis
3.1.2. Challenges and Future Directions
3.2. Proteomic Insights into SMI-Associated Capsular Fibrosis
3.2.1. Proteomic Studies on Protein Adsorption and Immune Responses
3.2.2. Proteomic Profiling of SMI Surfaces
3.2.3. Intraindividual Comparative Proteomic Profiling
3.3. Integration of Genomics and Proteomics for Comprehensive Understanding
3.3.1. Complementary Roles of Genomics and Proteomics
3.3.2. Future Directions and Clinical Implications
4. Fibroblast Dynamics and Immune Interactions: Navigating Capsular Fibrosis in Silicone Implant Biocompatibility
4.1. Fibroblast Activation and Differentiation
4.1.1. Role of Fibroblasts in Wound Healing
4.1.2. Fibroblasts’ Response to Silicone Implants
4.1.3. Crosstalk and Inflammatory Phase
4.1.4. Influence of Implants’ Surface Properties
4.1.5. Sustained Injury and Myofibroblast Differentiation
4.1.6. ECM Remodeling
4.1.7. Implications
4.2. Immune Cell Interactions and Inflammatory Responses
4.2.1. Molecular Mechanisms of Immune Cell Activation
4.2.2. Role of T Cells in Fibrotic Encapsulation
4.2.3. Influence of Implants’ Surface Properties on T Cell Immune Responses
4.2.4. Macrophages in the Context of SMIs: Cellular Interactions and Inflammatory Responses
4.2.5. Strategies Targeting Macrophages Through Implant Surface Modifications
4.3. Silicone Gel Bleed and Its Impact on Immune Response and Fibrosis
4.4. Implications for Clinical Practice
5. Microbial Interactions and Biofilm Formation on SMIs: Implications for Capsular Contracture
5.1. The Race for the Surface: Host Cells vs. Bacteria
5.2. Biofilm Formation and Its Implications for SMIs
5.3. Antimicrobial Immune Responses and Proteomic Insights in Capsular Fibrosis
6. Clinical Translation and Future Directions
7. Challenges and Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Barh, D.; Zambare, V.; Azevedo, V. Omics: Applications in Biomedical, Agricultural, and Environmental Sciences; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Aderem, A. Systems biology: Its practice and challenges. Cell 2005, 121, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Nagle, D.G.; Zhou, Y.; Zhang, W. Application of Systems Biology in the Research of TCM Formulae. In Systems Biology and Its Application in TCM Formulas Research; Elsevier: Amsterdam, The Netherlands, 2018; pp. 31–67. [Google Scholar] [CrossRef]
- Miho, E.; Yermanos, A.; Weber, C.R.; Berger, C.T.; Reddy, S.T.; Greiff, V. Computational Strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Front. Immunol. 2018, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Schussek, S.; Trieu, A.; Doolan, D.L. Genome- and proteome-wide screening strategies for antigen discovery and immunogen design. Biotechnol. Adv. 2014, 32, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sarma, D.K.; Verma, V.; Nagpal, R. Unveiling the future of metabolic medicine: Omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochem. Biophys. Res. Commun. 2023, 682, 1–20. [Google Scholar] [CrossRef]
- Chavda, V.; Bezbaruah, R.; Valu, D.; Desai, S.; Chauhan, N.; Marwadi, S.; Deka, G.; Ding, Z. Clinical Applications of “Omics” Technology as a Bioinformatic Tool. In Bioinformatics Tools for Pharmaceutical Drug Product Development; Wiley: Hoboken, NJ, USA, 2023; pp. 117–145. [Google Scholar] [CrossRef]
- Quiroz, I.V. Exploring the Intersection of Omics Technologies and Biotechnology in Drug Interaction Studies. In Biotechnology and Drug Development; 2024; p. 188. Available online: https://books.google.com/books?hl=de&lr=&id=EEb9EAAAQBAJ&oi=fnd&pg=PA188&dq=application+of+omics+technologies+in+biomedical+and+pharmaceutical+research.&ots=u6sMBjDv5b&sig=H6rlgX4u3iryxa8SXaFFJAlzPtk (accessed on 10 June 2024).
- Stein, C.M.; Weiskirchen, R.; Damm, F.; Strzelecka, P.M. Single-cell omics: Overview, analysis, and application in biomedical science. J. Cell Biochem. 2021, 122, 1571–1578. [Google Scholar] [CrossRef]
- Aga, A.M.; Woldesemayat, A.A. Application of Omics and Bioinformatics Technologies in Response to COVID-19 Pandemic. Mol. Cell. Biomed. Sci. 2024, 8, 1–14. [Google Scholar] [CrossRef]
- Bai, J.P.F.; Melas, I.N.; Hur, J.; Guo, E. Advances in omics for informed pharmaceutical research and development in the era of systems medicine. Expert Opin. Drug Discov. 2018, 13, 1–4. [Google Scholar] [CrossRef]
- Dai, X.; Shen, L. Advances and Trends in Omics Technology Development. Front. Med. 2022, 9, 911861. [Google Scholar] [CrossRef]
- Davis, M.M.; Tato, C.M.; Furman, D. Systems immunology: Just getting started. Nat. Immunol. 2017, 18, 725–732. [Google Scholar] [CrossRef]
- Bonaguro, L.; Schulte-Schrepping, J.; Ulas, T.; Aschenbrenner, A.C.; Beyer, M.; Schultze, J.L. A guide to systems-level immunomics. Nat. Immunol. 2022, 23, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.; Davis, M.M. The science and medicine of human immunology. Science 2020, 369, 4014. [Google Scholar] [CrossRef]
- Devenish, L.P.; Mhlanga, M.M.; Negishi, Y. Immune Regulation in Time and Space: The Role of Local- and Long-Range Genomic Interactions in Regulating Immune Responses. Front. Immunol. 2021, 12, 662565. [Google Scholar] [CrossRef]
- Wynn, T.A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Investig. 2007, 117, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Wang, T.; Tian, L.; Song, H.; Gao, M. Roxatidine inhibits fibrosis by inhibiting NF κB and MAPK signaling in macrophages sensing breast implant surface materials. Mol. Med. Rep. 2020, 21, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008, 214, 199–210. [Google Scholar] [CrossRef]
- Kuo, Y.L.; Jou, I.M.; Jeng, S.F.; Chu, C.H.; Huang, J.S.; Hsu, T.I.; Chang, L.R.; Huang, P.W.; Chen, J.A.; Chou, T.M. Hypoxia-induced epithelial-mesenchymal transition and fibrosis for the development of breast capsular contracture. Sci. Rep. 2019, 9, 10269. [Google Scholar] [CrossRef]
- Biernacka, A.; Dobaczewski, M.; Frangogiannis, N.G. TGF-β signaling in fibrosis. Growth Factors 2011, 29, 196–202. [Google Scholar] [CrossRef]
- Chaikuad, A.; Bullock, A.N. Structural basis of intracellular TGF-β signaling: Receptors and smads. Cold Spring Harb. Perspect. Biol. 2016, 8, a022111. [Google Scholar] [CrossRef]
- Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Lan, H.Y. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int. J. Biol. Sci. 2011, 7, 1056. [Google Scholar] [CrossRef]
- Margadant, C.; Sonnenberg, A. Integrin-TGF-β crosstalk in fibrosis, cancer and wound healing. Embo Rep. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Hu, H.H.; Chen, D.Q.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Vaziri, N.D.; Zhao, Y.Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Interact. 2018, 292, 76–83. [Google Scholar] [CrossRef]
- Wick, G.; Grundtman, C.; Mayerl, C.; Wimpissinger, T.F.; Feichtinger, J.; Zelger, B.; Sgonc, R.; Wolfram, D. The immunology of fibrosis. Annu. Rev. Immunol. 2013, 31, 107–135. [Google Scholar] [CrossRef]
