High-Sensitivity C-Reactive Protein Levels in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), Metabolic Alcohol-Associated Liver Disease (MetALD), and Alcoholic Liver Disease (ALD) with Metabolic Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participations
2.2. Definition of SLD and Its Subtypes
2.3. Hs-CRP
2.4. Statistical Approach
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Im, H.J.; Ahn, Y.C.; Wang, J.H.; Lee, M.M.; Son, C.G. Systematic review on the prevalence of nonalcoholic fatty liver disease in South Korea. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101526. [Google Scholar] [CrossRef]
- Teng, M.L.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S32–S42. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.P.; Dodge, J.L.; Terrault, N.A. National prevalence estimates for steatotic liver disease and subclassifications using consensus nomenclature. Hepatology 2024, 79, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Kim, M.; Youn, J.; Singh, S.; Ahn, S.H. Liver Diseases in South Korea: A Pulse Check of the Public’s Knowledge, Awareness, and Behaviors. Yonsei Med. J. 2022, 63, 1088–1098. [Google Scholar] [CrossRef]
- Song, K.; Yang, J.; Lee, H.S.; Kim, S.J.; Lee, M.; Suh, J.; Kwon, A.; Kim, H.S.; Chae, H.W. Changes in the Prevalences of Obesity, Abdominal Obesity, and Non-Alcoholic Fatty Liver Disease among Korean Children during the COVID-19 Outbreak. Yonsei Med. J. 2023, 64, 269–277. [Google Scholar] [CrossRef]
- Lee, N.H.; Jeong, S.J.; Wang, J.H.; Choi, Y.J.; Oh, H.M.; Cho, J.H.; Ahn, Y.C.; Son, C.G. The Clinical Diagnosis-Based Nationwide Epidemiology of Metabolic Dysfunction-Associated Liver Disease in Korea. J. Clin. Med. 2023, 12, 7634. [Google Scholar] [CrossRef]
- Han, E.; Han, K.D.; Lee, Y.H.; Kim, K.S.; Hong, S.; Park, J.H.; Park, C.Y. Fatty Liver & Diabetes Statistics in Korea: Nationwide Data 2009 to 2017. Diabetes Metab. J. 2023, 47, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Chan, W.K.; Chuah, K.H.; Rajaram, R.B.; Lim, L.L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver; European Association for the Study of Diabetes; European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes. Facts 2024, 17, 374–444. [Google Scholar] [CrossRef]
- Israelsen, M.; Torp, N.; Johansen, S.; Hansen, C.D.; Hansen, E.D.; Thorhauge, K.; Hansen, J.K.; Villesen, I.; Bech, K.; Wernberg, C.; et al. Validation of the new nomenclature of steatotic liver disease in patients with a history of excessive alcohol intake: An analysis of data from a prospective cohort study. Lancet Gastroenterol. Hepatol. 2024, 9, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Oh, R.; Kim, S.; Cho, S.H.; Kim, J.; Lee, Y.B.; Jin, S.M.; Hur, K.Y.; Kim, G.; Kim, J.H. Metabolic Dysfunction-Associated Steatotic Liver Disease and All-Cause and Cause-Specific Mortality. Diabetes Metab. J. 2024. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.C. No More NAFLD: The Term Is Now MASLD. Endocrinol. Metab. 2024, 39, 92–94. [Google Scholar] [CrossRef]
- Kalligeros, M.; Vassilopoulos, A.; Vassilopoulos, S.; Victor, D.W.; Mylonakis, E.; Noureddin, M. Prevalence of Steatotic Liver Disease (MASLD, MetALD, and ALD) in the United States: NHANES 2017-2020. Clin. Gastroenterol. Hepatol. 2024, 22, 1330–1332.e4. [Google Scholar] [CrossRef]
- He, L.; Zheng, W.; Qiu, K.; Kong, W.; Zeng, T. Changing from NAFLD to MASLD: The new definition can more accurately identify individuals at higher risk for diabetes. J. Hepatol. 2023, 80, e85–e87. [Google Scholar] [CrossRef]
