Anti-Diabetic Therapies and Cancer: From Bench to Bedside
Abstract
:1. Introduction
2. Anti-Diabetic Therapies and Their Impact on Cancer Reprogramming: Insights from Experimental Studies
2.1. Metformin
2.2. Insulin Therapy and Sulfonylureas
2.2.1. Insulin Therapy
2.2.2. Sulfonylureas
2.3. Pioglitazone
2.4. Incretin Mimetics
2.4.1. DDP-4 Inhibitors
2.4.2. GLP-1 and Dual GIP/GLP-1 Receptor Agonists
2.5. SGLT-2 Inhibitors
3. Enhancing Chemotherapy: The Integration of Anti-Diabetic Treatments in Improving Therapeutic Outcomes
3.1. Exploring Anti-Diabetic Therapies as a Strategy to Diminish Chemotherapy-Induced Cardiotoxicity
3.1.1. Metformin
3.1.2. Other Conventional Anti-Diabetic Treatments
3.1.3. Incretin Mimetics
3.1.4. SGLT-2 Inhibitors
3.2. Anti-Diabetic Agents as Modulators of Chemotherapy-Induced Toxicities: Beyond Cardiotoxicity
3.3. Decoding the Impact of Anti-Diabetic Therapies on Chemotherapy Outcomes Beyond Toxicity Mitigation
3.3.1. Traditional Anti-Diabetic Treatments
3.3.2. Novel Anti-Diabetic Therapies
4. Unleashing the Benefits of Immunotherapy with Anti-Diabetic Treatment: Emerging Preclinical Insights with Potential Future Clinical Applications
4.1. Metformin
4.2. Other Conventional Anti-Diabetic Therapies
4.3. Novel Anti-Diabetic Treatments
4.3.1. GLP-1 and Dual GIP/GLP-1 Receptor Agonists
4.3.2. SGLT-2 Inhibitors
5. Translating Preclinical Insights into Clinical Cancer Outcomes: Can We Draw Definitive Conclusions?
5.1. Metformin
5.2. Insulin Therapy and Sulfonylureas
5.3. Pioglitazone
5.4. Incretin Mimetics
5.4.1. DDP-4 Inhibitors
5.4.2. GLP-1 RAs
5.4.3. Tirzepatide
5.5. SGLT-2 Inhibitors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hossain, M.J.; Al-Mamun, M.; Islam, M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024, 7, e2004. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Qu, S. The Relationship Between Diabetes Mellitus and Cancers and Its Underlying Mechanisms. Front. Endocrinol. 2022, 13, 800995. [Google Scholar] [CrossRef] [PubMed]
- Cignarelli, A.; Genchi, V.A.; Caruso, I.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Diabetes and cancer: Pathophysiological fundamentals of a ‘dangerous affair’. Diabetes Res. Clin. Pract. 2018, 143, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Pliszka, M.; Szablewski, L. Associations between Diabetes Mellitus and Selected Cancers. Int. J. Mol. Sci. 2024, 25, 7476. [Google Scholar] [CrossRef]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef] [PubMed]
- Dhas, Y.; Biswas, N.M.R.D.; Jones, L.D.; Ashili, S. Repurposing metabolic regulators: Antidiabetic drugs as anticancer agents. Mol. Biomed. 2024, 5, 40. [Google Scholar] [CrossRef]
- Liu, Y.C.; Nguyen, P.A.; Humayun, A.; Chien, S.C.; Yang, H.C.; Asdary, R.N.; Syed-Abdul, S.; Hsu, M.H.; Moldovan, M.; Yen, Y.; et al. Does long-term use of antidiabetic drugs changes cancer risk? Medicine 2019, 98, e17461. [Google Scholar] [CrossRef]
- Choi, Y.K.; Park, K.G. Metabolic roles of AMPK and metformin in cancer cells. Mol. Cells 2013, 36, 279–287. [Google Scholar] [CrossRef]
- Home, P. Insulin therapy and cancer. Diabetes Care 2013, 36 (Suppl. S2), S240–S244. [Google Scholar] [CrossRef]
- Yousefnia, S.; Momenzadeh, S.; Forootan, F.S.; Ghaedi, K.; Esfahani, M.H.N. The influence of peroxisome proliferator-activated receptor γ (PPARγ) ligands on cancer cell tumorigenicity. Gene 2018, 649, 14–22. [Google Scholar] [CrossRef]
- Nauck, M.A.; Meier, J.J. The incretin effect in healthy individuals and those with type 2 diabetes: Physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016, 4, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Saini, K.; Sharma, S.; Khan, Y. DPP-4 inhibitors for treating T2DM—Hype or hope? an analysis based on the current literature. Front. Mol. Biosci. 2023, 10, 1130625. [Google Scholar] [CrossRef] [PubMed]
- Andraos, J.; Muhar, H.; Smith, S.R. Beyond glycemia: Comparing tirzepatide to GLP-1 analogues. Rev. Endocr. Metab. Disord. 2023, 24, 1089–1101. [Google Scholar] [CrossRef] [PubMed]
- Fareed, A.; Hussain, A. The Expanding Role of GLP-1: From Diabetes Management to Cancer Treatment. Clin. Med. Insights Endocrinol. Diabetes 2023, 16, 11795514231213566. [Google Scholar] [CrossRef]
- Popoviciu, M.S.; Păduraru, L.; Yahya, G.; Metwally, K.; Cavalu, S. Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. Int. J. Mol. Sci. 2023, 24, 10449. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Tsilingiris, D.; Kounatidis, D.; Lempesis, I.G.; Karampela, I.; Dalamaga, M. Sodium-glucose cotransporter-2 inhibitors in obesity and associated cardiometabolic disorders: Where do we stand? Pol. Arch. Intern. Med. 2022, 132, 16342. [Google Scholar] [CrossRef]
- Basak, D.; Gamez, D.; Deb, S. SGLT2 Inhibitors as Potential Anticancer Agents. Biomedicines 2023, 11, 1867. [Google Scholar] [CrossRef]
- De Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Søndergaard, C.S.; Esquivel, P.N.; Dalamaga, M.; Magkos, F. Use of Antihyperglycemic Drugs and Risk of Cancer in Patients with Diabetes. Curr. Oncol. Rep. 2023, 25, 29–40. [Google Scholar] [CrossRef]
- Zamanian, M.Y.; Golmohammadi, M.; Yumashev, A.; Hjazi, A.; Toama, M.A.; AbdRabou, M.A.; Gehlot, A.; Alwaily, E.R.; Shirsalimi, N.; Yadav, P.K.; et al. Effects of metformin on cancers in experimental and clinical studies: Focusing on autophagy and AMPK/mTOR signaling pathways. Cell Biochem. Funct. 2024, 42, e4071. [Google Scholar] [CrossRef]
