Exploring the Genetic Relationship Between Type 2 Diabetes and Cardiovascular Disease: A Large-Scale Genetic Association and Polygenic Risk Score Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Phenotypic Association Analyses in UKB
2.3. Covariates
2.4. LD Score Genetic Correlation Analysis
2.5. Genotyping and Quality Control
2.6. Polygenic Risk Scores
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zoni-Berisso, M.; Lercari, F.; Carazza, T.; Domenicucci, S. Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 2014, 6, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, R.; Verdoia, M.; Compagnucci, P.; Barbarossa, A.; Stronati, G.; Casella, M.; Dello Russo, A.; Guerra, F.; Ciliberti, G. Angina in 2022: Current perspectives. J. Clin. Med. 2022, 11, 6891. [Google Scholar] [CrossRef] [PubMed]
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of heart failure. Eur. J. Heart Fail. 2020, 22, 1342–1356. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; White, H.D.; Task Force Members. Universal definition of myocardial infarction. Circulation 2007, 116, 2634–2653. [Google Scholar] [CrossRef] [PubMed]
- Criqui, M.H.; Aboyans, V. Epidemiology of peripheral artery disease. Circ. Res. 2015, 116, 1509–1526. [Google Scholar] [CrossRef]
- Feigin, V.L.; Norrving, B.; George, M.G.; Foltz, J.L.; Roth, G.A.; Mensah, G.A. Prevention of stroke: A strategic global imperative. Nat. Rev. Neurol. 2016, 12, 501–512. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Campos Nonato, I. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar]
- Connelly, P.J.; Azizi, Z.; Alipour, P.; Delles, C.; Pilote, L.; Raparelli, V. The importance of gender to understand sex differences in cardiovascular disease. Can. J. Cardiol. 2021, 37, 699–710. [Google Scholar] [CrossRef]
- Stewart, J.; Manmathan, G.; Wilkinson, P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc. Dis. 2017, 6, 2048004016687211. [Google Scholar] [CrossRef]
- Huxley, R.R.; Misialek, J.R.; Agarwal, S.K.; Loehr, L.R.; Soliman, E.Z.; Chen, L.Y.; Alonso, A. Physical activity, obesity, weight change, and risk of atrial fibrillation: The Atherosclerosis Risk in Communities study. Circ. Arrhythmia Electrophysiol. 2014, 7, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith Jr, S.C. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Lim, L.-L.; Morieri, M.L.; Tam, C.H.-t.; Cheng, F.; Chikowore, T.; Dudenhöffer-Pfeifer, M.; Fitipaldi, H.; Huang, C.; Kanbour, S. Precision prognostics for cardiovascular disease in type 2 diabetes: A systematic review and meta-analysis. Commun. Med. 2024, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Collaboration, E.R.F. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef]
- Liu, W.; Zhuang, Z.; Wang, W.; Huang, T.; Liu, Z. An improved genome-wide polygenic score model for predicting the risk of type 2 diabetes. Front. Genet. 2021, 12, 632385. [Google Scholar] [CrossRef]
- Hahn, S.-J.; Kim, S.; Choi, Y.S.; Lee, J.; Kang, J. Prediction of type 2 diabetes using genome-wide polygenic risk score and metabolic profiles: A machine learning analysis of population-based 10-year prospective cohort study. EBioMedicine 2022, 86, 104383. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, X.; Han, J.; Jiang, W.; Natarajan, P.; Zhao, H. Interactions between enhanced polygenic risk scores and lifestyle for cardiovascular disease, diabetes, and lipid levels. Circ. Genom. Precis. Med. 2021, 14, e003128. [Google Scholar] [CrossRef]