- Chung, G.E.; Yu, S.J.; Yoo, J.J.; Cho, Y.; Lee, K.N.; Shin, D.W.; Kim, Y.J.; Yoon, J.H.; Han, K.; Cho, E.J. Differential risk of 23 site-specific incident cancers and cancer-related mortality among patients with metabolic dysfunction-associated fatty liver disease: A population-based cohort study with 9.7 million Korean subjects. Cancer Commun. 2023, 43, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Yoo, T.K.; Lee, M.Y.; Kim, S.H.; Zheng, M.H.; Targher, G.; Byrne, C.D.; Sung, K.C. Comparison of cardiovascular mortality between MAFLD and NAFLD: A cohort study. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 947–955. [Google Scholar] [CrossRef]
- Chun, H.S.; Lee, M.; Lee, J.S.; Lee, H.W.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Lee, Y.H.; Kim, J.H.; et al. Metabolic dysfunction associated fatty liver disease identifies subjects with cardiovascular risk better than non-alcoholic fatty liver disease. Liver Int. 2023, 43, 608–625. [Google Scholar] [CrossRef]
- Corrao, S.; Calvo, L.; Granà, W.; Scibetta, S.; Mirarchi, L.; Amodeo, S.; Falcone, F.; Argano, C. Metabolic dysfunction-associated steatotic liver disease: A pathophysiology and clinical framework to face the present and the future. Nutr. Metab. Cardiovasc. Dis. 2024, in press. [Google Scholar] [CrossRef]
- Mladenic, K.; Lenartic, M.; Marinovic, S.; Polic, B.; Wensveen, F.M. The “Domino effect” in MASLD: The inflammatory cascade of steatohepatitis. Eur. J. Immunol. 2024, 54, e2149641. [Google Scholar] [CrossRef]
- Nemer, M.; Osman, F.; Said, A. Dietary macro and micronutrients associated with MASLD: Analysis of a national US cohort database. Ann. Hepatol. 2024, 29, 101491. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-S.; Choi, J.; Lee, B.; Kim, S.G.; Kim, Y.S.; Yoo, J.-J. Association between Inflammatory Biomarkers and Nutritional Status in Fatty Liver. Clin. Nutr. Res. 2020, 9, 182–194. [Google Scholar] [CrossRef]
- Duan, Y.; Pan, X.; Luo, J.; Xiao, X.; Li, J.; Bestman, P.L.; Luo, M. Association of Inflammatory Cytokines With Non-Alcoholic Fatty Liver Disease. Front. Immunol. 2022, 13, 880298. [Google Scholar] [CrossRef] [PubMed]
- Ngwa, D.N.; Pathak, A.; Agrawal, A. IL-6 regulates induction of C-reactive protein gene expression by activating STAT3 isoforms. Mol. Immunol. 2022, 146, 50–56. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, M.; Samols, D.; Kushner, I. STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6. J. Biol. Chem. 1996, 271, 9503–9509. [Google Scholar] [CrossRef]
- Ding, Z.; Wei, Y.; Peng, J.; Wang, S.; Chen, G.; Sun, J. The Potential Role of C-Reactive Protein in Metabolic-Dysfunction-Associated Fatty Liver Disease and Aging. Biomedicines 2023, 11, 2711. [Google Scholar] [CrossRef] [PubMed]
- Coste, S.C.; Orășan, O.H.; Cozma, A.; Negrean, V.; Sitar-Tăut, A.V.; Filip, G.A.; Hangan, A.C.; Lucaciu, R.L.; Iancu, M.; Procopciuc, L.M. Metabolic Dysfunction-Associated Steatotic Liver Disease: The Associations between Inflammatory Markers, TLR4, and Cytokines IL-17A/F, and Their Connections to the Degree of Steatosis and the Risk of Fibrosis. Biomedicines 2024, 12, 2144. [Google Scholar] [CrossRef] [PubMed]