- Jung, C.H.; Seo, M.; Otto, N.M.; Kim, D.H. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 2011, 7, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Holczer, M.; Hajdú, B.; Lőrincz, T.; Szarka, A.; Bánhegyi, G.; Kapuy, O. A Double Negative Feedback Loop between mTORC1 and AMPK Kinases Guarantees Precise Autophagy Induction upon Cellular Stress. Int. J. Mol. Sci. 2019, 20, 5543. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Li, H.F.; Wang, H.; Webster, K.A. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia 2012, 55, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Hu, X.; He, H.; Fang, W. Metformin suppresses breast cancer growth via inhibition of cyclooxygenase-2. Oncol. Lett. 2021, 22, 615. [Google Scholar] [CrossRef] [PubMed]
- Hampsch, R.A.; Wells, J.D.; Traphagen, N.A.; McCleery, C.F.; Fields, J.L.; Shee, K.; Dillon, L.M.; Pooler, D.B.; Lewis, L.D.; Demidenko, E.; et al. AMPK Activation by Metformin Promotes Survival of Dormant ER+ Breast Cancer Cells. Clin. Cancer Res. 2020, 26, 3707–3719. [Google Scholar] [CrossRef]
- Shao, S.; Zhao, L.; An, G.; Zhang, L.; Jing, X.; Luo, M.; Li, W.; Meng, D.; Ning, Q.; Zhao, X.; et al. Metformin suppresses HIF-1α expression in cancer-associated fibroblasts to prevent tumor-stromal cross talk in breast cancer. FASEB J. 2020, 34, 10860–10870. [Google Scholar] [CrossRef]
- Repas, J.; Peternel, L.; Sourij, H.; Pavlin, M. Low glucose availability potentiates the effects of metformin on model T cell activation and exhaustion markers in vitro. Front. Endocrinol. 2023, 14, 1216193. [Google Scholar] [CrossRef]
- Li, G.Y.; Feng, Y.Q.; Jia, Y.F.; Wang, K.F.; Li, Y.; Zhang, S.J.; Han, S.X.; Wang, J.C. Metformin enhances T lymphocyte anti-tumor immunity by increasing the infiltration via vessel normalization. Eur. J. Pharmacol. 2023, 944, 175592. [Google Scholar] [CrossRef]
- Chiang, C.F.; Chao, T.T.; Su, Y.F.; Hsu, C.C.; Chien, C.Y.; Chiu, K.C.; Shiah, S.G.; Lee, C.H.; Liu, S.Y.; Shieh, Y.S. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget 2017, 8, 20706–20718. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, C.; Najafi, M. Targeting of the tumor immune microenvironment by metformin. J. Cell Commun. Signal. 2022, 16, 333–348. [Google Scholar] [CrossRef]
- Cao, Y.; Wo, M.; Xu, C.; Fei, X.; Jin, J.; Shan, Z. An AMPK agonist suppresses the progress of colorectal cancer by regulating the polarization of TAM to M1 through inhibition of HIF-1α and mTOR signal pathway. J. Cancer Res. Ther. 2023, 19, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kuang, L.; Li, Y.; Wang, Q.; Xu, H.; Liu, J.; Zhou, X.; Li, Y.; Zhang, B. Metformin Regulates TET2 Expression to Inhibit Endometrial Carcinoma Proliferation: A New Mechanism. Front. Oncol. 2022, 12, 856707. [Google Scholar] [CrossRef] [PubMed]
- De la Cruz-López, K.G.; Alvarado-Ortiz, E.; Valencia-González, H.A.; Beltrán-Anaya, F.O.; Zamora-Fuentes, J.M.; Hidalgo-Miranda, A.; Ortiz-Sánchez, E.; Espinal-Enríquez, J.; García-Carrancá, A. Metformin induces ZFP36 by mTORC1 inhibition in cervical cancer-derived cell lines. BMC Cancer 2024, 24, 853. [Google Scholar] [CrossRef] [PubMed]
- Gwak, H.; Kim, Y.; An, H.; Dhanasekaran, D.N.; Song, Y.S. Metformin induces degradation of cyclin D1 via AMPK/GSK3β axis in ovarian cancer. Mol. Carcinog. 2017, 56, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Guo, J.; Zhu, Y.; Huang, Z.; Liu, T.; Cai, J.; Yu, L.; Wang, Z. Metformin inhibits ovarian cancer via decreasing H3K27 trimethylation. Int. J. Oncol. 2018, 52, 1899–1911. [Google Scholar] [CrossRef]
- Hart, P.C.; Kenny, H.A.; Grassl, N.; Watters, K.M.; Litchfield, L.M.; Coscia, F.; Blaženović, I.; Ploetzky, L.; Fiehn, O.; Mann, M.; et al. Mesothelial Cell HIF1α Expression Is Metabolically Downregulated by Metformin to Prevent Oncogenic Tumor-Stromal Crosstalk. Cell Rep. 2019, 29, 4086–4098.e6. [Google Scholar] [CrossRef]
- Bond, N.L.S.; Dréau, D.; Marriott, I.; Bennett, J.M.; Turner, M.J.; Arthur, S.T.; Marino, J.S. Low-Dose Metformin Treatment Reduces In Vitro Growth of the LL/2 Non-small Cell Lung Cancer Cell Line. Biomedicines 2022, 11, 65. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, X.; Ju, H.; Zhang, Y. Inhibition of pyruvate carboxylase reverses metformin resistance by activating AMPK in pancreatic cancer. Life Sci. 2023, 327, 121817. [Google Scholar] [CrossRef]
- Penfold, L.; Woods, A.; Pollard, A.E.; Arizanova, J.; Pascual-Navarro, E.; Muckett, P.J.; Dore, M.H.; Montoya, A.; Whilding, C.; Fets, L.; et al. AMPK activation protects against prostate cancer by inducing a catabolic cellular state. Cell Rep. 2023, 42, 112396. [Google Scholar] [CrossRef]
- Dixon, S.; Tran, A.; Schrier, M.S.; Dong, J.; Deth, R.C.; Castejon, A.; Trivedi, M.S. Metformin-induced oxidative stress inhibits LNCaP prostate cancer cell survival. Mol. Biol. Rep. 2024, 51, 729. [Google Scholar] [CrossRef]
- Park, D.; Lee, S.; Boo, H. Metformin Induces Lipogenesis and Apoptosis in H4IIE Hepatocellular Carcinoma Cells. Dev. Reprod. 2023, 27, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zheng, L.; Ma, Y.; Zhang, Y.; Yue, C.; Gu, F.; Niu, G.; Chen, Y. Low-dose metformin suppresses hepatocellular carcinoma metastasis via the AMPK/JNK/IL-8 pathway. Int. J. Immunopathol. Pharmacol. 2024, 38, 3946320241249445. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, S.; Houseright, R.A.; Graves, A.L.; Golenberg, N.; Korte, B.G.; Miskolci, V.; Huttenlocher, A. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J. Hepatol. 2019, 70, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Xu, L.; Zhang, M.; Dorfman, R.G.; Pan, Y.; Zhou, Q.; Zhou, L.; Wang, Y.; Li, Y.; Yin, Y.; et al. Metformin facilitates BG45-induced apoptosis via an anti-Warburg effect in cholangiocarcinoma cells. Oncol. Rep. 2018, 39, 1957–1965. [Google Scholar] [CrossRef]