- Wick, G.; Backovic, A.; Rabensteiner, E.; Plank, N.; Schwentner, C.; Sgonc, R. The immunology of fibrosis: Innate and adaptive responses. Trends Immunol. 2010, 31, 110–119. [Google Scholar] [CrossRef]
- Schoberleitner, I.; Faserl, K.; Sarg, B.; Egle, D.; Brunner, C.; Wolfram, D. Quantitative proteomic characterization of foreign body response towards silicone breast implants identifies chronological disease-relevant biomarker dynamics. Biomolecules 2023, 13, 305. [Google Scholar] [CrossRef]
- Siggelkow, W.; Gescher, D.M.; Siggelkow, A.; Klee, D.; Malik, E.; Rath, W.; Faridi, A. In vitro analysis of modified surfaces of silicone breast implants. Int. J. Artif. Organs 2004, 27, 1100–1108. [Google Scholar] [CrossRef]
- Siggelkow, W.; Faridi, A.; Spiritus, K.; Klinge, U.; Rath, W.; Klosterhalfen, B. Histological analysis of silicone breast implant capsules and correlation with capsular contracture. Biomaterials 2003, 24, 1101–1109. [Google Scholar] [CrossRef]
- Handel, N.; Jensen, J.A.; Black, Q.; Waisman, J.R.; Silverstein, M.J. The fate of breast implants: A critical analysis of complications and outcomes. Plast. Reconstr. Surg. 1995, 96, 1521–1533. [Google Scholar] [CrossRef] [PubMed]
- Kuehlmann, B.; Zucal, I.; Bonham, C.A.; Joubert, L.M.; Prantl, L. SEM and TEM for identification of capsular fibrosis and cellular behavior around breast implants—A descriptive analysis. BMC Cell Biol. 2021, 22, 25. [Google Scholar] [CrossRef]
- Prantl, L.; Schreml, S.; Fichtner-Feigl, S.; Pöppl, N.; Eisenmann-Klein, M.; Schwarze, H.; Füchtmeier, B. Clinical and morphological conditions in capsular contracture formed around silicone breast implants. Plast. Reconstr. Surg. 2007, 120, 275–284. [Google Scholar] [CrossRef]
- Colwell, A.S.; Taylor, E.M. Recent advances in implant-based breast reconstruction. Plast. Reconstr. Surg. 2020, 145, 421e–432e. [Google Scholar] [CrossRef]
- Frey, J.D.; Salibian, A.A.; Karp, N.S.; Choi, M. Implant-based breast reconstruction: Hot topics, controversies, and new directions. Plast. Reconstr. Surg. 2019, 143, 404e–416e. [Google Scholar] [CrossRef]
- Ricci, J.A.; Epstein, S.; Momoh, A.O.; Lin, S.J.; Singhal, D.; Lee, B.T. A meta-analysis of implant-based breast reconstruction and timing of adjuvant radiation therapy. J. Surg. Res. 2017, 218, 108–116. [Google Scholar] [CrossRef]
- Schoberleitner, I.; Augustin, A.; Egle, D.; Brunner, C.; Amort, B.; Zelger, B.; Brunner, A.; Wolfram, D. Is it all about surface topography? An intra-individual clinical outcome analysis of two different implant surfaces in breast reconstruction. J. Clin. Med. 2023, 12, 1315. [Google Scholar] [CrossRef]
- Luvsannyam, E.; Patel, D.; Hassan, Z.; Nukala, S.; Somagutta, M.R.; Hamid, P. Overview of risk factors and prevention of capsular contracture following implant-based breast reconstruction and cosmetic surgery: A systematic review. Cureus 2020, 12, e10341. [Google Scholar] [CrossRef]
- Schoberleitner, I.; Faserl, K.; Tripp, C.H.; Pechriggl, E.J.; Sigl, S.; Brunner, A.; Zelger, B.; Hermann-Kleiter, N.; Baier, L.; Steinkellner, T.; et al. Silicone implant surface microtopography modulates inflammation and tissue repair in capsular fibrosis. Front. Immunol. 2024, 15, 1342895. [Google Scholar] [CrossRef]
- Lefkowitz, D.L.; Lefkowitz, S.S. Macrophage-neutrophil interaction: A paradigm for chronic inflammation revisited. Immunol. Cell Biol. 2001, 79, 502–506. [Google Scholar] [CrossRef]
- Sugimoto, M.A.; Vago, J.P.; Perretti, M.; Teixeira, M.M. Mediators of the Resolution of the Inflammatory Response. Trends Immunol. 2019, 40, 212–227. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, S. T Cells in Fibrosis and Fibrotic Diseases. Front. Immunol. 2020, 11, 1142. [Google Scholar] [CrossRef]
- Safran, T.; Nepon, H.; Chu, C.K.; Winocour, S.; Murphy, A.M.; Davison, P.G.; Dionisopolos, T.; Vorstenbosch, J. Healing, Inflammation, and Fibrosis: Current Concepts in Capsular Contracture: Pathophysiology, Prevention, and Management. Semin. Plast. Surg. 2021, 35, 189. [Google Scholar] [CrossRef]
- Kim, J.K.; Scott, E.A.; Elbert, D.L. Proteomic analysis of protein adsorption: Serum amyloid P adsorbs to materials and promotes leukocyte adhesion. J. Biomed. Mater. Res. A 2005, 75, 199–209. [Google Scholar] [CrossRef]
- Swartzlander, M.D.; Barnes, C.A.; Blakney, A.K.; Kaar, J.L.; Kyriakides, T.R.; Bryant, S.J. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials 2015, 41, 26–36. [Google Scholar] [CrossRef]
- Witherel, C.E.; Abebayehu, D.; Barker, T.H.; Spiller, K.L. Macrophage and Fibroblast Interactions in Biomaterial-Mediated Fibrosis. Adv. Healthc. Mater. 2019, 8, 1801451. [Google Scholar] [CrossRef]
- Greisler, H.P. Interactions at the blood/material interface. Ann. Vasc. Surg. 1990, 4, 98–103. [Google Scholar] [CrossRef]
- Faruq, O.; Pham, N.C.; Dönmez, N.; Nam, S.Y.; Heo, C.Y. Functionalization of Silicone Surface with Drugs and Polymers for Regulation of Capsular Contracture. Polymers 2021, 13, 2731. [Google Scholar] [CrossRef]
- Atiyeh, B.; Emsieh, S. Effects of Silicone Breast Implants on Human Cell Types In Vitro: A Closer Look on Host and Implant. Aesth. Plast. Surg. 2022, 46, 2609–2611. [Google Scholar] [CrossRef]
- Xing, S.; Santerre, J.P.; Labow, R.S.; Boynton, E.L. The effect of polyethylene particle phagocytosis on the viability of mature human macrophages. J. Biomed. Mater. Res. 2002, 61, 619–627. [Google Scholar] [CrossRef]
- Tavazzani, F.; Xing, S.; Waddell, J.E.; Smith, D.; Boynton, E.L. In vitro interaction between silicone gel and human monocyte-macrophages. J. Biomed. Mater. Res. A 2005, 72, 161–167. [Google Scholar] [CrossRef]
- Wolfram, D.; Rabensteiner, E.; Grundtman, C.; Böck, G.; Mayerl, C.; Parson, W.; Almanzar, G.; Hasenöhrl, C.; Piza-Katzer, H.; Wick, G. T regulatory cells and TH17 cells in peri-silicone implant capsular fibrosis. Plast. Reconstr. Surg. 2012, 129, 327e–337e. [Google Scholar] [CrossRef]
- Cappellano, G.; Ploner, C.; Lobenwein, S.; Sopper, S.; Hoertnagl, P.; Mayerl, C.; Wick, N.; Pierer, G.; Wick, G.; Wolfram, D. Immunophenotypic characterization of human T cells after in vitro exposure to different silicone breast implant surfaces. PLoS ONE 2018, 13, e0192108. [Google Scholar] [CrossRef]
- Backovic, A.; Wolfram, D.; Del-Frari, B.; Piza, H.; Huber, L.A.; Wick, G. Simultaneous analysis of multiple serum proteins adhering to the surface of medical grade polydimethylsiloxane elastomers. J. Immunol. Methods 2007, 328, 118–127. [Google Scholar] [CrossRef]
- Wolfram, D.; Oberreiter, B.; Mayerl, C.; Soelder, E.; Ulmer, H.; Piza-Katzer, H.; Wick, G.; Backovic, A. Cellular and molecular composition of fibrous capsules formed around silicone breast implants with special focus on local immune reactions. J. Autoimmun. 2004, 23, 81–91. [Google Scholar] [CrossRef]