- Amezcua-Castillo, E.; Gonzalez-Pacheco, H.; Saenz-San Martin, A.; Mendez-Ocampo, P.; Gutierrez-Moctezuma, I.; Masso, F.; Sierra-Lara, D.; Springall, R.; Rodriguez, E.; Arias-Mendoza, A.; et al. C-Reactive Protein: The Quintessential Marker of Systemic Inflammation in Coronary Artery Disease-Advancing toward Precision Medicine. Biomedicines 2023, 11, 2444. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rifai, N.; Rose, L.; Buring, J.E.; Cook, N.R. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 2002, 347, 1557–1565. [Google Scholar] [CrossRef]
- Ridker, P.M. Cardiology Patient Page. C-reactive protein: A simple test to help predict risk of heart attack and stroke. Circulation 2003, 108, e81–e85. [Google Scholar] [CrossRef]
- Sandireddy, R.; Sakthivel, S.; Gupta, P.; Behari, J.; Tripathi, M.; Singh, B.K. Systemic impacts of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) on heart, muscle, and kidney related diseases. Front. Cell Dev. Biol. 2024, 12, 1433857. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-H.; Huang, C.-C.; Chan, W.-L.; Chen, J.-W.; Leu, H.-B. The severity of non-alcoholic fatty liver disease correlates with high sensitivity C-reactive protein value and is independently associated with increased cardiovascular risk in healthy population. Clin. Biochem. 2010, 43, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Zheng, Z.; Zhang, Y. Association of Hematological Biomarkers of Inflammation with 10-Year Major Adverse Cardiovascular Events and All-Cause Mortality in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: The ARIC Study. J. Inflamm. Res. 2024, 17, 4247–4256. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Gui, Z.; Liu, L.; Wang, N.; Shen, J. Hs-CRP and HOMA-IR: Include them in the MASLD definition, or treat them as mediators between MASLD and atherosclerotic cardiovascular disease? J. Hepatol. 2024, 81. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wang, C.; Huang, Y.Z.; Zhang, L.L. Nonalcoholic fatty liver disease shows significant sex dimorphism. World J. Clin. Cases 2022, 10, 1457–1472. [Google Scholar] [CrossRef] [PubMed]
- Koceva, A.; Herman, R.; Janez, A.; Rakusa, M.; Jensterle, M. Sex- and Gender-Related Differences in Obesity: From Pathophysiological Mechanisms to Clinical Implications. Int. J. Mol. Sci. 2024, 25, 7342. [Google Scholar] [CrossRef]
- Cherubini, A.; Della Torre, S.; Pelusi, S.; Valenti, L. Sexual dimorphism of metabolic dysfunction-associated steatotic liver disease. Trends Mol. Med. 2024. [Google Scholar] [CrossRef]
- Joo, S.K.; Kim, W. Sex differences in metabolic dysfunction-associated steatotic liver disease: A narrative review. Ewha Med. J. 2024, 47, e17. [Google Scholar] [CrossRef]
- Tapper, E.B.; Krajewski, K.; Lai, M.; Challies, T.; Kane, R.; Afdhal, N.; Lau, D. Simple non-invasive biomarkers of advanced fibrosis in the evaluation of non-alcoholic fatty liver disease. Gastroenterol. Rep. 2014, 2, 276–280. [Google Scholar] [CrossRef]
- Bambha, K.; Belt, P.; Abraham, M.; Wilson, L.A.; Pabst, M.; Ferrell, L.; Unalp-Arida, A.; Bass, N.; Nonalcoholic Steatohepatitis Clinical Research Network Research Group. Ethnicity and nonalcoholic fatty liver disease. Hepatology 2012, 55, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Sakhuja, P.; Malhotra, V.; Gondal, R.; Sarin, S.K. Independent predictors of steatohepatitis and fibrosis in Asian Indian patients with non-alcoholic steatohepatitis. Dig. Dis. Sci. 2008, 53, 1967–1976. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, M.; Hu, Z.; Hultstrom, M.; Lai, E. Sex-specific prevalence of fatty liver disease and associated metabolic factors in Wuhan, south central China. Eur. J. Gastroenterol. Hepatol. 