- Van Eijck, C.W.F.; Vadgama, D.; van Eijck, C.H.J.; Wilmink, J.W.; Dutch Pancreatic Cancer Group (DPCG). Metformin boosts antitumor immunity and improves prognosis in upfront resected pancreatic cancer: An observational study. J. Natl. Cancer Inst. 2024, 116, 1374–1383. [Google Scholar] [CrossRef]
- Orang, A.; Marri, S.; McKinnon, R.A.; Petersen, J.; Michael, M.Z. Restricting Colorectal Cancer Cell Metabolism with Metformin: An Integrated Transcriptomics Study. Cancers 2024, 16, 2055. [Google Scholar] [CrossRef]
- Leitner, B.P.; Siebel, S.; Akingbesote, N.D.; Zhang, X.; Perry, R.J. Insulin and cancer: A tangled web. Biochem. J. 2022, 479, 583–607. [Google Scholar] [CrossRef]
- Hua, H.; Kong, Q.; Yin, J.; Zhang, J.; Jiang, Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance a challenge for cancer therapy. J. Hematol. Oncol. 2020, 13, 64. [Google Scholar] [CrossRef]
- Gong, Y.; Ma, Y.; Sinyuk, M.; Loganathan, S.; Thompson, R.C.; Sarkaria, J.N.; Chen, W.; Lathia, J.D.; Mobley, B.C.; Clark, S.W.; et al. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro. Oncol. 2016, 18, 48–57. [Google Scholar] [CrossRef]
- Sheng, X.; Yao, K.; Shao, A.; Tu, S.; Zhang, X.; Chen, T.; Yao, D. The Role of Insulin Glargine and Human Insulin in the Regulation of Thyroid Proliferation Through Mitogenic Signaling. Front. Endocrinol. 2019, 10, 594. [Google Scholar] [CrossRef]
- Jiang, J.; Ren, H.Y.; Geng, G.J.; Mi, Y.J.; Liu, Y.; Li, N.; Yang, S.Y.; Shen, D.Y. Oncogenic activity of insulin in the development of non-small cell lung carcinoma. Oncol. Lett. 2018, 15, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, J.; Teressa, M. Insulin Use and The Risk of Hepatocellular Carcinoma: Insights and Implications. Acta Med. Indones. 2024, 56, 107–113. [Google Scholar]
- Chen, X.; Liang, H.; Song, Q.; Xu, X.; Cao, D. Insulin promotes progression of colon cancer by upregulation of ACAT1. Lipids Health Dis. 2018, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.M.Y.; Magrill, J.; de Winter, T.J.J.; Hu, X.; Skovsø, S.; Schaeffer, D.F.; Kopp, J.L.; Johnson, J.D. Endogenous Hyperinsulinemia Contributes to Pancreatic Cancer Development. Cell Metab. 2019, 30, 403–404. [Google Scholar] [CrossRef]
- Zhang, A.M.Y.; Chu, K.H.; Daly, B.F.; Ruiter, T.; Dou, Y.; Yang, J.C.C.; de Winter, T.J.J.; Chhuor, J.; Wang, S.; Flibotte, S.; et al. Effects of hyperinsulinemia on pancreatic cancer development and the immune microenvironment revealed through single-cell transcriptomics. Cancer Metab. 2022, 10, 5. [Google Scholar] [CrossRef]
- Vallianou, N.; Kounatidis, D.; Christodoulatos, G.S.; Panagopoulos, F.; Karampela, I.; Dalamaga, M. Mycobiome and Cancer: What Is the Evidence? Cancers 2021, 13, 3149. [Google Scholar] [CrossRef]
- Zhang, A.M.Y.; Wellberg, E.A.; Kopp, J.L.; Johnson, J.D. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab. J. 2021, 45, 285–311. [Google Scholar] [CrossRef]
- Wang, P.; Mak, V.C.; Cheung, L.W. Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis. 2022, 10, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, R.D.; Novosyadlyy, R.; Fierz, Y.; Alikhani, N.; Sun, H.; Yakar, S.; Leroith, D. Hyperinsulinemia enhances c-Myc mediated mammary tumor development and advances metastatic progression to the lung in a mouse model of type 2 diabetes. Breast Cancer Res. 2012, 14, R8. [Google Scholar] [CrossRef]
- Sciacca, L.; Vella, V.; Frittitta, L.; Tumminia, A.; Manzella, L.; Squatrito, S.; Belfiore, A.; Vigneri, R. Long-acting insulin analogs and cancer. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 436–443. [Google Scholar] [CrossRef]
- Núñez, M.; Medina, V.; Cricco, G.; Croci, M.; Cocca, C.; Rivera, E.; Bergoc, R.; Martín, G. Glibenclamide inhibits cell growth by inducing G0/G1 arrest in the human breast cancer cell line MDA-MB-231. BMC Pharmacol. Toxicol. 2013, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, L.; Meng, Y.; Qian, X.; Fan, Y.; Zhang, Q.; Wang, C.; Lin, F.; Chen, B.; Xu, L.; et al. Sulfonylurea receptor 1-expressing cancer cells induce cancer-associated fibroblasts to promote non-small cell lung cancer progression. Cancer Lett. 2022, 536, 215611. [Google Scholar] [CrossRef]
- Zhou, Q.; Kwan, H.Y.; Chan, H.C.; Jiang, J.L.; Tam, S.C.; Yao, X. Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int. J. Mol. Med. 2003, 11, 261–266. [Google Scholar] [CrossRef]
- Hendriks, A.M.; Schrijnders, D.; Kleefstra, N.; de Vries, E.G.E.; Bilo, H.J.G.; Jalving, M.; Landman, G.W.D. Sulfonylurea derivatives and cancer, friend or foe? Eur. J. Pharmacol. 2019, 861, 172598. [Google Scholar] [CrossRef]
- Yasukagawa, T.; Niwa, Y.; Simizu, S.; Umezawa, K. Suppression of cellular invasion by glybenclamide through inhibited secretion of platelet-derived growth factor in ovarian clear cell carcinoma ES-2 cells. FEBS Lett. 2012, 586, 1504–1509. [Google Scholar] [CrossRef] [PubMed]
- Nunes, F.B.; Alves-Filho, J.C.; Alves Bastos, C.M.; Tessele, P.M.; Caberlon, E.; Moreira, K.B.; Ferreira, T.M.; de Oliveira, J.R. Effect of the chlorpropamide and fructose-1,6-bisphosphate of soluble TNF receptor II levels. Pharmacol. Res. 2004, 49, 449–453. [Google Scholar] [CrossRef]