- Kuehlmann, B.; Burkhardt, R.; Kosaric, N.; Prantl, L. Capsular fibrosis in aesthetic and reconstructive-cancer patients: A retrospective analysis of 319 cases. Clin. Hemorheol. Microcirc. 2018, 70, 191–200. [Google Scholar] [CrossRef]
- Schoberleitner, I.; Baier, L.; Lackner, M.; Zenz, L.-M.; Coraça-Huber, D.C.; Ullmer, W.; Damerum, A.; Faserl, K.; Sigl, S.; Steinkellner, T.; et al. Surface Topography, Microbial Adhesion, and Immune Responses in Silicone Mammary Implant-Associated Capsular Fibrosis. Int. J. Mol. Sci. 2024, 25, 3163. [Google Scholar] [CrossRef]
- Lin, A.J.; Karinja, S.J.; Bernstein, J.L.; Jin, J.; Toyoda, Y.; Miller, A.J.; Zanzonico, P.B.; Spector, J.A. In Search of a Murine Model of Radiation-Induced Periprosthetic Capsular Fibrosis. Ann. Plast. Surg. 2018, 80, S204–S210. [Google Scholar] [CrossRef]
- Backovic, A.; Huang, H.L.; Del Frari, B.; Piza, H.; Huber, L.A.; Wick, G. Identification and dynamics of proteins adhering to the surface of medical silicones in vivo and in vitro. J. Proteome Res. 2007, 6, 376–381. [Google Scholar] [CrossRef]
- Wolfram, D.; Niederegger, H.; Piza, H.; Wick, G. Altered systemic serologic parameters in patients with silicone mammary implants. Immunol. Lett. 2008, 119, 91–96. [Google Scholar] [CrossRef]
- Doloff, J.C.; Veiseh, O.; de Mezerville, R.; Sforza, M.; Perry, T.A.; Haupt, J.; Jamiel, M.; Chambers, C.; Nash, A.; Aghlara-Fotovat, S.; et al. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits, and humans. Nat. Biomed. Eng. 2021, 5, 1115–1130. [Google Scholar] [CrossRef]
- ISAPS. The Latest Global Survey from ISAPS Reports a Significant Rise in Aesthetic Surgery Worldwide. Newswire 2023. Available online: https://www.isaps.org (accessed on 28 August 2024).
- Alfano, C.; Mazzocchi, M.; Scuderi, N. Mammary compliance: An objective measurement of capsular contracture. Aesthetic Plast. Surg. 2004, 28, 75–79. [Google Scholar] [CrossRef]
- Henriksen, T.F.; Fryzek, J.P.; Hölmich, L.R.; McLaughlin, J.K.; Kjøller, K.; Høyer, A.P.; Olsen, J.H.; Friis, S. Surgical intervention and capsular contracture after breast augmentation: A prospective study of risk factors. Ann. Plast. Surg. 2005, 54, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, T.F.; Hölmich, L.R.; Fryzek, J.P.; Friis, S.; McLaughlin, J.K.; Høyer, A.P.; Kjøller, K.; Olsen, J.H. Incidence and severity of short-term complications after breast augmentation: Results from a nationwide breast implant registry. Ann. Plast. Surg. 2003, 51, 531–539. [Google Scholar] [CrossRef]
- Handel, N.; Cordray, T.; Gutierrez, J.; Jensen, J.A. A long-term study of outcomes, complications, and patient satisfaction with breast implants. Plast. Reconstr. Surg. 2006, 117, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, C.; Lindgren, E.N.; Frisell, J.; Stark, B. A prospective randomized study comparing two different expander approaches in implant-based breast reconstruction: One stage versus two stages. Plast. Reconstr. Surg. 2012, 130, 254e–264e. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.P.; Nelson, J.A.; Cleveland, E.; Sieber, B.; Rohrbach, J.I.; Serletti, J.M.; Kanchwala, S. Breast reconstruction modality outcome study: A comparison of expander/implants and free flaps in select patients. Plast. Reconstr. Surg. 2013, 131, 928–934. [Google Scholar] [CrossRef]
- Chisholm, E.M.; Marr, S.; Macfie, J.; Broughton, A.C.; Brennan, T.G. Post-mastectomy breast reconstruction using the inflatable tissue expander. Br. J. Surg. 1986, 73, 817–820. [Google Scholar] [CrossRef]
- McLaughlin, J.K.; Lipworth, L.; Murphy, D.K.; Walker, P.S. The safety of silicone gel-filled breast implants: A review of the epidemiologic evidence. Ann. Plast. Surg. 2007, 59, 569–580. [Google Scholar] [CrossRef]
- Chiu, W.K.; Fracol, M.; Feld, L.N.; Qiu, C.S.; Kim, J.Y.S. Judging an expander by its cover: A propensity-matched analysis of the impact of tissue expander surface texture on first-stage breast reconstruction outcomes. Plast. Reconstr. Surg. 2021, 147, 1E–6E. [Google Scholar] [CrossRef]
- Fairchild, B.; Ellsworth, W.; Selber, J.C.; Bogue, D.P.; Zavlin, D.; Nemir, S.; Checka, C.M.; Clemens, M.W. Safety and efficacy of smooth surface tissue expander breast reconstruction. Aesthet. Surg. J. 2020, 40, 53–62. [Google Scholar] [CrossRef]
- Lee, K.T.; Park, H.Y.; Jeon, B.J.; Mun, G.H.; Bang, S.I.; Pyon, J.K. Does the textured-type tissue expander affect the outcomes of two-stage prosthetic breast reconstruction? A propensity score matching analysis between macrotextured and microtextured expanders. Plast. Reconstr. Surg. 2021, 147, 545–555. [Google Scholar] [CrossRef]
- Mempin, M.; Hu, H.; Chowdhury, D.; Deva, A.; Vickery, K. The A, B, and C’s of silicone breast implants: Anaplastic large cell lymphoma, biofilm, and capsular contracture. Materials 2018, 11, 2393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Haddouti, E.M.; Welle, K.; Burger, C.; Wirtz, D.C.; Schildberg, F.A.; Kabir, K. The effects of biomaterial implant wear debris on osteoblasts. Front. Cell Dev. Biol. 2020, 8, 352. [Google Scholar] [CrossRef]
- Groves, A.M.; Johnston, C.J.; Misra, R.S.; Williams, J.P.; Finkelstein, J.N. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int. J. Radiat. Biol. 2016, 92, 754. [Google Scholar] [CrossRef]
- Trojanek, J.B.; Michałkiewicz, J.; Grzywa-Czuba, R.; Jańczyk, W.; Gackowska, L.; Kubiszewska, I.; Helmin-Basa, A.; Wierzbicka-Rucińska, A.; Szalecki, M.; Socha, P. Expression of matrix metalloproteinases and their tissue inhibitors in peripheral blood leukocytes and plasma of children with nonalcoholic fatty liver disease. Mediat. Inflamm. 2020, 2020, 8327945. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Rai, V.; Agrawal, D.K. Regulation of collagen I and collagen III in tissue injury and regeneration. Cardiol. Cardiovasc. Med. 2023, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Bachour, Y.; Verweij, S.P.; Gibbs, S.; Ket, J.C.F.; Ritt, M.J.P.F.; Niessen, F.B.; Mullender, M.G. The aetiopathogenesis of capsular contracture: A systematic review of the literature. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 307–317. [Google Scholar] [CrossRef]
- Spear, S.L.; Baker, J.L. Classification of capsular contracture after prosthetic breast reconstruction. Plast. Reconstr. Surg. 1995, 96, 1119–1123; discussion 1124. [Google Scholar] [CrossRef] [PubMed]
- Sreejit, G.; Flynn, M.C.; Patil, M.; Krishnamurthy, P.; Murphy, A.J.; Nagareddy, P.R. S100 family proteins in inflammation and beyond. Adv. Clin. Chem. 2020, 98, 173–231. [Google Scholar] [CrossRef]
- Singh, P.; Ali, S.A.; Kalyuzhny, E.; Singh, P.; Ali, S.A. Multifunctional role of S100 protein family in the immune system: An update. Cells 2022, 11, 2274. [Google Scholar] [CrossRef]