- Nikpay, M.; Goel, A.; Won, H.; Hall, L.; Willenborg, C.; Kanoni, S.; Farrall, M. A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121. [Google Scholar]
- Scott, R.A.; Scott, L.J.; Mägi, R.; Marullo, L.; Gaulton, K.J.; Kaakinen, M.; Pervjakova, N.; Pers, T.H.; Johnson, A.D.; Eicher, J.D. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 2017, 66, 2888–2902. [Google Scholar] [CrossRef]
- Bulik-Sullivan, B.; Finucane, H.K.; Anttila, V.; Gusev, A.; Day, F.R.; Loh, P.-R.; Duncan, L.; Perry, J.R.B.; Patterson, N.; Robinson, E.B.; et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015, 47, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013, 9, e1003348. [Google Scholar] [CrossRef]
- Ge, T.; Chen, C.-Y.; Ni, Y.; Feng, Y.-C.A.; Smoller, J.W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 2019, 10, 1776. [Google Scholar] [CrossRef] [PubMed]
- Privé, F.; Vilhjálmsson, B.J.; Aschard, H.; Blum, M.G. Making the most of clumping and thresholding for polygenic scores. Am. J. Hum. Genet. 2019, 105, 1213–1221. [Google Scholar] [CrossRef]
- Choi, S.W.; O’Reilly, P.F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019, 8, giz082. [Google Scholar] [CrossRef]
- Li, M.; Xu, Y.; Wan, Q.; Shen, F.; Xu, M.; Zhao, Z.; Lu, J.; Gao, Z.; Chen, G.; Wang, T. Individual and combined associations of modifiable lifestyle and metabolic health status with new-onset diabetes and major cardiovascular events: The China cardiometabolic disease and cancer cohort (4C) study. Diabetes Care 2020, 43, 1929–1936. [Google Scholar] [CrossRef]
- Allen, N.; Sudlow, C.; Downey, P.; Peakman, T.; Danesh, J.; Elliott, P.; Gallacher, J.; Green, J.; Matthews, P.; Pell, J. UK Biobank: Current status and what it means for epidemiology. Health Policy Technol. 2012, 1, 123–126. [Google Scholar] [CrossRef]
- Biobank, U. UK Biobank Ethics and Governance Framework; Version 3.0; UK Biobank: Stockport, UK, 2007. [Google Scholar]
- Mahajan, A.; Taliun, D.; Thurner, M.; Robertson, N.R.; Torres, J.M.; Rayner, N.W.; Payne, A.J.; Steinthorsdottir, V.; Scott, R.A.; Grarup, N. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 2018, 50, 1505–1513. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, Z.; Fang, H.; Yang, J. A generalized linear mixed model association tool for biobank-scale data. Nat. Genet. 2021, 53, 1616–1621. [Google Scholar] [CrossRef]
- Schneider, S.L. The application of the ISCED-97 to the UK’s educational qualifications. In The International Standard Classification of Education (ISCED-97). An Evaluation of Content and Criterion Validity for 15 European Countries; UNESCO UIS: Montreal, QC, Canada, 2008; Volume 15, pp. 281–300. [Google Scholar]
- Bulik-Sullivan, B.K.; Loh, P.R.; Finucane, H.K.; Ripke, S.; Yang, J.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Patterson, N.; Daly, M.J.; Price, A.L.; Neale, B.M. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015, 47, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Werme, J.; van der Sluis, S.; Posthuma, D.; de Leeuw, C.A. An integrated framework for local genetic correlation analysis. Nat. Genet. 2022, 54, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Aune, D.; Schlesinger, S.; Neuenschwander, M.; Feng, T.; Janszky, I.; Norat, T.; Riboli, E. Diabetes mellitus, blood glucose and the risk of heart failure: A systematic review and meta-analysis of prospective studies. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1081–1091. [Google Scholar] [CrossRef]