2014, 26, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Cheng, S.; Heart-Liver Axis Research, Collaboration. Sex differences in prevalence and prognosis of steatotic liver disease phenotypes: Biological sex matters. J. Hepatol. 2024, 80, e68–e69. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Kim, Y.; Kweon, S.; Kim, S.; Yun, S.; Park, S.; Lee, Y.K.; Kim, Y.; Park, O.; Jeong, E.K. Korea National Health and Nutrition Examination Survey, 20th anniversary: Accomplishments and future directions. Epidemiol. Health 2021, 43, e2021025. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Miwa, T.; Tajirika, S.; Imamura, N.; Adachi, M.; Horita, R.; Hanai, T.; Ng, C.H.; Siddiqui, M.S.; Fukao, T.; Shimizu, M.; et al. Usefulness of health checkup-based indices in identifying metabolic dysfunction-associated steatotic liver disease. JGH Open 2024, 8, e13110. [Google Scholar] [CrossRef]
- Mahachai, N.; Washirasaksiri, C.; Ariyakunaphan, P.; Kositamongkol, C.; Sitasuwan, T.; Tinmanee, R.; Auesomwang, C.; Sayabovorn, N.; Chaisathaphol, T.; Phisalprapa, P.; et al. Clinical Predictive Score for Identifying Metabolic Dysfunction-Associated Steatotic Liver Disease in Individuals with Prediabetes Using Transient Elastography. J. Clin. Med. 2023, 12, 7617. [Google Scholar] [CrossRef]
- Abdelhameed, F.; Kite, C.; Lagojda, L.; Dallaway, A.; Chatha, K.K.; Chaggar, S.S.; Dalamaga, M.; Kassi, E.; Kyrou, I.; Randeva, H.S. Non-invasive Scores and Serum Biomarkers for Fatty Liver in the Era of Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD): A Comprehensive Review From NAFLD to MAFLD and MASLD. Curr. Obes. Rep. 2024, 13, 510–531. [Google Scholar] [CrossRef]
- Mantovani, A.; Morieri, M.L.; Aldigeri, R.; Palmisano, L.; Masulli, M.; Bonomo, K.; Baroni, M.G.; Cossu, E.; Cimini, F.A.; Cavallo, G.; et al. MASLD, hepatic steatosis and fibrosis are associated with the prevalence of chronic kidney disease and retinopathy in adults with type 1 diabetes mellitus. Diabetes Metab. 2024, 50, 101497. [Google Scholar] [CrossRef] [PubMed]
- Banait, T.; Wanjari, A.; Danade, V.; Banait, S.; Jain, J. Role of High-Sensitivity C-reactive Protein (Hs-CRP) in Non-communicable Diseases: A Review. Cureus 2022, 14, e30225. [Google Scholar] [CrossRef]
- Lee, J.; Lee, C.; Min, J.; Kang, D.W.; Kim, J.Y.; Yang, H.I.; Park, J.; Lee, M.K.; Lee, M.Y.; Park, I.; et al. Development of the Korean Global Physical Activity Questionnaire: Reliability and validity study. Glob. Health Promot. 2020, 27, 44–55. [Google Scholar] [CrossRef]
- Jayedi, A.; Rahimi, K.; Bautista, L.E.; Nazarzadeh, M.; Zargar, M.S.; Shab-Bidar, S. Inflammation markers and risk of developing hypertension: A meta-analysis of cohort studies. Heart 2019, 105, 686–692. [Google Scholar] [CrossRef]
- Yang, X.; Tao, S.; Peng, J.; Zhao, J.; Li, S.; Wu, N.; Wen, Y.; Xue, Q.; Yang, C.X.; Pan, X.F. High-sensitivity C-reactive protein and risk of type 2 diabetes: A nationwide cohort study and updated meta-analysis. Diabetes Metab. Res. Rev. 2021, 37, e3446. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Joseph, L.; Pilote, L. Obesity and C-reactive protein in various populations: A systematic review and meta-analysis. Obes. Rev. 2013, 14, 232–244. [Google Scholar] [CrossRef]