- Mao, G.; Zheng, S.; Li, J.; Liu, X.; Zhou, Q.; Cao, J.; Zhang, Q.; Zheng, L.; Wang, L.; Qi, C. Glipizide Combined with ANP Suppresses Breast Cancer Growth and Metastasis by Inhibiting Angiogenesis through VEGF/VEGFR2 Signaling. Anticancer Agents Med. Chem. 2022, 22, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Kretschy, N.; Teichmann, M.; Kopf, S.; Atanasov, A.G.; Saiko, P.; Vonach, C.; Viola, K.; Giessrigl, B.; Huttary, N.; Raab, I.; et al. In vitro inhibition of breast cancer spheroid-induced lymphendothelial defects resembling intravasation into the lymphatic vasculature by acetohexamide, isoxsuprine, nifedipin and proadifen. Br. J. Cancer 2013, 108, 570–578. [Google Scholar] [CrossRef]
- Atlı Şekeroğlu, Z.; Şekeroğlu, V.; Kontaş Yedier, S.; İlkun, E.; Liou, L.S. Increased DNA strand breaks and neoplastic transformation in human bladder cells treated with pioglitazone. Environ. Mol. Mutagen. 2021, 62, 143–154. [Google Scholar] [CrossRef]
- Peng, T.; Wang, G.; Cheng, S.; Xiong, Y.; Cao, R.; Qian, K.; Ju, L.; Wang, X.; Xiao, Y. The role and function of PPARγ in bladder cancer. J. Cancer 2020, 11, 3965–3975. [Google Scholar] [CrossRef]
- Yang, S.L.; Wang, J.J.; Chen, M.; Xu, L.; Li, N.; Luo, Y.L.; Bu, L.; Zhang, M.N.; Li, H.; Su, B.L. Pioglitazone Use and Risk of Bladder Cancer: An In Vitro Study. Int. J. Med. Sci. 2018, 15, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Kim, M.; Yeon, A.; Jin, P.; Kim, W.K.; You, S.; Kim, J. Pioglitazone Alters the Proteomes of Normal Bladder Epithelial Cells but Shows No Tumorigenic Effects. Int. Neurourol. J. 2020, 24, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Subbaramaiah, K.; Bhardwaj, P.; Zhou, X.K.; Wang, H.; Falcone, D.J.; Giri, D.D.; Dannenberg, A.J. Pioglitazone Inhibits Periprostatic White Adipose Tissue Inflammation in Obese Mice. Cancer Prev. Res. 2018, 11, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Lee, T.J.; Sung, E.G.; Song, I.H.; Kim, J.Y. Pioglitazone mediates apoptosis in Caki cells via downregulating c-FLIP(L) expression and reducing Bcl-2 protein stability. Oncol. Lett. 2021, 22, 743. [Google Scholar] [CrossRef]
- Jiao, X.X.; Lin, S.Y.; Lian, S.X.; Qiu, Y.R.; Li, Z.H.; Chen, Z.H.; Lu, W.Q.; Zhang, Y.; Deng, L.; Jiang, Y.; et al. The inhibition of the breast cancer by PPARγ agonist pioglitazone through JAK2/STAT3 pathway. Neoplasma 2020, 67, 834–842. [Google Scholar] [CrossRef]
- Kiran, A.V.V.V.R.; Kumari, G.K.; Krishnamurthy, P.T. Preliminary evaluation of anticancer efficacy of pioglitazone combined with celecoxib for the treatment of non-small cell lung cancer. Invest. New Drugs 2022, 40, 1–9. [Google Scholar] [CrossRef]
- Ciaramella, V.; Sasso, F.C.; Di Liello, R.; Corte, C.M.D.; Barra, G.; Viscardi, G.; Esposito, G.; Sparano, F.; Troiani, T.; Martinelli, E.; et al. Activity and molecular targets of pioglitazone via blockade of proliferation, invasiveness and bioenergetics in human NSCLC. J. Exp. Clin. Cancer Res. 2019, 38, 178. [Google Scholar] [CrossRef]
- Li, H.; Sorenson, A.L.; Poczobutt, J.; Amin, J.; Joyal, T.; Sullivan, T.; Crossno, J.T., Jr.; Weiser-Evans, M.C.; Nemenoff, R.A. Activation of PPARγ in myeloid cells promotes lung cancer progression and metastasis. PLoS ONE 2011, 6, e28133. [Google Scholar] [CrossRef]
- Li, S.; Ghoshal, S.; Sojoodi, M.; Arora, G.; Masia, R.; Erstad, D.J.; Lanuti, M.; Hoshida, Y.; Baumert, T.F.; Tanabe, K.K.; et al. Pioglitazone Reduces Hepatocellular Carcinoma Development in Two Rodent Models of Cirrhosis. J. Gastrointest. Surg. 2019, 23, 101–111. [Google Scholar] [CrossRef]
- Ninomiya, I.; Yamazaki, K.; Oyama, K.; Hayashi, H.; Tajima, H.; Kitagawa, H.; Fushida, S.; Fujimura, T.; Ohta, T. Pioglitazone inhibits the proliferation and metastasis of human pancreatic cancer cells. Oncol. Lett. 2014, 8, 2709–2714. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, M.; Wang, M.; Xu, W.; Duan, X.; Han, X.; Ren, J. Pioglitazone, a peroxisome proliferator-activated receptor γ agonist, induces cell death and inhibits the proliferation of hypoxic HepG2 cells by promoting excessive production of reactive oxygen species. Oncol. Lett. 2024, 27, 160. [Google Scholar] [CrossRef] [PubMed]
- Alamdar, N.; Farivar, S.; Baghaei, K.; Hamidieh, A.A.; Soltaninejad, H.; Aghdaei, H.A.; Zali, M.; Saltanatpour, Z. Effect of Pioglitazone and Cetuximab on Colon Cancer Stem-like Cell (CCSLCs) Properties. Curr. Stem Cell Res. Ther. 2024, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tokhanbigli, S.; Alavifard, H.; Asadzadeh Aghdaei, H.; Zali, M.R.; Baghaei, K. Combination of pioglitazone and dendritic cell to optimize efficacy of immune cell therapy in CT26 tumor models. Bioimpacts 2023, 13, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, S.; Yousefi, A.M.; Delshad, M.; Bashash, D. Synergistic effects of PI3K inhibition and pioglitazone against acute promyelocytic leukemia cells. Mol. Genet. Genomic. Med. 2023, 11, e2106. [Google Scholar] [CrossRef]
- Prost, S.; Relouzat, F.; Spentchian, M.; Ouzegdouh, Y.; Saliba, J.; Massonnet, G.; Beressi, J.P.; Verhoeyen, E.; Raggueneau, V.; Maneglier, B.; et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists. Nature 2015, 525, 380–383. [Google Scholar] [CrossRef]
- Busek, P.; Duke-Cohan, J.S.; Sedo, A. Does DPP-IV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers 2022, 14, 2072. [Google Scholar] [CrossRef]
- Yang, F.; Takagaki, Y.; Yoshitomi, Y.; Ikeda, T.; Li, J.; Kitada, M.; Kumagai, A.; Kawakita, E.; Shi, S.; Kanasaki, K.; et al. Inhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial-Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Res. 2019, 79, 735–746. [Google Scholar] [CrossRef]