- Georgakis, M.K.; Harshfield, E.L.; Malik, R.; Franceschini, N.; Langenberg, C.; Wareham, N.J.; Markus, H.S.; Dichgans, M. Diabetes mellitus, glycemic traits, and cerebrovascular disease: A Mendelian randomization study. Neurology 2021, 96, e1732–e1742. [Google Scholar] [CrossRef]
- Helgeland, Ø.; Hertel, J.K.; Molven, A.; Ræder, H.; Platou, C.G.; Midthjell, K.; Hveem, K.; Nygård, O.; Njølstad, P.R.; Johansson, S. The Chromosome 9p21 CVD-and T2D-Associated Regions in a Norwegian Population (The HUNT2 Survey). Int. J. Endocrinol. 2015, 2015, 164652. [Google Scholar] [CrossRef]
- Sattar, N.; McMurray, J.; Borén, J.; Rawshani, A.; Omerovic, E.; Berg, N.; Halminen, J.; Skoglund, K.; Eliasson, B.; Gerstein, H.C. Twenty years of cardiovascular complications and risk factors in patients with type 2 diabetes: A nationwide Swedish cohort study. Circulation 2023, 147, 1872–1886. [Google Scholar] [CrossRef]
- Reddy, R.K.; Ardissino, M.; Ng, F.S. Type 2 Diabetes and Atrial Fibrillation: Evaluating Causal and Pleiotropic Pathways Using Mendelian Randomization. J. Am. Heart Assoc. 2023, 12, e030298. [Google Scholar] [CrossRef]
- Geng, T.; Wang, Y.; Lu, Q.; Zhang, Y.-B.; Chen, J.-X.; Zhou, Y.-F.; Wan, Z.; Guo, K.; Yang, K.; Liu, L. Associations of new-onset atrial fibrillation with risks of cardiovascular disease, chronic kidney disease, and mortality among patients with type 2 diabetes. Diabetes Care 2022, 45, 2422–2429. [Google Scholar] [CrossRef]
- Matsumoto, C.; Ogawa, H.; Saito, Y.; Okada, S.; Soejima, H.; Sakuma, M.; Masuda, I.; Nakayama, M.; Doi, N.; Jinnouchi, H. Incidence of atrial fibrillation in elderly patients with type 2 diabetes mellitus. BMJ Open Diabetes Res. Care 2022, 10, e002745. [Google Scholar] [CrossRef]
- Avdic, T.; Carlsen, H.K.; Rawshani, A.; Gudbjörnsdottir, S.; Mandalenakis, Z.; Eliasson, B. Risk factors for and risk of all-cause and atherosclerotic cardiovascular disease mortality in people with type 2 diabetes and peripheral artery disease: An observational, register-based cohort study. Cardiovasc. Diabetol. 2024, 23, 127. [Google Scholar] [CrossRef] [PubMed]
- La Sala, L.; Pontiroli, A.E. Prevention of diabetes and cardiovascular disease in obesity. Int. J. Mol. Sci. 2020, 21, 8178. [Google Scholar] [CrossRef]
- Patterson, R.; McNamara, E.; Tainio, M.; de Sá, T.H.; Smith, A.D.; Sharp, S.J.; Edwards, P.; Woodcock, J.; Brage, S.; Wijndaele, K. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: A systematic review and dose response meta-analysis. Eur. J. Epidemiol. 2018, 33, 811–829. [Google Scholar] [CrossRef]
- Liu, Y.; Geng, T.; Wan, Z.; Lu, Q.; Zhang, X.; Qiu, Z.; Li, L.; Zhu, K.; Liu, L.; Pan, A. Associations of serum folate and vitamin B12 levels with cardiovascular disease mortality among patients with type 2 diabetes. JAMA Netw. Open 2022, 5, e2146124. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Han, H.; Hu, Y.; Zhu, L.; Rimm, E.B.; Hu, F.B.; Sun, Q. Associations between plant-based dietary patterns and risks of type 2 diabetes, cardiovascular disease, cancer, and mortality–a systematic review and meta-analysis. Nutr. J. 2023, 22, 46. [Google Scholar] [CrossRef]
- Mosenzon, O.; Alguwaihes, A.; Leon, J.L.A.; Bayram, F.; Darmon, P.; Davis, T.M.; Dieuzeide, G.; Eriksen, K.T.; Hong, T.; Kaltoft, M.S. CAPTURE: A multinational, cross-sectional study of cardiovascular disease prevalence in adults with type 2 diabetes across 13 countries. Cardiovasc. Diabetol. 2021, 20, 154. [Google Scholar] [CrossRef]