- Gonzalez, L.L.; Garrie, K.; Turner, M.D. Role of S100 proteins in health and disease. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2020, 1867, 118677. [Google Scholar] [CrossRef]
- Sattar, Z.; Lora, A.; Jundi, B.; Railwah, C.; Geraghty, P. The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm. Med. 2021, 2021, 5488591. [Google Scholar] [CrossRef]
- Stevens, W.G.; Pacella, S.J.; Gear, A.J.L.; Freeman, M.E.; McWhorter, C.; Tenenbaum, M.J.; Stoker, D.A. Clinical Experience With a Fourth-Generation Textured Silicone Gel Breast Implant: A Review of 1012 Mentor MemoryGel Breast Implants. Aesthet. Surg. J. 2008, 28, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Cole, N.M. Consequences of the U.S. Food and Drug Administration-Directed Moratorium on Silicone Gel Breast Implants: 1992 to 2006. Plast. Reconstr. Surg. 2018, 141, 1137–1141. [Google Scholar] [CrossRef]
- Coleman, D.J.; Foo, I.T.H.; Sharpe, D.T. Textured or smooth implants for breast augmentation? A prospective controlled trial. Br. J. Plast. Surg. 1991, 44, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.; Samuel, M.; Tan, B.K.; Song, C. Capsular contracture in subglandular breast augmentation with textured versus smooth breast implants: A systematic review. Plast. Reconstr. Surg. 2006, 118, 1224–1236. [Google Scholar] [CrossRef] [PubMed]
- Stevens, W.G.; Nahabedian, M.Y.; Calobrace, M.B.; Harrington, J.L.; Capizzi, P.J.; Cohen, R.; D’incelli, R.C.; Beckstrand, M. Risk factor analysis for capsular contracture: A 5-year Sientra study analysis using round, smooth, and textured implants for breast augmentation. Plast. Reconstr. Surg. 2013, 132, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.C.; Walgenbach-Brünagel, G.; Pryalukhin, A.; Vorhold, J.; Pech, T.; Kalff, J.C.; Kristiansen, G.; Walgenbach, K.J. Management of Capsular Contracture in Cases of Silicone Gel Breast Implant Rupture with Use of Pulse Lavage and Open Capsulotomy. Aesthet. Plast. Surg. 2019, 43, 1173–1185. [Google Scholar] [CrossRef]
- Atlan, M.; Kinney, B.M.; Perry, T.A. Intra- and Inter-Shell Roughness Variability of Breast Implant Surfaces. Aesthet. Surg. J. 2020, 40, NP324–NP326. [Google Scholar] [CrossRef]
- Barr, S.; Hill, E.W.; Bayat, A. Functional biocompatibility testing of silicone breast implants and a novel classification system based on surface roughness. J. Mech. Behav. Biomed. Mater. 2017, 75, 75–81. [Google Scholar] [CrossRef]
- Zhang, X.R.; Chien, P.N.; Trinh, X.T.; Nam, S.Y.; Heo, C.Y. Comparison of Formation of Capsule Among Different Breast Silicone Implants. In Vivo 2022, 36, 2756–2766. [Google Scholar] [CrossRef]
- Kyle, D.J.T.; Harvey, A.G.; Shih, B.; Tan, K.T.; Chaudhry, I.H.; Bayat, A. Identification of molecular phenotypic descriptors of breast capsular contracture formation using informatics analysis of the whole genome transcriptome. Wound Repair Regen. 2013, 21, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Kuang, J.; Yan, X.; Genders, A.J.; Granata, C.; Bishop, D.J. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PLoS ONE 2018, 13, e0196438. [Google Scholar] [CrossRef]
- Ng, M.T.H.; Borst, R.; Gacaferi, H.; Davidson, S.; Ackerman, J.E.; Johnson, P.A.; Machado, C.C.; Reekie, I.; Attar, M.; Windell, D.; et al. A single cell atlas of frozen shoulder capsule identifies features associated with inflammatory fibrosis resolution. Nat. Commun. 2024, 15, 1394. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Yengo, L.; Nelson, C.P.; Bourier, F.; Zeng, L.; Li, L.; Kessler, T.; Erdmann, J.; Mägi, R.; Läll, K.; et al. Genetic and modifiable risk factors combine multiplicatively in common disease. Clin. Res. Cardiol. 2023, 112, 247–257. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.I.; Abecasis, G.R.; Cardon, L.R.; Goldstein, D.B.; Little, J.; Ioannidis, J.P.A.; Hirschhorn, J.N. Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nat. Rev. Genet. 2008, 9, 356–369. [Google Scholar] [CrossRef]
- McClellan, J.; King, M.C. Genetic heterogeneity in human disease. Cell 2010, 141, 210–217. [Google Scholar] [CrossRef]
- Trastulla, L.; Dolgalev, G.; Moser, S.; Jiménez-Barrón, L.T.; Andlauer, T.F.M.; von Scheidt, M.; Budde, M.; Heilbronner, U.; Papiol, S.; Teumer, A.; et al. Distinct genetic liability profiles define clinically relevant patient strata across common diseases. Nat. Commun. 2024, 15, 5534. [Google Scholar] [CrossRef]
- Barr, S.P.; Hill, E.W.; Bayat, A. Novel Proteomic Assay of Breast Implants Reveals Proteins With Significant Binding Differences: Implications for Surface Coating and Biocompatibility. Aesthet. Surg. J. 2018, 38, 962–969. [Google Scholar] [CrossRef]
- Staiano-Coico, L.; Higgins, P.J.; Schwartz, S.B.; Zimm, A.J.; Goncalves, J. Wound fluids: A reflection of the state of healing. Ostomy Wound Manag. 2000, 46, 85S–93S; quiz 94S. [Google Scholar]
- Harvey, J.; Mellody, K.T.; Cullum, N.; Watson, R.E.B.; Dumville, J. Wound fluid sampling methods for proteomic studies: A scoping review. Wound Repair Regen. 2022, 30, 317–333. [Google Scholar] [CrossRef]
- Hartman, E.; Wallblom, K.; van der Plas, M.J.A.; Petrlova, J.; Cai, J.; Saleh, K.; Kjellström, S.; Schmidtchen, A. Bioinformatic Analysis of the Wound Peptidome Reveals Potential Biomarkers and Antimicrobial Peptides. Front. Immunol. 2021, 11, 620707. [Google Scholar] [CrossRef] [PubMed]
- Cialdai, F.; Risaliti, C.; Monici, M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front. Bioeng. Biotechnol. 2022, 10, 958381. [Google Scholar] [CrossRef]
- Monaco, J.A.L.; Lawrence, W.T. Acute wound healing: An overview. Clin. Plast. Surg. 2003, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Koh, T.J.; DiPietro, L.A. Inflammation and wound healing: The role of the macrophage. Expert Rev. Mol. Med. 2011, 13, e23. [Google Scholar] [CrossRef]
- Bautista-Hernández, L.A.; Gómez-Olivares, J.L.; Buentello-Volante, B.; Bautista-de Lucio, V.M. Fibroblasts: The unknown sentinels eliciting immune responses against microorganisms. Eur. J. Microbiol. Immunol. 2017, 7, 151–157. [Google Scholar] [CrossRef]
- Shinde, A.V.; Humeres, C.; Frangogiannis, N.G. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta 2017, 1863, 298. [Google Scholar] [CrossRef] [PubMed]
- Brazin, J.; Malliaris, S.; Groh, B.; Mehrara, B.; Hidalgo, D.; Otterburn, D.; Silver, R.B.; Spector, J.A. Mast cells in the periprosthetic breast capsule. Aesthet. Plast. Surg. 2014, 38, 592–601. [Google Scholar] [CrossRef]
- Noskovicova, N.; Hinz, B.; Pakshir, P. Implant fibrosis and the underappreciated role of myofibroblasts in the foreign body reaction. Cells 2021, 10, 1794. [Google Scholar] [CrossRef]
- Saalbach, A.; Klein, C.; Sleeman, J.; Sack, U.; Kauer, F.; Gebhardt, C.; Averbeck, M.; Anderegg, U.; Simon, J.C. Dermal fibroblasts induce maturation of dendritic cells. J. Immunol. 2007, 178, 4966–4974. [Google Scholar] [CrossRef]