- Li, R.; Zeng, X.; Yang, M.; Feng, J.; Xu, X.; Bao, L.; Ye, T.; Wang, X.; Xue, B.; Huang, Y. Antidiabetic DPP-4 Inhibitors Reprogram Tumor Microenvironment That Facilitates Murine Breast Cancer Metastasis Through Interaction With Cancer Cells via a ROS-NF-кB-NLRP3 Axis. Front. Oncol. 2021, 11, 728047. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, T.; Sun, W.; Qin, Y.; Wang, Z.; Dong, W.; Zhang, H. The DPP-IV inhibitor saxagliptin promotes the migration and invasion of papillary thyroid carcinoma cells via the NRF2/HO1 pathway. Med. Oncol. 2020, 37, 97. [Google Scholar] [CrossRef]
- Li, C.J.; Sun, B.; Fang, Q.H.; Ding, M.; Xing, Y.Z.; Chen, L.M.; Yu, D.M. Saxagliptin Induces β-Cell Proliferation through Increasing Stromal Cell-Derived Factor-1α In Vivo and In Vitro. Front. Endocrinol. 2017, 8, 326. [Google Scholar] [CrossRef]
- Kushiyama, S.; Yashiro, M.; Yamamoto, Y.; Sera, T.; Sugimoto, A.; Nishimura, S.; Togano, S.; Kuroda, K.; Okuno, T.; Miki, Y.; et al. Dipeptidyl Peptidase-4 from Cancer-associated Fibroblasts Stimulates the Proliferation of Scirrhous-type Gastric Cancer Cells. Anticancer Res. 2022, 42, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, X.; Wu, R.; Huang, Q.; Jiang, Y.; Qin, J.; Yao, F.; Jin, G.; Zhang, Y. DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis. Oncotarget 2017, 8, 8679–8692. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, J.; Lei, W.; Wang, H.; Ni, Y.; Liu, Y.; Yan, H.; Tian, Y.; Wang, Z.; Yang, Z.; et al. CXCL12-CXCR4/CXCR7 Axis in Cancer: From Mechanisms to Clinical Applications. Int. J. Biol. Sci. 2023, 19, 3341–3359. [Google Scholar] [CrossRef]
- Varela-Calviño, R.; Rodríguez-Quiroga, M.; Dias Carvalho, P.; Martins, F.; Serra-Roma, A.; Vázquez-Iglesias, L.; Páez de la Cadena, M.; Velho, S.; Cordero, O.J. The mechanism of sitagliptin inhibition of colorectal cancer cell lines’ metastatic functionalities. IUBMB Life 2021, 73, 761–773. [Google Scholar] [CrossRef]
- Hollande, C.; Boussier, J.; Ziai, J.; Nozawa, T.; Bondet, V.; Phung, W.; Lu, B.; Duffy, D.; Paradis, V.; Mallet, V.; et al. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat. Immunol. 2019, 20, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.J.; Zhao, L.H.; Zhou, X.; Zhang, H.L.; Wen, W.; Tang, L.; Zeng, M.; Wang, M.D.; Fu, G.B.; Huang, S.; et al. Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Lett. 2018, 420, 26–37. [Google Scholar] [CrossRef]
- Ng, I.I.; Zhang, J.; Tian, T.; Peng, Q.; Huang, Z.; Xiao, K.; Yao, X.; Ng, L.; Zeng, J.; Tang, H. Network-based screening identifies sitagliptin as an antitumor drug targeting dendritic cells. J. Immunother. Cancer 2024, 12, e008254. [Google Scholar] [CrossRef]
- Bjerre Knudsen, L.; Madsen, L.W.; Andersen, S.; Almholt, K.; de Boer, A.S.; Drucker, D.J.; Gotfredsen, C.; Egerod, F.L.; Hegelund, A.C.; Jacobsen, H.; et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010, 151, 1473–1486. [Google Scholar] [CrossRef]
- Van den Brink, W.; Emerenciana, A.; Bellanti, F.; Della Pasqua, O.; van der Laan, J.W. Prediction of thyroid C-cell carcinogenicity after chronic administration of GLP1-R agonists in rodents. Toxicol. Appl. Pharmacol. 2017, 320, 51–59. [Google Scholar] [CrossRef]
- Rosol, T.J. On-target effects of GLP-1 receptor agonists on thyroid C-cells in rats and mice. Toxicol. Pathol. 2013, 41, 303–309. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Wang, B.; Zhang, X.; Gu, L.; Guo, K.; Zhang, X.; Zhou, Z. GLP-1 receptor agonist liraglutide inhibits the proliferation and migration of thyroid cancer cells. Cell. Mol. Biol. 2023, 69, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Friedrich, N. Do GLP-1-based therapies increase cancer risk? Diabetes Care 2013, 36 (Suppl. S2), S245–S252. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wei, R.; Wang, L.; Tian, Q.; Tao, M.; Ke, J.; Liu, Y.; Hou, W.; Zhang, L.; Yang, J.; et al. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1431–E1441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Jiang, X.; Duan, L.; Yang, L.; Wang, W.; Ren, Z. Liraglutide suppresses the metastasis of PANC-1 co-cultured with pancreatic stellate cells through modulating intracellular calcium content. Endocr. J. 2019, 66, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Su, L.; Gong, Y.Y.; Ding, M.L.; Hong, S.B.; Yu, S.; Xiao, H.P. Downregulation of miR-139-5p contributes to the antiapoptotic effect of liraglutide on the diabetic rat pancreas and INS-1 cells by targeting IRS1. PLoS ONE 2017, 12, e0173576. [Google Scholar] [CrossRef]
- Nie, Z.J.; Zhang, Y.G.; Chang, Y.H.; Li, Q.Y.; Zhang, Y.L. Exendin-4 inhibits glioma cell migration, invasion and epithelial-to-mesenchymal transition through GLP-1R/sirt3 pathway. Biomed. Pharmacother. 2018, 106, 1364–1369. [Google Scholar] [CrossRef]
- Iwaya, C.; Nomiyama, T.; Komatsu, S.; Kawanami, T.; Tsutsumi, Y.; Hamaguchi, Y.; Horikawa, T.; Yoshinaga, Y.; Yamashita, S.; Tanaka, T.; et al. Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB Activation. Endocrinology 2017, 158, 4218–4232. [Google Scholar] [CrossRef]
- Alanteet, A.A.; Attia, H.A.; Shaheen, S.; Alfayez, M.; Alshanawani, B. Anti-Proliferative Activity of Glucagon-Like Peptide-1 Receptor Agonist on Obesity-Associated Breast Cancer: The Impact on Modulating Adipokines’ Expression in Adipocytes and Cancer Cells. Dose Response 2021, 19, 1559325821995651. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Duan, X.X.; Yuan, M.C.; Yu, J.; Hu, X.; Han, X.; Lan, L.; Liu, B.W.; Wang, Y.; Qin, J.F. Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sci. 2022, 294, 120370. [Google Scholar] [CrossRef]
- Tatsch, J.M.; Furman, D.P.; Nobre, R.M.; Wurzer, K.M.; da Silva, L.C.; Picheth, G.F.; Ramos, E.A.; Acco, A.; Klassen, G. Dulaglutide as a demethylating agent to improve the outcome of breast cancer. Epigenomics 2023, 15, 1309–1322. [Google Scholar] [CrossRef]