- Xiu, X.; Zhang, H.; Xue, A.; Cooper, D.N.; Yan, L.; Yang, Y.; Yang, Y.; Zhao, H. Genetic evidence for a causal relationship between type 2 diabetes and peripheral artery disease in both Europeans and East Asians. BMC Med. 2022, 20, 300. [Google Scholar] [CrossRef]
- Yan, Z.; Fu, S.; Zhang, J.; Chen, J.; Guo, L.; Liu, Y.; Huang, P.; Mao, Y.; Bai, R.; Ma, X. Blood Pressure as a Key Mediator in the Link Between Type 2 Diabetes and Heart Failure: Insights from Mendelian Randomization. 2024; preprint. [Google Scholar]
- Pauklin, S.; Qiao, J.; Cai, L.; Chang, M.; Wang, C.; Zhao, R.; Song, S.; Tan, N.; He, P.; Jiang, L. Shared Genetic Architecture Contributes to Risk of Major Cardiovascular Diseases. 2023; preprint. [Google Scholar]
- Loley, C.; Alver, M.; Assimes, T.L.; Bjonnes, A.; Goel, A.; Gustafsson, S.; Hernesniemi, J.; Hopewell, J.C.; Kanoni, S.; Kleber, M.E. No association of coronary artery disease with X-chromosomal variants in comprehensive international meta-analysis. Sci. Rep. 2016, 6, 35278. [Google Scholar] [CrossRef]
- Moskvina, V.; Smith, M.; Ivanov, D.; Blackwood, D.; StClair, D.; Hultman, C.; Toncheva, D.; Gill, M.; Corvin, A.; O’Dushlaine, C. Genetic differences between five European populations. Hum. Hered. 2010, 70, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Vaulin, A.; Karpulevich, E.; Kasianov, A.; Morozova, I. Europeans and Americans of European origin show differences between their biological pathways related to the major histocompatibility complex. Sci. Rep. 2024, 14, 21816. [Google Scholar] [CrossRef] [PubMed]
Disease | Download Website | SNP | Case/Control |
---|---|---|---|
Angina | GCST90043955 | 11,842,647 | 5786/450,562 |
Atrial fibrillation | GCST90043977 | 11,842,647 | 8404/447,944 |
Heart failure | GCST90043986 | 11,842,647 | 1029/455,319 |
Myocardial infarction | GCST90043954 | 11,842,647 | 8528/447,820 |
Peripheral vascular disease | GCST90044015 | 11,842,647 | 847/455,501 |
Stroke | GCST90044350 | 11,842,647 | 6986/448,317 |
T2D | https://diagram-consortium.org, accessed on 10 July 2024 | 23,425,876 | 74,124/824,006 |
T2D Population | CVD Population | |||
---|---|---|---|---|
Cases N = 12,977 | Controls N = 352,031 | Cases N = 32,963 | Controls N = 332,045 | |
Demographic characteristics | ||||
Age | ||||
Mean (SD) | 58.87 (7.23) | 56.66 (8.03) | 60.43 (6.79) | 56.37 (8.04) |
Sex n (%) | ||||
Males | 8232 (63.44%) | 160,378 (43.94%) | 22,135 (67.15%) | 146,475 (44.11%) |
Females | 4745 (36.56%) | 191,653 (54.44%) | 10,828 (32.5%) | 185,570 (55.89%) |
Level of education n (%) | ||||
7 yrs | 3241 (24.97%) | 58,491 (16.62%) | 9053 (27.46%) | 52,679 (15.87%) |
10 yrs | 3498 (26.96%) | 96,046 (27.28%) | 7857 (23.84%) | 91,687 (27.61%) |
13 yrs | 1471 (11.34%) | 43,465 (12.35%) | 3521 (10.68%) | 41,415 (12.47%) |
15 yrs | 760 (5.86%) | 17,809 (5.06%) | 1884 (5.72%) | 16,685 (5.02%) |
19 yrs | 1173 (9.04%) | 22,852 (6.49%) | 2778 (8.43%) | 21,247 (6.40%) |
20 yrs | 2834 (21.84%) | 113,368 (32.20%) | 7870 (23.88%) | 108,332 (32.63%) |
Hospital admission examinations | ||||
Body mass index (BMI) | ||||
Mean (SD) | 31.31 (5.43) | 27.26 (4.67) | 28.62 (4.86) | 27.28 (4.73) |
Systolic blood pressure (SBP) | 144.47 (18.24) | 139.70 (19.02) | 141.65 (19.03) | 139.69 (19.00) |
Diastolic blood pressure (DBP) | 83.95 (10.27) | 82.17 (10.31) | 81.33 (10.59) | 82.32 (10.29) |
Lifestyle factors | ||||
Smoking n (%) | ||||
Yes | 1588 (12.24%) | 35,646 (10.13%) | 4175 (12.67%) | 33,059 (9.96%) |