- Mogna-Peláez, P.; Riezu-Boj, J.I.; Milagro, F.I.; Herrero, J.I.; Elorz, M.; Benito-Boillos, A.; Tobaruela-Resola, A.L.; Tur, J.A.; Martínez, J.A.; Abete, I.; et al. Inflammatory markers as diagnostic and precision nutrition tools for metabolic dysfunction-associated steatotic liver disease: Results from the Fatty Liver in Obesity trial. Clin. Nutr. 2024, 43, 1770–1781. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.; Tian, C.; Wang, Q.; Yang, Z.; Che, W.; Li, Y.; Luo, Y. Association of systemic immune biomarkers with metabolic dysfunction-associated steatotic liver disease: A cross-sectional study of NHANES 2007-2018. Front. Nutr. 2024, 11, 1415484. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, B.J.; Hur, W.; Lee, M.; Han, S.H. Associations of Insulin Resistance and High-Sensitivity C-Reactive Protein with Metabolic Abnormalities in Korean Patients with Type 2 Diabetes Mellitus: A Preliminary Study. Metabolites 2024, 14, 371. [Google Scholar] [CrossRef]
- Kumar, R.; Porwal, Y.C.; Dev, N.; Kumar, P.; Chakravarthy, S.; Kumawat, A. Association of high-sensitivity C-reactive protein (hs-CRP) with non-alcoholic fatty liver disease (NAFLD) in Asian Indians: A cross-sectional study. J. Fam. Med. Prim. Care 2020, 9, 390–394. [Google Scholar] [CrossRef]
- Jamialahmadi, T.; Bo, S.; Abbasifard, M.; Sathyapalan, T.; Jangjoo, A.; Moallem, S.A.; Almahmeed, W.; Ashari, S.; Johnston, T.P.; Sahebkar, A. Association of C-reactive protein with histological, elastographic, and sonographic indices of non-alcoholic fatty liver disease in individuals with severe obesity. J. Health Popul. Nutr. 2023, 42, 30. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.M.; Arab, J.P.; Wong, V.W. MASLD: A disease in flux. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- Yu, L.; Gao, F.; Li, Y.; Su, D.; Han, L.; Li, Y.; Zhang, X.; Feng, Z. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed. Pharmacother. 2024, 175, 116724. [Google Scholar] [CrossRef] [PubMed]
- Okekunle, A.P.; Youn, J.; Song, S.; Chung, G.E.; Yang, S.Y.; Kim, Y.S.; Lee, J.E. Predicted pro-inflammatory hs-CRP score and non-alcoholic fatty liver disease. Gastroenterol. Rep. 2023, 11, goad059. [Google Scholar] [CrossRef]
- Yeo, J.; Kim, K.K.; Hwang, I.C. Association between the Severity of Nonalcoholic Fatty Liver Disease and High Sensitivity C-reactive Protein in Adults. J. Obes. Metab. Syndr. 2012, 21, 166–174. [Google Scholar] [CrossRef]
- Wang, L.R.; Liu, W.Y.; Wu, S.J.; Zhu, G.Q.; Lin, Y.Q.; Braddock, M.; Zhang, D.C.; Zheng, M.H. Parabolic relationship between sex-specific serum high sensitive C reactive protein and non-alcoholic fatty liver disease in Chinese adults: A large population-based study. Oncotarget 2016, 7, 14241–14250. [Google Scholar] [CrossRef]
- Chang, E.; Varghese, M.; Singer, K. Gender and Sex Differences in Adipose Tissue. Curr. Diabetes Rep. 2018, 18, 69. [Google Scholar] [CrossRef]
- Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef]
- Lonardo, A.; Trande, P. Are there any sex differences in fatty liver? A study of glucose metabolism and body fat distribution. J. Gastroenterol. Hepatol. 2000, 15, 775–782. [Google Scholar] [CrossRef]
- Ciardullo, S.; Oltolini, A.; Cannistraci, R.; Muraca, E.; Perseghin, G. Sex-related association of nonalcoholic fatty liver disease and liver fibrosis with body fat distribution in the general US population. Am. J. Clin. Nutr. 2022, 115, 1528–1534. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Vachher, M.; Arora, T.; Kumar, B.; Burman, A. Visceral fat: A key mediator of NAFLD development and progression. Hum. Nutr. Metab. 2023, 33, 200210. [Google Scholar] [CrossRef]