- Ligumsky, H.; Amir, S.; Arbel Rubinstein, T.; Guion, K.; Scherf, T.; Karasik, A.; Wolf, I.; Rubinek, T. Glucagon-like peptide-1 analogs activate AMP kinase leading to reversal of the Warburg metabolic switch in breast cancer cells. Med. Oncol. 2024, 41, 138. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.X.; Feng, Z.H.; Liu, L.Z.; Zhang, Y. Liraglutide suppresses the proliferation of endometrial cancer cells through the adenosine 5′-monophosphate (AMP)-activated protein kinase signaling pathway. Chin. Med. J. 2021, 134, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Deng, B.; Shen, X.; John, C.; Haag, J.; Sinha, N.; Lee, D.; Sun, W.; Chen, S.; Zhang, H.; et al. Tirzepatide as an innovative treatment strategy in a pre-clinical model of obesity-driven endometrial cancer. Gynecol. Oncol. 2024, 191, 116–123. [Google Scholar] [CrossRef]
- Kosowska, A.; Gallego-Colon, E.; Garczorz, W.; Kłych-Ratuszny, A.; Aghdam, M.R.F.; Woz, M.; Witek, A.; Wróblewska-Czech, A.; Cygal, A.; Wojnar, J.; et al. Exenatide modulates tumor-endothelial cell interactions in human ovarian cancer cells. Endocr. Connect. 2017, 6, 856–865. [Google Scholar] [CrossRef]
- Kojima, M.; Takahashi, H.; Kuwashiro, T.; Tanaka, K.; Mori, H.; Ozaki, I.; Kitajima, Y.; Matsuda, Y.; Ashida, K.; Eguchi, Y.; et al. Glucagon-Like Peptide-1 Receptor Agonist Prevented the Progression of Hepatocellular Carcinoma in a Mouse Model of Nonalcoholic Steatohepatitis. Int. J. Mol. Sci. 2020, 21, 5722. [Google Scholar] [CrossRef]
- Hansen, H.H.; Pors, S.; Andersen, M.W.; Vyberg, M.; Nøhr-Meldgaard, J.; Nielsen, M.H.; Oró, D.; Madsen, M.R.; Lewinska, M.; Møllerhøj, M.B.; et al. Semaglutide reduces tumor burden in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH-HCC with advanced fibrosis. Sci. Rep. 2023, 13, 23056. [Google Scholar] [CrossRef]
- Lu, X.; Xu, C.; Dong, J.; Zuo, S.; Zhang, H.; Jiang, C.; Wu, J.; Wei, J. Liraglutide activates nature killer cell-mediated antitumor responses by inhibiting IL-6/STAT3 signaling in hepatocellular carcinoma. Transl. Oncol. 2021, 14, 100872. [Google Scholar] [CrossRef] [PubMed]
- De Barra, C.; Khalil, M.; Mat, A.; O’Donnell, C.; Shaamile, F.; Brennan, K.; O’Shea, D.; Hogan, A.E. Glucagon-like peptide-1 therapy in people with obesity restores natural killer cell metabolism and effector function. Obesity 2023, 31, 1787–1797. [Google Scholar] [CrossRef]
- Tong, G.; Peng, T.; Chen, Y.; Sha, L.; Dai, H.; Xiang, Y.; Zou, Z.; He, H.; Wang, S. Effects of GLP-1 Receptor Agonists on Biological Behavior of Colorectal Cancer Cells by Regulating PI3K/AKT/mTOR Signaling Pathway. Front. Pharmacol. 2022, 13, 901559. [Google Scholar] [CrossRef]
- Stein, M.S.; Kalff, V.; Williams, S.G.; Murphy, D.G.; Colman, P.G.; Hofman, M.S. The GLP-1 receptor is expressed in vivo by human metastatic prostate cancer. Endocr. Oncol. 2024, 4, e230015. [Google Scholar] [CrossRef]
- Zhu, C.; Lai, Y.; Liu, C.; Teng, L.; Zhu, Y.; Lin, X.; Fu, X.; Lai, Q.; Liu, S.; Zhou, X.; et al. Comprehensively prognostic and immunological analyses of GLP-1 signaling-related genes in pan-cancer and validation in colorectal cancer. Front. Pharmacol. 2024, 15, 1387243. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Sun, J.; Sun, W.; Li, X.; Wang, Z.; Sun, L.; Wang, Y. Unveiling the anticancer effects of SGLT-2i: Mechanisms and therapeutic potential. Front. Pharmacol. 2024, 15, 1369352. [Google Scholar] [CrossRef] [PubMed]
- Shoda, K.; Tsuji, S.; Nakamura, S.; Egashira, Y.; Enomoto, Y.; Nakayama, N.; Shimazawa, M.; Iwama, T.; Hara, H. Canagliflozin Inhibits Glioblastoma Growth and Proliferation by Activating AMPK. Cell. Mol. Neurobiol. 2023, 43, 879–892. [Google Scholar] [CrossRef]
- Coperchini, F.; Greco, A.; Croce, L.; Pignatti, P.; Muzza, M.; Petrosino, E.; Teliti, M.; Magri, F.; Rotondi, M. Canagliflozin reduces thyroid cancer cells migration in vitro by inhibiting CXCL8 and CCL2: An additional anti-tumor effect of the drug. Biomed. Pharmacother. 2024, 170, 115974. [Google Scholar] [CrossRef]
- Alblowy, A.H.; Maan, N.; Ibrahim, A.A. Optimal control strategies for SGLT2 inhibitors as a novel anti-tumor agent and their effect on human breast cancer cells with the effect of time delay and hyperglycemia. Comput. Biol. Med. 2023, 166, 107552. [Google Scholar] [CrossRef]
- Youssef, M.E.; Yahya, G.; Popoviciu, M.S.; Cavalu, S.; Abd-Eldayem, M.A.; Saber, S. Unlocking the Full Potential of SGLT2 Inhibitors: Expanding Applications beyond Glycemic Control. Int. J. Mol. Sci. 2023, 24, 6039. [Google Scholar] [CrossRef]
- Nalla, L.V.; Khairnar, A. Empagliflozin mediated miR-128-3p upregulation promotes differentiation of hypoxic cancer stem-like cells in breast cancer. Eur. J. Pharmacol. 2023, 943, 175565. [Google Scholar] [CrossRef] [PubMed]
- Nalla, L.V.; Khairnar, A. Empagliflozin drives ferroptosis in anoikis-resistant cells by activating miR-128-3p dependent pathway and inhibiting CD98hc in breast cancer. Free Radic. Biol. Med. 2024, 220, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Nomiyama, T.; Numata, T.; Kawanami, T.; Hamaguchi, Y.; Iwaya, C.; Horikawa, T.; Fujimura-Tanaka, Y.; Hamanoue, N.; Motonaga, R.; et al. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation. Endocr. J. 2020, 67, 99–106. [Google Scholar] [CrossRef]
- Shiba, K.; Tsuchiya, K.; Komiya, C.; Miyachi, Y.; Mori, K.; Shimazu, N.; Yamaguchi, S.; Ogasawara, N.; Katoh, M.; Itoh, M.; et al. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH. Sci. Rep. 2018, 8, 2362. [Google Scholar] [CrossRef]