No | 11,389 (87.76%) | 316,385 (89.87%) | 28,788 (87.33%) | 298,986 (90.04%) |
Drinking n (%) | ||||
Yes | 12,265 (94.51%) | 339,748 (96.51%) | 31,597 (95.86%) | 320,416 (96.50%) |
No | 712 (5.49%) | 12,283 (3.49%) | 1366 (4.14%) | 11,629 (3.50%) |
Biological variables | ||||
Red blood cell count (RBC) | 4.65 (0.40) | 4.51 (0.40) | 4.57 (0.41) | 4.51 (0.40) |
White blood cell count (WBC) | 7.54 (1.85) | 6.85 (2.00) | 7.24 (1.97) | 6.84 (2.00) |
Platelet count (PLT) | 247.33 (59.78) | 253.26 (58.95) | 243.34 (59.73) | 254.01 (58.83) |
Creatinine | 74.24 (18.76) | 72.28 (17.58) | 78.16 (22.48) | 71.77 (16.97) |
Cholesterol | 5.11 (1.23) | 5.72 (1.11) | 5.13 (1.22) | 5.76 (1.09) |
High-density lipoprotein (HDL) cholesterol | 1.23 (0.29) | 1.45 (0.36) | 1.31 (0.33) | 1.46 (0.36) |
Low-density lipoprotein (LDL) cholesterol | 3.17 (0.92) | 3.58 (0.84) | 3.17 (0.92) | 3.60 (0.83) |
Triglycerides (TG) | 2.27 (1.27) | 1.72 (0.98) | 1.89 (1.07) | 1.72 (0.99) |
C-reactive protein (CRP) | 3.40 (4.65) | 2.50 (4.26) | 2.88 (4.90) | 2.49 (4.21) |
Glycated haemoglobin (HbA1c) | 46.30 (12.37) | 35.63 (5.84) | 38.34 (9.05) | 35.78 (6.14) |
Apolipoprotein A (Apo-A) | 0.97 (0.25) | 1.04 (0.23) | 0.95 (0.24) | 1.04 (0.23) |
Apolipoprotein B (Apo-B) | 1.52 (0.28) | 1.54 (0.27) | 1.51 (0.28) | 1.54 (0.27) |
Vitamin D | 44.22 (19.10) | 49.29 (20.11) | 5.13 (1.22) | 5.76 (1.09) |
PRS Quartile | OR | 95% CI | p-Value | ||
---|---|---|---|---|---|
Lower | Upper | ||||
Model 1 | PRS_quartileQ2 | 1.09 | 1.04 | 1.12 | <0.001 |
PRS_quartileQ3 | 1.16 | 1.12 | 1.19 | <0.001 | |
PRS_quartileQ4 | 1.33 | 1.29 | 1.38 | <0.001 | |
Model 2 | PRS_quartileQ2 | 1.09 | 1.06 | 1.13 | <0.001 |
PRS_quartileQ3 | 1.18 | 1.14 | 1.22 | <0.001 | |
PRS_quartileQ4 | 1.35 | 1.31 | 1.40 | <0.001 | |
Model 3 | PRS_quartileQ2 | 1.09 | 1.05 | 1.13 | <0.001 |
PRS_quartileQ3 | 1.18 | 1.14 | 1.22 | <0.001 | |
PRS_quartileQ4 | 1.35 | 1.30 | 1.39 | <0.001 | |
Model 4 | PRS_quartileQ2 | 1.07 | 1.04 | 1.11 | <0.001 |
PRS_quartileQ3 | 1.14 | 1.10 | 1.18 | <0.001 | |
PRS_quartileQ4 | 1.27 | 1.23 | 1.31 | <0.001 | |
Model 5 | PRS_quartileQ2 | 1.04 | 1.00 | 1.07 | <0.05 |
PRS_quartileQ3 | 1.05 | 1.02 | 1.09 | <0.05 | |
PRS_quartileQ4 | 1.07 | 1.03 | 1.11 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.; Zhang, X.; Deng, L.; Zhang, J.; Wen, Y.; Zheng, D.; Liu, L. Exploring the Genetic Relationship Between Type 2 Diabetes and Cardiovascular Disease: A Large-Scale Genetic Association and Polygenic Risk Score Study. Biomolecules 2024, 14, 1467. https://doi.org/10.3390/biom14111467
Yao Z, Zhang X, Deng L, Zhang J, Wen Y, Zheng D, Liu L. Exploring the Genetic Relationship Between Type 2 Diabetes and Cardiovascular Disease: A Large-Scale Genetic Association and Polygenic Risk Score Study. Biomolecules. 2024; 14(11):1467. https://doi.org/10.3390/biom14111467
Chicago/Turabian StyleYao, Ziwei, Xiaomai Zhang, Liufei Deng, Jiayu Zhang, Yalu Wen, Deqiang Zheng, and Long Liu. 2024. "Exploring the Genetic Relationship Between Type 2 Diabetes and Cardiovascular Disease: A Large-Scale Genetic Association and Polygenic Risk Score Study" Biomolecules 14, no. 11: 1467. https://doi.org/10.3390/biom14111467
APA StyleYao, Z., Zhang, X., Deng, L., Zhang, J., Wen, Y., Zheng, D., & Liu, L. (2024). Exploring the Genetic Relationship Between Type 2 Diabetes and Cardiovascular Disease: A Large-Scale Genetic Association and Polygenic Risk Score Study. Biomolecules, 14(11), 1467. https://doi.org/10.3390/biom14111467