- Eng, P.C.; Forlano, R.; Tan, T.; Manousou, P.; Dhillo, W.S.; Izzi-Engbeaya, C. Non-alcoholic fatty liver disease in women—Current knowledge and emerging concepts. JHEP Rep. 2023, 5, 100835. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef]
- Ahn, S.B. Noninvasive serum biomarkers for liver steatosis in nonalcoholic fatty liver disease: Current and future developments. Clin. Mol. Hepatol. 2023, 29, S150–S156. [Google Scholar] [CrossRef] [PubMed]
- Biciusca, T.; Stan, S.I.; Balteanu, M.A.; Cioboata, R.; Ghenea, A.E.; Danoiu, S.; Bumbea, A.M.; Biciusca, V. The Role of the Fatty Liver Index (FLI) in the Management of Non-Alcoholic Fatty Liver Disease: A Systematic Review. Diagnostics 2023, 13, 3316. [Google Scholar] [CrossRef]
- Caretta, N.; Scafa, R.; Graziani, A.; Crepaldi, M.C.; Vedovato, M.; Avogaro, A.; Ferlin, A. Noninvasive Indices of MASLD Are Associated with Hypogonadism in Male Patients With Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2024, 109, e522–e530. [Google Scholar] [CrossRef]
Operationalization | |
---|---|
Hepatic steatosis | Hepatic steatosis index (HSI) > 31 |
Cardiometabolic risk factors (CMRF) | |
Overweight or obesity | Body mass index ≥ 23 kg/m2 or Waist circumference ≥ 90 cm for male or ≥85 cm for female |
Prediabetes or Diabetes mellitus | Fasting glucose ≥ 100 mg/dL or glycated hemoglobin A1c ≥ 5.7% or use of insulin or oral hypoglycemic agents |
Elevated blood pressure | Blood pressure ≥ 130/85 mm Hg or use of anti-hypertensive medications |
Hypertriglyceridemia | Triglycerides ≥ 150 mg/dL or use of lipid lowering drugs |
Low high-density lipoprotein cholesterol (HDL) | HDL < 40 mg/dL for male or <50 mg/dL for female or use of lipid lowering drugs |
SLD subtypes | (1) no SLD: HSI ≤ 31 |
(2) MASLD: HSI > 31 + ≥1 of CMRFs + alcohol consumption < 20 g/day (female) < 30 g/day (male) (3) MetALD: HSI > 31 + ≥1 of CMRFs + alcohol consumption 20–50 g/day (female) 30–60 g/day (male) (4) ALD with MD: HSI > 31 + ≥1 of CMRFs + alcohol consumption > 50 g/day (female) > 60 g/day (male) (5) other SLDs: HSI > 31 and does not meet criteria for (1)–(4) |
Overall | SLD Categories | |||||
---|---|---|---|---|---|---|
No SLD | MASLD | MetALD | ALD with MD | Other SLDs | ||
N = 20,141 | N = 8383 | N = 10,346 | N = 947 | N = 195 | N = 270 | |
Sex | ||||||
Male | 8813 (43.8%) | 3294 (39.3%) | 4542 (43.9%) | 743 (78.5%) | 147 (75.4%) | 87 (32.2%) |
Female | 11,328 (56.2%) | 5089 (60.7%) | 5804 (56.1%) | 204 (21.5%) | 48 (24.6%) | 183 (67.8%) |
Age | ||||||
Mean (SD) | 50.8 (16.7) | 48.4 (17.7) | 53.6 (15.7) | 47.9 (13.6) | 42 (13.2) | 38 (12.5) |
Education level | ||||||
Middle school or below | 6095 (30.3%) | 2096 (25.0%) | 3710 (35.9%) | 238 (25.1%) | 33 (16.9%) | 18 (6.7%) |
High school | 6617 (32.9%) | 2839 (33.9%) | 3238 (31.3%) | 346 (36.5%) | 86 (44.1%) | 108 (40.0%) |
College or above | 7429 (36.9%) | 3448 (41.1%) | 3398 (32.8%) | 363 (38.3%) | 76 (39.0%) | 144 (53.3%) |
Income level | ||||||
Lowest | 3634 (18.0%) | 1422 (17.0%) | 2052 (19.8%) | 121 (12.8%) | 21 (10.8%) | 18 (6.7%) |
Low | 4881 (24.2%) | 1886 (22.5%) | 2648 (25.6%) | 240 (25.3%) | 57 (29.2%) | 50 (18.5%) |
High | 5601 (27.8%) | 2359 (28.1%) | 2827 (27.3%) | 269 (28.4%) | 60 (30.8%) | 86 (31.9%) |
Highest | 6025 (29.9%) | 2716 (32.4%) | 2819 (27.2%) | 317 (33.5%) | 57 (29.2%) | 116 (43.0%) |
Smoking | ||||||
Yes | 16,502 (81.9%) | 6971 (83.2%) | 8697 (84.1%) | 518 (54.7%) | 83 (42.6%) | 233 (86.3%) |