- Langevin, H.M.; Nedergaard, M.; Howe, A.K. Cellular control of connective tissue matrix tension. J. Cell Biochem. 2013, 114, 1714–1719. [Google Scholar] [CrossRef]
- Correa-Gallegos, D.; Jiang, D.; Christ, S.; Ramesh, P.; Ye, H.; Wannemacher, J.; Gopal, S.K.; Yu, Q.; Aichler, M.; Walch, A.; et al. Patch repair of deep wounds by mobilized fascia. Nature 2019, 576, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Correa-Gallegos, D.; Jiang, D.; Rinkevich, Y. Fibroblasts as confederates of the immune system. Immunol. Rev. 2021, 302, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Mescher, A.L. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration 2017, 4, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Veiseh, O.; Vegas, A.J. Domesticating the foreign body response: Recent advances and applications. Adv. Drug Deliv. Rev. 2019, 144, 148–161. [Google Scholar] [CrossRef]
- Akilbekova, D.; Bratlie, K.M. Quantitative characterization of collagen in the fibrotic capsule surrounding implanted polymeric microparticles through second harmonic generation imaging. PLoS ONE 2015, 10, e0130386. [Google Scholar] [CrossRef]
- Pakshir, P.; Noskovicova, N.; Lodyga, M.; Son, D.O.; Schuster, R.; Goodwin, A.; Karvonen, H.; Hinz, B. The myofibroblast at a glance. J. Cell Sci. 2020, 133, jcs227900. [Google Scholar] [CrossRef]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef]
- Lebleu, V.S.; Taduri, G.; O’Connell, J.; Teng, Y.; Cooke, V.G.; Woda, C.; Sugimoto, H.; Kalluri, R. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 2013, 19, 1047–1053. [Google Scholar] [CrossRef]
- Higgins, D.F. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Investig. 2007, 117, 3810–3820. [Google Scholar] [CrossRef]
- Darby, I.A.; Laverdet, B.; Bonté, F.; Desmoulière, A. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 2014, 7, 301–311. [Google Scholar] [CrossRef]
- Hinz, B. The role of myofibroblasts in wound healing. Curr. Res. Transl. Med. 2016, 64, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.B.; Yang, X.; Qu, G.; Caruana, G.; Li, J. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation 2016, 92, 102–107. [Google Scholar] [CrossRef]
- Desjardins-Park, H.E.; Foster, D.S.; Longaker, M.T. Fibroblasts and wound healing: An update. Regen. Med. 2018, 13, 491–495. [Google Scholar] [CrossRef]
- Bainbridge, P. Wound healing and the role of fibroblasts. J. Wound Care 2013, 22, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Moyer, K.E.; Ehrlich, H.P. Capsular contracture after breast reconstruction: Collagen fiber orientation and organization. Plast. Reconstr. Surg. 2013, 131, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Darby, I.A.; Hewitson, T.D. Fibroblast differentiation in wound healing and fibrosis. Int. Rev. Cytol. 2007, 257, 143–179. [Google Scholar] [CrossRef]
- Mirastschijski, U.; Schnabel, R.; Claes, J.; Schneider, W.; Ågren, M.S.; Haaksma, C.; Tomasek, J.J. Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-β1-promoted myofibroblast formation and function. Wound Repair Regen. 2010, 18, 223–234. [Google Scholar] [CrossRef]
- Roeb, E. Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol. 2018, 68–69, 463–473. [Google Scholar] [CrossRef]
- Wong, V.W.; Gurtner, G.C.; Longaker, M.T. Wound healing: A paradigm for regeneration. Mayo Clin. Proc. 2013, 88, 1022–1031. [Google Scholar] [CrossRef]
- Tomasek, J.J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 2002, 3, 349–363. [Google Scholar] [CrossRef]
- Sawant, M.; Hinz, B.; Schönborn, K.; Zeinert, I.; Eckes, B.; Krieg, T.; Schuster, R. A story of fibers and stress: Matrix-embedded signals for fibroblast activation in the skin. Wound Repair Regen. 2021, 29, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Grinnell, F.; Petroll, W.M. Cell motility and mechanics in three-dimensional collagen matrices. Annu. Rev. Cell Dev. Biol. 2010, 26, 335–361. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.E.; Fibbe, W.E. Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell 2013, 13, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Hinz, B.; Lagares, D. Evasion of apoptosis by myofibroblasts: A hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 2020, 16, 11–31. [Google Scholar] [CrossRef]
- Hinz, B.; McCulloch, C.A.; Coelho, N.M. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp. Cell Res. 2019, 379, 119–128. [Google Scholar] [CrossRef]
- Klingberg, F.; Hinz, B.; White, E.S. The myofibroblast matrix: Implications for tissue repair and fibrosis. J. Pathol. 2013, 229, 298–309. [Google Scholar] [CrossRef]
- Kang, S.; Kim, J.; Kim, S.; Wufuer, M.; Park, S.; Kim, Y.; Choi, D.; Jin, X.; Kim, Y.; Huang, Y.; et al. Efficient reduction of fibrous capsule formation around silicone breast implants densely grafted with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers by heat-induced polymerization. Biomater. Sci. 2020, 8, 1580–1591. [Google Scholar] [CrossRef]
- Wynn, T.A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 2004, 4, 583–594. [Google Scholar] [CrossRef]
- Plitas, G.; Rudensky, A.Y. Regulatory T Cells in Cancer. Annu. Rev. Cancer Biol. 2020, 4, 459–477. [Google Scholar] [CrossRef]
- Zhang, X.; Olsen, N.; Zheng, S.G. The progress and prospect of regulatory T cells in autoimmune diseases. J. Autoimmun. 2020, 111, 102461. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Mikami, N.; Wing, J.B.; Tanaka, A.; Ichiyama, K.; Ohkura, N. Regulatory T Cells and Human Disease. Annu. Rev. Immunol. 2020, 38, 541–566. [Google Scholar] [CrossRef] [PubMed]
- Motwani, K.; Peters, L.D.; Vliegen, W.H.; El-Sayed, A.G.; Seay, H.R.; Lopez, M.C.; Baker, H.V.; Posgai, A.L.; Brusko, M.A.; Perry, D.J.; et al. Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Front. Immunol. 2020, 11, 611. [Google Scholar] [CrossRef] [PubMed]
- Roncarolo, M.G.; Gregori, S.; Bacchetta, R.; Battaglia, M.; Gagliani, N. The Biology of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-Mediated Diseases. Immunity 2018, 49, 1004–1019. [Google Scholar] [CrossRef]
- Savage, P.A.; Klawon, D.E.J.; Miller, C.H. Regulatory T Cell Development. Annu. Rev. Immunol. 2020, 38, 421–453. [Google Scholar] [CrossRef] [PubMed]
- Shevach, E.M. Biological functions of regulatory T cells. Adv. Immunol. 2011, 112, 137–176. [Google Scholar] [CrossRef]
- Taylor, A.E.; Carey, A.N.; Kudira, R.; Lages, C.S.; Shi, T.; Lam, S.; Karns, R.; Simmons, J.; Shanmukhappa, K.; Almanan, M.; et al. Interleukin 2 promotes hepatic regulatory T cell responses and protects from biliary fibrosis in murine sclerosing cholangitis. Hepatology 2018, 68, 1905–1921. [Google Scholar] [CrossRef]
- Lee, G.R. The balance of Th17 versus Treg cells in autoimmunity. Int. J. Mol. Sci. 2018, 19, 730. [Google Scholar] [CrossRef]