- Hung, M.H.; Chen, Y.L.; Chen, L.J.; Chu, P.Y.; Hsieh, F.S.; Tsai, M.H.; Shih, C.T.; Chao, T.I.; Huang, C.Y.; Chen, K.F. Canagliflozin inhibits growth of hepatocellular carcinoma via blocking glucose-influx-induced β-catenin activation. Cell Death Dis. 2019, 10, 420. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Sun, P.; Zhang, X.; Lin, G.; Xin, Q.; Niu, Y.; Chen, Y.; Xu, N.; Zhang, Y.; Xie, W. Canagliflozin Modulates Hypoxia-Induced Metastasis, Angiogenesis and Glycolysis by Decreasing HIF-1α Protein Synthesis via AKT/mTOR Pathway. Int. J. Mol. Sci. 2021, 22, 13336. [Google Scholar] [CrossRef] [PubMed]
- Biziotis, O.D.; Tsakiridis, E.E.; Ali, A.; Ahmadi, E.; Wu, J.; Wang, S.; Mekhaeil, B.; Singh, K.; Menjolian, G.; Farrell, T.; et al. Canagliflozin mediates tumor suppression alone and in combination with radiotherapy in non-small cell lung cancer (NSCLC) through inhibition of HIF-1α. Mol. Oncol. 2023, 17, 2235–2256. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Wang, X.; Ma, R.; Chen, H.; Min, T.; Ma, Y.; Xie, X.; Wang, W.; Deng, X.; Zhou, Z.; et al. Dapagliflozin suppressed gastric cancer growth via regulating OTUD5 mediated YAP1 deubiquitination. Eur. J. Pharmacol. 2024, 983, 177002. [Google Scholar] [CrossRef]
- Anastasio, C.; Donisi, I.; Del Vecchio, V.; Colloca, A.; Mele, L.; Sardu, C.; Marfella, R.; Balestrieri, M.L.; D’Onofrio, N. SGLT2 inhibitor promotes mitochondrial dysfunction and ER-phagy in colorectal cancer cells. Cell Mol. Biol. Lett. 2024, 29, 80. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, Y.; Xie, X.; He, L.; Ding, J.; Pang, S.; Shen, B.; Zhou, C. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase A. Int. J. Oncol. 2020, 57, 1223–1233. [Google Scholar] [CrossRef]
- Kuang, H.; Liao, L.; Chen, H.; Kang, Q.; Shu, X.; Wang, Y. Therapeutic Effect of Sodium Glucose Co-Transporter 2 Inhibitor Dapagliflozin on Renal Cell Carcinoma. Med. Sci. Monit. 2017, 23, 3737–3745. [Google Scholar] [CrossRef]
- Villani, L.A.; Smith, B.K.; Marcinko, K.; Ford, R.J.; Broadfield, L.A.; Green, A.E.; Houde, V.P.; Muti, P.; Tsakiridis, T.; Steinberg, G.R. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Mol. Metab. 2016, 5, 1048–1056. [Google Scholar] [CrossRef]
- Billger, M.; Kirk, J.; Chang, J.; Bédard, A.; Attalla, B.; Haile, S.; Söderberg, M. A study in a rat initiation-promotion bladder tumour model demonstrated no promoter/progressor potential of dapagliflozin. Regul. Toxicol. Pharmacol. 2019, 103, 166–173. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Z.; Jing, D.; Huang, X.; Ren, D.; Shao, Z.; Zhang, Z. SGLT2 inhibitor activates the STING/IRF3/IFN-β pathway and induces immune infiltration in osteosarcoma. Cell Death Dis. 2022, 13, 523. [Google Scholar] [CrossRef]
- Sato, A.; Sunayama, J.; Okada, M.; Watanabe, E.; Seino, S.; Shibuya, K.; Suzuki, K.; Narita, Y.; Shibui, S.; Kayama, T.; et al. Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl. Med. 2012, 1, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Sheng, H.; Liu, Q.; Yang, Q.; Zhu, S. Effect of glibenclamide on viability and acid-base equilibrium of glioblastoma cells. Chin. J. Pathophysiol. 2017, 12, 1405–1410. [Google Scholar]
- Cilibrasi, C.; Butta, V.; Riva, G.; Bentivegna, A. Pioglitazone Effect on Glioma Stem Cell Lines: Really a Promising Drug Therapy for Glioblastoma? PPAR Res. 2016, 2016, 7175067. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Kudo, U.; Hatakeyama, R.; Shoda, K.; Nakamura, S.; Shimazawa, M. Linagliptin Decreased Tumor Progression in a Glioblastoma Model. Biochem. Biophys. Res. Commun. 2024, 711, 149897. [Google Scholar] [CrossRef] [PubMed]
- Kheder, S.; Sisley, K.; Hadad, S.; Balasubramanian, S.P. Effects of prolonged exposure to low dose metformin in thyroid cancer cell lines. J. Cancer 2017, 8, 1053–1061. [Google Scholar] [CrossRef]
- Dobson, M.E.; Diallo-Krou, E.; Grachtchouk, V.; Yu, J.; Colby, L.A.; Wilkinson, J.E.; Giordano, T.J.; Koenig, R.J. Pioglitazone induces a proadipogenic antitumor response in mice with PAX8-PPARgamma fusion protein thyroid carcinoma. Endocrinology 2011, 152, 4455–4465. [Google Scholar] [CrossRef]
- Monteiro, M.; Zhang, X.; Yee, D. Insulin promotes growth in breast cancer cells through the type I IGF receptor in insulin receptor deficient cells. Exp. Cell Res. 2024, 434, 113862. [Google Scholar] [CrossRef]
- Xu, K.; Sun, G.; Li, M.; Chen, H.; Zhang, Z.; Qian, X.; Li, P.; Xu, L.; Huang, W.; Wang, X. Glibenclamide Targets Sulfonylurea Receptor 1 to Inhibit p70S6K Activity and Upregulate KLF4 Expression to Suppress Non-Small Cell Lung Carcinoma. Mol. Cancer Ther. 2019, 18, 2085–2096. [Google Scholar] [CrossRef]
- Jang, J.H.; Baerts, L.; Waumans, Y.; De Meester, I.; Yamada, Y.; Limani, P.; Gil-Bazo, I.; Weder, W.; Jungraithmayr, W. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice. Clin. Exp. Metastasis 2015, 32, 677–687. [Google Scholar] [CrossRef]
- Pu, Z.; Yang, Y.; Qin, S.; Li, X.; Cui, C.; Chen, W. The Effect of Liraglutide on Lung Cancer and Its Potential Protective Effect on High Glucose-Induced Lung Senescence and Oxidative Damage. Front. Biosci. 2023, 28, 259. [Google Scholar] [CrossRef]