No | 3639 (18.1%) | 1412 (16.8%) | 1649 (15.9%) | 429 (45.3%) | 112 (57.4%) | 37 (13.7%) |
Physical activity | ||||||
Yes | 11,153 (55.4%) | 4465 (53.3%) | 5921 (57.2%) | 536 (56.6%) | 100 (51.3%) | 131 (48.5%) |
No | 8988 (44.6%) | 3918 (46.7%) | 4425 (42.8%) | 411 (43.4%) | 95 (48.7%) | 139 (51.5%) |
HSI | ||||||
Median (Q1, Q3) | 32.1 (28.9, 35.7) | 28.4 (26.7, 29.7) | 35.1 (32.9, 38.2) | 35.1 (32.8, 38.5) | 35.1 (32.6, 39.0) | 32.0 (31.4, 33.1) |
hs-CRP (g/L) | ||||||
Median (Q1, Q3) | 0.5 (0.3, 1.0) | 0.4 (0.3, 0.7) | 0.7 (0.4, 1.3) | 0.7 (0.4, 1.3) | 0.7 (0.4, 1.4) | 0.4 (0.3, 0.6) |
AST (IU/L) | ||||||
Median (Q1, Q3) | 20.0 (17.0, 25.0) | 19.0 (16.0, 23.0) | 21.0 (18.0, 26.0) | 24.0 (19.0, 30.0) | 24.0 (19.0, 31.0) | 19.0 (16.0, 24.0) |
ALT (IU/L) | ||||||
Median (Q1, Q3) | 17.0 (13.0, 25.0) | 13.0 (10.0, 17.0) | 21.0 (16.0, 31.0) | 25.0 (18.0, 36.0) | 25.0 (19.0, 38.0) | 21.0 (16.0, 28.0) |
Univariate Model | Multivariate Model | |||||||
---|---|---|---|---|---|---|---|---|
β | SE | % Change (95% CI) | p | β | SE | % Change (95% CI) | p | |
SLD types | ||||||||
No SLD | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | ||
MASLD | 0.51 | 0.02 | 67.2 (61.8, 72.8) | <0.001 | 0.47 | 0.02 | 59.7 (54.5, 65.1) | <0.001 |
MetALD | 0.56 | 0.04 | 75.1 (63.1, 87.9) | <0.001 | 0.47 | 0.04 | 60.6 (49.3, 72.8) | <0.001 |
ALD with MD | 0.58 | 0.08 | 78.8 (54.2, 107.3) | <0.001 | 0.52 | 0.08 | 67.5 (44.4, 94.2) | <0.001 |
Other SLDs | −0.12 | 0.06 | −11.5 (−21.3, −0.5) | 0.041 | −0.06 | 0.06 | −5.8 (−16.2, 6.0) | 0.323 |
Males | Females | |||||||
---|---|---|---|---|---|---|---|---|
β | SE | % Change (95% CI) | p | β | SE | % Change (95% CI) | p | |
SLD types | ||||||||
No SLD | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | ||
MASLD | 0.35 | 0.03 | 41.9 (35.1, 49.1) | <0.001 | 0.60 | 0.02 | 81.5 (73.6, 89.8) | <0.001 |
MetALD | 0.38 | 0.04 | 46.8 (35.0, 59.6) | <0.001 | 0.61 | 0.08 | 84.3 (58.1, 114.8) | <0.001 |
ALD with MD | 0.42 | 0.08 | 51.8 (30.0, 77.2) | <0.001 | 0.68 | 0.18 | 98.2 (38.0, 184.8) | <0.001 |
Other SLDs | −0.16 | 0.10 | −14.9 (−29.8, 3.0) | 0.097 | 0.01 | 0.08 | 1.0 (−13.0, 17.3) | 0.893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.-U.; Yoon, J.-H. High-Sensitivity C-Reactive Protein Levels in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), Metabolic Alcohol-Associated Liver Disease (MetALD), and Alcoholic Liver Disease (ALD) with Metabolic Dysfunction. Biomolecules 2024, 14, 1468. https://doi.org/10.3390/biom14111468
Baek S-U, Yoon J-H. High-Sensitivity C-Reactive Protein Levels in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), Metabolic Alcohol-Associated Liver Disease (MetALD), and Alcoholic Liver Disease (ALD) with Metabolic Dysfunction. Biomolecules. 2024; 14(11):1468. https://doi.org/10.3390/biom14111468
Chicago/Turabian StyleBaek, Seong-Uk, and Jin-Ha Yoon. 2024. "High-Sensitivity C-Reactive Protein Levels in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), Metabolic Alcohol-Associated Liver Disease (MetALD), and Alcoholic Liver Disease (ALD) with Metabolic Dysfunction" Biomolecules 14, no. 11: 1468. https://doi.org/10.3390/biom14111468
APA StyleBaek, S. -U., & Yoon, J. -H. (2024). High-Sensitivity C-Reactive Protein Levels in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), Metabolic Alcohol-Associated Liver Disease (MetALD), and Alcoholic Liver Disease (ALD) with Metabolic Dysfunction. Biomolecules, 14(11), 1468. https://doi.org/10.3390/biom14111468