- Boks, N.P.; Norde, W.; van der Mei, H.C.; Busscher, H.J. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology 2008, 154, 3122–3133. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.; Qiao, M.; Chiu, A.; Fuchs, S.; Liu, Q.; Pardo, Y.; Worobo, R.; Liu, Z.; Ma, M. Conformal hydrogel coatings on catheters to reduce biofouling. Langmuir 2019, 35, 1927–1934. [Google Scholar] [CrossRef]
- Smithmyer, M.E.; Sawicki, L.A.; Kloxin, A.M. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater. Sci. 2014, 2, 634–650. [Google Scholar] [CrossRef]
- Erathodiyil, N.; Chan, H.M.; Wu, H.; Ying, J.Y. Zwitterionic polymers and hydrogels for antifouling applications in implantable devices. Mater. Today 2020, 38, 84–98. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Z.; Bai, T.; Carr, L.; Ella-Menye, J.R.; Irvin, C.; Ratner, B.D.; Jiang, S. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 2013, 31, 553–556. [Google Scholar] [CrossRef]
- Foroushani, F.T.; Dzobo, K.; Khumalo, N.P.; Zamora Mora, V.; de Mezerville, R.; Bayat, A. Advances in surface modifications of the silicone breast implant and impact on its biocompatibility and biointegration. Biomater. Res. 2022, 26, 80. [Google Scholar] [CrossRef]
- Macdonald, W.; Campbell, P.; Fisher, J.; Wennerberg, A. Variation in surface texture measurements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 70, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Lampin, M.; Warocquier-Clérout, R.; Legris, C.; Degrange, M.; Sigot-Luizard, M.F. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J. Biomed. Mater. Res. 1997, 36, 99–104. [Google Scholar] [CrossRef]
- Atlan, M.; Bigerelle, M.; Larreta-garde, V.; Hindié, M.; Hedén, P. Characterization of breast implant surfaces, shapes, and biomechanics: A comparison of high cohesive anatomically shaped textured silicone breast implants from three different manufacturers. Aesthetic Plast. Surg. 2016, 40, 89–97. [Google Scholar] [CrossRef]
- Prasad, B.R.; Brook, M.A.; Smith, T.; Zhao, S.; Chen, Y.; Sheardown, H.; D’souza, R.; Rochev, Y. Controlling cellular activity by manipulating silicone surface roughness. Colloids Surf. B Biointerfaces 2010, 78, 237–242. [Google Scholar] [CrossRef]
- Barth, K.A.; Waterfield, J.D.; Brunette, D.M. The effect of surface roughness on RAW 264.7 macrophage phenotype. J. Biomed. Mater. Res. Part A 2013, 101A, 1124–1134. [Google Scholar] [CrossRef]
- Brigaud, I.; Garabédian, C.; Bricout, N.; Pieuchot, L.; Ponche, A.; Deltombe, R.; Delille, R.; Atlan, M.; Bigerelle, M.; Anselme, K. Surface texturization of breast implants impacts extracellular matrix and inflammatory gene expression in asymptomatic capsules. Plast. Reconstr. Surg. 2020, 145, 542e–551e. [Google Scholar] [CrossRef]
- Doloff, J.C.; Veiseh, O.; Vegas, A.J.; Tam, H.H.; Farah, S.; Ma, M.; Li, J.; Bader, A.; Chiu, A.; Sadraei, A.; et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 2017, 16, 671–680. [Google Scholar] [CrossRef]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Sussman, E.M.; Halpin, M.C.; Muster, J.; Moon, R.T.; Ratner, B.D. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 2014, 42, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.T.; Dearth, C.L.; Ranallo, C.A.; LoPresti, S.T.; Carey, L.E.; Daly, K.A.; Brown, B.N.; Badylak, S.F. Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials 2014, 35, 6838–6849. [Google Scholar] [CrossRef] [PubMed]
- Klopfleisch, R.; Jung, F. The pathology of the foreign body reaction against biomaterials. J. Biomed. Mater. Res. Part A 2017, 105, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Dondossola, E.; Holzapfel, B.M.; Alexander, S.; Filippini, S.; Hutmacher, D.W.; Friedl, P. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 2016, 1, 0007. [Google Scholar] [CrossRef]
- Miron, R.J.; Bosshardt, D.D. Multinucleated giant cells: Good guys or bad guys? Tissue Eng. Part B Rev. 2018, 24, 53–65. [Google Scholar] [CrossRef]
- Spiller, K.L.; Anfang, R.R.; Spiller, K.J.; Ng, J.; Nakazawa, K.R.; Daulton, J.W.; Vunjak-Novakovic, G. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 2014, 35, 4477–4488. [Google Scholar] [CrossRef]
- Mooney, J.E.; Rolfe, B.E.; Osborne, G.W.; Sester, D.P.; Van Rooijen, N.; Campbell, G.R.; Hume, D.A.; Campbell, J.H. Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response. Am. J. Pathol. 2010, 176, 369–380. [Google Scholar] [CrossRef]
- Smith, T.D.; Nagalla, R.R.; Chen, E.Y.; Liu, W.F. Harnessing macrophage plasticity for tissue regeneration. Adv. Drug Deliv. Rev. 2017, 114, 193–205. [Google Scholar] [CrossRef]
- Martin, K.E.; García, A.J. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater. 2021, 133, 4–16. [Google Scholar] [CrossRef]
- Graney, P.L.; Lurier, E.B.; Spiller, K.L. Biomaterials and bioactive factor delivery systems for the control of macrophage activation in regenerative medicine. ACS Biomater. Sci. Eng. 2018, 4, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Bonner, J.C. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004, 15, 255–273. [Google Scholar] [CrossRef] [PubMed]
- McNally, A.K.; Anderson, J.M. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: Dependence on material surface properties. J. Biomed. Mater. Res. A 2015, 103, 1380–1390. [Google Scholar] [CrossRef] [PubMed]
- Abaricia, J.O.; Farzad, N.; Heath, T.J.; Simmons, J.; Morandini, L.; Olivares-Navarrete, R. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater. 2021, 133, 58–73. [Google Scholar] [CrossRef]
- Love, R.J.; Jones, K.S. The recognition of biomaterials: Pattern recognition of medical polymers and their adsorbed biomolecules. J. Biomed. Mater. Res. A 2013, 101A, 2740–2752. [Google Scholar] [CrossRef]
- Altieri, D.C.; Mannucci, P.M.; Capitanio, A.M. Binding of fibrinogen to human monocytes. J. Clin. Investig. 1986, 78, 968–976. [Google Scholar] [CrossRef]
- Aiyelabegan, H.T.; Sadroddiny, E. Fundamentals of protein and cell interactions in biomaterials. Biomed. Pharmacother. 2017, 88, 956–970. [Google Scholar] [CrossRef]
- Sheikh, Z.; Brooks, P.J.; Barzilay, O.; Fine, N.; Glogauer, M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials 2015, 8, 5671–5701. [Google Scholar] [CrossRef]
- Helming, L.; Gordon, S. Molecular mediators of macrophage fusion. Trends Cell Biol. 2009, 19, 514–522. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, X.; Jansen, J.A.; Yang, F.; van den Beucken, J.J.J.P. Titanium surfaces characteristics modulate macrophage polarization. Mater. Sci. Eng. C 2019, 95, 143–151. [Google Scholar] [CrossRef]
- Shayan, M.; Padmanabhan, J.; Morris, A.H.; Cheung, B.; Smith, R.; Schroers, J.; Kyriakides, T.R. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization. Acta Biomater. 2018, 75, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, M.; Pan, H.A.; Hung, Y.C.; Huang, G.S. Control of growth and inflammatory response of macrophages and foam cells with nanotopography. Nanoscale Res. Lett. 2012, 7, 394. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, J.; Augelli, M.J.; Cheung, B.; Kinser, E.R.; Cleary, B.; Kumar, P.; Wang, R.; Sawyer, A.J.; Li, R.; Schwarz, U.D.; et al. Regulation of cell-cell fusion by nanotopography. Sci. Rep. 2016, 6, 33277. [Google Scholar] [CrossRef] [PubMed]
- Previtera, M.L.; Sengupta, A. Substrate stiffness regulates proinflammatory mediator production through TLR4 activity in macrophages. PLoS ONE 2015, 10, e0145813. [Google Scholar] [CrossRef]
- Irwin, E.F.; Saha, K.; Rosenbluth, M.; Gamble, L.J.; Castner, D.G.; Healy, K.E. Modulus-dependent macrophage adhesion and behavior. J. Biomater. Sci. Polym. Ed. 2008, 19, 1363–1382. [Google Scholar] [CrossRef]
- Bizjak, M.; Selmi, C.; Praprotnik, S.; Bruck, O.; Perricone, C.; Ehrenfeld, M.; Shoenfeld, Y. Silicone implants and lymphoma: The role of inflammation. J. Autoimmun. 2015, 65, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.M.; Lee, C.Y.; Song, W.J. Axillary silicone lymphadenopathy caused by gel bleeding with intact silicone breast implants: A case report. Arch. Aesthetic Plast. Surg. 2023, 29, 213–216. [Google Scholar] [CrossRef]
- Fleury, E.D.F.C.; Fleury, E.D.F.C. Silicone induced granuloma of breast implant capsule (SIGBIC) diagnosis: Breast magnetic resonance (BMR) sensitivity to detect silicone bleeding. PLoS ONE 2020, 15, e0235050. [Google Scholar] [CrossRef]
- Dziubek, M.; Laurent, R.; Bonapace-Potvin, M.; Gaboury, L.; Danino, M.A. Silicone particles in capsules around breast implants: Establishment of a new pathological methodology to assess the number of particles around breast implants. Ann. Chir. Plast. Esthet. 2023, 68, 19–25. [Google Scholar] [CrossRef]
- Danino, M.A.; Dziubek, M.; Dalfen, J.; Bonapace-Potvin, M.; Gaboury, L.; Giot, J.P.; Laurent, R. Silicone particles in capsules around breast implants: An investigation into currently available implants in North America. Aesthetic Surg. J. 2024, 44, 363–372. [Google Scholar] [CrossRef]
- Hallab, N.J.; Samelko, L.; Hammond, D. The inflammatory effects of breast implant particulate shedding: Comparison with orthopedic implants. Aesthetic Surg. J. 2019, 39, S36–S48. [Google Scholar] [CrossRef] [PubMed]
- Fleury, E.; Nimir, C.; Salum, G.D. The breast tumor microenvironment: Could silicone breast implant elicit breast carcinoma? Breast Cancer Target Ther. 2021, 13, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Hallab, N.J.; Samelko, L.; Hammond, D. Particulate debris released from breast implant surfaces is highly dependent on implant type. Aesthetic Surg. J. 2021, 41, NP782–NP793. [Google Scholar] [CrossRef] [PubMed]
- Bekerecioglu, M.; Onat, A.M.; Tercan, M.; Buyukhatipoglu, H.; Karakok, M.; Isik, D.; Bulut, O. The association between silicone implants and both antibodies and autoimmune diseases. Clin. Rheumatol. 2008, 27, 1007–1012. [Google Scholar] [CrossRef]
- Suh, L.J.; Khan, I.; Kelley-Patteson, C.; Mohan, G.; Hassanein, A.H.; Sinha, M. Breast implant-associated immunological disorders. J. Immunol. Res. 2022, 2022, 8536149. [Google Scholar] [CrossRef] [PubMed]
- van Haasterecht, L.; Zada, L.; Schmidt, R.W.; de Bakker, E.; Barbé, E.; Leslie, H.A.; Vethaak, A.D.; Gibbs, S.; de Boer, J.F.; Niessen, F.B.; et al. Label-free stimulated Raman scattering imaging reveals silicone breast implant material in tissue. J. Biophotonics 2020, 13, e201960197. [Google Scholar] [CrossRef]
- Gristina, A.G.; Naylor, P.; Myrvik, Q. Infections from biomaterials and implants: A race for the surface. Med. Prog. Technol. 1998, 14, 205–224. [Google Scholar]
- Belay, E.D.; Schonberger, L.B.; Brown, P.; Priola, S.A.; Chesebro, B.; Will, R.G.; Asher, D.M. Disinfection and sterilization of prion-contaminated medical instruments. Infect. Control Hosp. Epidemiol. 2010, 31, 1304–1306. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. New disinfection and sterilization methods. Emerg. Infect. Dis. 2001, 7, 348–353. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Guideline for disinfection and sterilization of prion-contaminated medical instruments. Infect. Control Hosp. Epidemiol. 2010, 31, 107–117. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881. [Google Scholar] [CrossRef] [PubMed]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Malte, H. The DLVO theory in microbial adhesion. Colloids Surf. B Biointerfaces 1999, 14, 105–119. [Google Scholar]
- Berne, C.; Ellison, C.K.; Ducret, A.; Brun, Y.V. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol. 2018, 16, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 1994, 176, 269–275. [Google Scholar] [CrossRef]
- Rumbaugh, K.P.; Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 2020, 18, 571–586. [Google Scholar] [CrossRef]
- Josse, J.; Laurent, F.; Diot, A. Staphylococcal adhesion and host cell invasion: Fibronectin-binding and other mechanisms. Front. Microbiol. 2017, 8, 2433. [Google Scholar] [CrossRef]
- Herman-Bausier, P.; Valotteau, C.; Pietrocola, G.; Rindi, S.; Alsteens, D.; Foster, T.J.; Speziale, P.; Dufrêne, Y.F. Mechanical strength and inhibition of the Staphylococcus aureus collagen-binding protein cna. mBio 2016, 7, e01529-16. [Google Scholar] [CrossRef]
- Walker, J.N.; Pinkner, C.L.; Pinkner, J.S.; Hultgren, S.J.; Myckatyn, T.M. The detection of bacteria and matrix proteins on clinically benign and pathologic implants. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2037. [Google Scholar] [CrossRef]
- Tamboto, H.; Vickery, K.; Deva, A.K. Subclinical (biofilm) infection causes capsular contracture in a porcine model following augmentation mammaplasty. Plast. Reconstr. Surg. 2010, 126, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, R.; Pesce, M.; Franchelli, S.; Baldelli, I.; De Maria, A.; Marchese, A. Phenotypic and genotypic characterization of Staphylococci causing breast peri-implant infections in oncologic patients. BMC Microbiol. 2015, 15, 26. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.E.; Hontanilla, B.; Cabello, A.; Marre, D.; Armendariz, L.; Leiva, J. The effect of late infection and antibiotic treatment on capsular contracture in silicone breast implants: A rat model. J. Plast. Reconstr. Aesthet. Surg. 2016, 69, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M. Biocompatibility and bioresponse to biomaterials. In Principles of Regenerative Medicine; Academic Press: Cambridge, MA, USA, 2019; pp. 704–723. [Google Scholar] [CrossRef]
- Anderson, J.M.; McNally, A.K. Biocompatibility of implants: Lymphocyte/macrophage interactions. Semin. Immunopathol. 2011, 33, 221–233. [Google Scholar] [CrossRef] [PubMed]
Cellular/Immune Mechanism | Role in Fibrosis and Implant Interaction | Molecular Mechanisms and Key Markers | Clinical Implications |
---|---|---|---|
Fibroblast activation | Fibroblasts respond to the presence of silicone implants by activating into myofibroblasts, key cells in wound healing and fibrosis processes. | TGF-β1, α-SMA, and SMAD proteins. TGF-β1 signaling leads to SMAD protein activation, promoting α-SMA expression and fibroblast activation. | Persistent activation can lead to excessive fibrosis, contributing to complications such as capsular contracture. |
Myofibroblast differentiation | Prolonged inflammation and mechanical stress trigger fibroblasts to differentiate into myofibroblasts, producing ECM components and driving tissue contraction. | TGF-β1, α-SMA, and Collagen I/III. TGF-β1 induces α-SMA and collagen production, facilitating myofibroblast differentiation and ECM contraction. | Myofibroblast activity is a key driver of fibrotic capsule formation around implants, impacting implant outcomes. |
ECM remodeling | Fibroblasts and MMPs continuously remodel the ECM around silicone implants, balancing collagen deposition and degradation. | MMPs, TIMPs, and Collagen I/III. MMPs degrade ECM components, while TIMPs inhibit MMPs to regulate ECM remodeling. | Dysregulated ECM remodeling can result in a stiffer, thicker fibrotic capsule, complicating implant removal or revision surgery. |
Immune cell activation | Immune cells, including macrophages, dendritic cells, and T cells, are activated by silicone implants, releasing cytokines that further stimulate fibroblasts. | IL-1β, TNF-α, IL-6, and TGF-β. Pro-inflammatory cytokines such as IL-1β and TNF-α activate fibroblasts and sustain chronic inflammation. | Chronic immune activation can perpetuate fibrosis and contribute to implant-related complications such as chronic inflammation. |
Macrophage polarization | Macrophages polarize into M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotypes in response to the implant’s properties, affecting fibrosis. | CD86 (M1), CD206 (M2), IL-10, and TGF-β. M1 macrophages express CD86 and produce IL-1β, while M2 macrophages express CD206 and secrete IL-10 and TGF-β. | Targeting macrophage polarization through surface modifications could reduce fibrotic responses and improve implants’ biocompatibility. |
T cell-mediated responses | CD4+ T cells, particularly the Th1 and Th2 subsets, regulate fibrosis, with Th1 promoting and Th2 potentially reducing fibrotic responses. | IFN-γ (Th1), IL-4, and IL-13 (Th2). Th1 cells produce IFN-γ, driving fibrosis, while Th2 cells secrete IL-4 and IL-13, which may reduce fibrosis. | Targeting T cell responses through specific immunomodulatory therapies, such as the use of monoclonal antibodies to block Th1 cytokines (e.g., IFN-γ) or promoting Th2 responses with IL-4 or IL-13, could help mitigate fibrosis around silicone implants. |
Regulatory T cells (Tregs) | Tregs modulate the immune response by suppressing excessive immune activation and maintaining immune tolerance around implants. | FOXP3, IL-10, and TGF-β. FOXP3 is a key marker for Tregs, which secrete IL-10 and TGF-β to suppress inflammation and fibrosis. | Enhancing Tregs’ activity could help in reducing chronic inflammation and fibrosis, improving implants’ biocompatibility. |
Focus Area | Advancements | Clinical Translation | Future Directions |
---|---|---|---|
Personalized risk management | - Tailored patient care by analyzing immune responses and microbial patterns (risk mitigation for capsular contracture). | - Personalized implant selection, antimicrobial prophylaxis, and post-operative plans to reduce complications. | - Further studies to better understand patient-specific immune responses to enable more precise and effective personalized care. |
Biomaterials and implant modifications | - Development of advanced materials to reduce biofilm formation and inflammation (e.g., anti-biofilm coatings, immunomodulatory surfaces). | - New biomaterials designed for biocompatibility, longevity, and lower complication rates, potentially reducing the need for revision surgeries. | - Continued innovation in materials mimicking natural tissues and enhancing implant integration for better biocompatibility and reduced immune reactions. |
Targeted therapeutic approaches | - Exploration of therapies such as anti-inflammatory agents, quorum-sensing inhibitors, and biofilm disruptors to prevent fibrotic reactions. | - Modulation of immune responses to improve biointegration and reduce fibrotic complications post-implantation. | - Identifying and testing new therapeutic targets through molecular studies to prevent or mitigate complications. |
Surgical techniques and post-operative care | - Improved techniques minimizing tissue trauma, optimizing tissue integration, and preventing infections through molecular insights. | - Implementation of evidence-based surgical practices to enhance precision, minimize trauma, and improve recovery outcomes. | - Further refinement of techniques based on molecular and preclinical data to reduce complications and improve healing. |
Patient monitoring and Educatione | - Use of molecular biomarkers for the early detection of complications; an emphasis on patient education regarding self-monitoring and follow-up care. | - Development of monitoring protocols for early intervention, along with improved patient engagement for long-term implant success. | |
Personalized medicine | Generalized treatments may not consider individual patient factors, leading to suboptimal outcomes. | Uniform antibiotic and anti-fibrotic regimens based on general risk profiles. | Personalized treatments tailored to patient-specific factors (microbial flora, immune responses, genetic predisposition). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoberleitner, I.; Faserl, K.; Lackner, M.; Coraça-Huber, D.C.; Augustin, A.; Imsirovic, A.; Sigl, S.; Wolfram, D. Unraveling the Immune Web: Advances in SMI Capsular Fibrosis from Molecular Insights to Preclinical Breakthroughs. Biomolecules 2024, 14, 1433. https://doi.org/10.3390/biom14111433
Schoberleitner I, Faserl K, Lackner M, Coraça-Huber DC, Augustin A, Imsirovic A, Sigl S, Wolfram D. Unraveling the Immune Web: Advances in SMI Capsular Fibrosis from Molecular Insights to Preclinical Breakthroughs. Biomolecules. 2024; 14(11):1433. https://doi.org/10.3390/biom14111433
Chicago/Turabian StyleSchoberleitner, Ines, Klaus Faserl, Michaela Lackner, Débora C. Coraça-Huber, Angela Augustin, Anja Imsirovic, Stephan Sigl, and Dolores Wolfram. 2024. "Unraveling the Immune Web: Advances in SMI Capsular Fibrosis from Molecular Insights to Preclinical Breakthroughs" Biomolecules 14, no. 11: 1433. https://doi.org/10.3390/biom14111433
APA StyleSchoberleitner, I., Faserl, K., Lackner, M., Coraça-Huber, D. C., Augustin, A., Imsirovic, A., Sigl, S., & Wolfram, D. (2024). Unraveling the Immune Web: Advances in SMI Capsular Fibrosis from Molecular Insights to Preclinical Breakthroughs. Biomolecules, 14(11), 1433. https://doi.org/10.3390/biom14111433