- Ayoub, B.M.; Attia, Y.M.; Ahmed, M.S. Structural re-positioning, in silico molecular modelling, oxidative degradation, and biological screening of linagliptin as adenosine 3 receptor (ADORA3) modulators targeting hepatocellular carcinoma. J. Enzyme Inhib. Med. Chem. 2018, 33, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Drzewoski, J.; Świderska, E.; Strycharz, J.; Gabryanczyk, A.; Kasznicki, J.; Bogdańska, M.; Śliwińska, A. Metformin Induces Apoptosis in Human Pancreatic Cancer (PC) Cells Accompanied by Changes in the Levels of Histone Acetyltransferases (Particularly, p300/CBP-Associated Factor (PCAF) Protein Levels). Pharmaceuticals 2023, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Waldron, R.T.; Su, H.Y.; Moro, A.; Chang, H.H.; Eibl, G.; Ferreri, K.; Kandeel, F.R.; Lugea, A.; Li, L.; et al. Insulin promotes proliferation and fibrosing responses in activated pancreatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G675–G687. [Google Scholar] [CrossRef]
- Sliwinska, A.; Sliwinski, T.; Kasznicki, J.; Drzewoski, J. Effect of gliclazide on nucleotide excision repair (NER) and non-homologous DNA end joining (NHEJ) in normal and cancer cells. J. Physiol. Pharmacol. 2010, 61, 347–353. [Google Scholar]
- Xiao, Q.; Xiao, J.; Liu, J.; Liu, J.; Shu, G.; Yin, G. Metformin suppresses the growth of colorectal cancer by targeting INHBA to inhibit TGF-β/PI3K/AKT signaling transduction. Cell Death Dis. 2022, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Hamza, S.; Garanina, E.E.; Shkair, L.; Alsaadi, M.; Khaiboullina, S.F.; Tezcan, G. Implications of NLRP3 Suppression Using Glibenclamide and miR-223 against Colorectal Cancer. Pharmaceuticals 2024, 17, 299. [Google Scholar] [CrossRef]
- Shen, Z.; Xue, D.; Wang, K.; Zhang, F.; Shi, J.; Jia, B.; Yang, D.; Zhang, Q.; Zhang, S.; Jiang, H.; et al. Metformin exerts an antitumor effect by inhibiting bladder cancer cell migration and growth, and promoting apoptosis through the PI3K/AKT/mTOR pathway. BMC Urol. 2022, 22, 79. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Lin, T.; Fan, X.; Liang, Y.; Heemann, U. High dose human insulin and insulin glargine promote T24 bladder cancer cell proliferation via PI3K-independent activation of Akt. Diabetes Res. Clin. Pract. 2011, 91, 177–182. [Google Scholar] [CrossRef]
- Liang, P.I.; Yeh, B.W.; Li, W.M.; Chan, T.C.; Chang, I.W.; Huang, C.N.; Li, C.C.; Ke, H.L.; Yeh, H.C.; Wu, W.J.; et al. DPP4/CD26 overexpression in urothelial carcinoma confers an independent prognostic impact and correlates with intrinsic biological aggressiveness. Oncotarget 2017, 8, 2995–3008. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.A.M.; Firgany, A.E.L. Dysplastic urothelial changes accompany empagliflozin administration in urinary bladder of experimental diabetes. Int. J. Exp. Pathol. 2019, 100, 369–377. [Google Scholar] [CrossRef]
- Qi, C.; Bin, L.; Yang, Y.; Yang, Y.; Li, J.; Zhou, Q.; Wen, Y.; Zeng, C.; Zheng, L.; Zhang, Q.; et al. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis. Sci. Rep. 2016, 6, 27819. [Google Scholar] [CrossRef] [PubMed]
- Nomiyama, T.; Kawanami, T.; Irie, S.; Hamaguchi, Y.; Terawaki, Y.; Murase, K.; Tsutsumi, Y.; Nagaishi, R.; Tanabe, M.; Morinaga, H.; et al. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes 2014, 63, 3891–3905. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Liu, L.Z.; Dixon, D.A.; Zheng, J.Z.; Chandran, B.; Jiang, B.H. Insulin-like growth factor-I induces cyclooxygenase-2 expression via PI3K, MAPK and PKC signaling pathways in human ovarian cancer cells. Cell. Signal. 2007, 19, 1542–1553. [Google Scholar] [CrossRef]
- Al-Alem, L.; Southard, R.C.; Kilgore, M.W.; Curry, T.E. Specific thiazolidinediones inhibit ovarian cancer cell line proliferation and cause cell cycle arrest in a PPARγ independent manner. PLoS ONE 2011, 6, e16179. [Google Scholar] [CrossRef]
- Kosowska, A.; Garczorz, W.; Kłych-Ratuszny, A.; Aghdam, M.R.F.; Kimsa-Furdzik, M.; Simka-Lampa, K.; Francuz, T. Sitagliptin Modulates the Response of Ovarian Cancer Cells to Chemotherapeutic Agents. Int. J. Mol. Sci. 2020, 21, 8976. [Google Scholar] [CrossRef] [PubMed]
- Randolph, J.F., Jr.; Kipersztok, S.; Ayers, J.W.; Ansbacher, R.; Peegel, H.; Menon, K.M. The effect of insulin on aromatase activity in isolated human endometrial glands and stroma. Am. J. Obstet. Gynecol. 1987, 157, 1534–1539. [Google Scholar] [CrossRef]
- Kumari, G.K.; Kiran, A.V.V.V.R.; Krishnamurthy, P.T. Preliminary evaluation on the beneficial effects of pioglitazone in the treatment of endometrial cancer. Med. Oncol. 2021, 38, 71. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wang, P.H.; Chen, P.N.; Yang, S.F.; Hsiao, Y.H. Molecular and Cellular Mechanisms of Metformin in Cervical Cancer. Cancers 2021, 13, 2545. [Google Scholar] [CrossRef] [PubMed]
- Rossini, M.; Martini, F.; Torreggiani, E.; Fortini, F.; Aquila, G.; Sega, F.V.D.; Patergnani, S.; Pinton, P.; Maniscalco, P.; Cavallesco, G.; et al. Metformin Induces Apoptosis and Inhibits Notch1 in Malignant Pleural Mesothelioma Cells. Front. Cell Dev. Biol. 2021, 8, 534499. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, P.; Wang, T.; Zheng, Q.; Li, Y.; Leng, S.X.; Meng, X.; Wang, B.; Xie, J.; Zhang, H. Sitagliptin affects gastric cancer cells proliferation by suppressing Melanoma-associated antigen-A3 expression through Yes-associated protein inactivation. Cancer Med. 2020, 9, 3816–3828. [Google Scholar] [CrossRef]
- Alzokaky, A.A.; Al-Karmalawy, A.A.; Saleh, M.A.; Abdo, W.; Farage, A.E.; Belal, A.; Abourehab, M.A.S.; Antar, S.A. Metformin ameliorates doxorubicin-induced cardiotoxicity targeting HMGB1/TLR4/NLRP3 signaling pathway in mice. Life Sci. 2023, 316, 121390. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, S.; Pan, G.; Lin, L.; Liu, D.; Liu, Z.; Mei, S.; Zhang, L.; Hu, Z.; Chen, J.; et al. Modulatory effect of metformin on cardiotoxicity induced by doxorubicin via the MAPK and AMPK pathways. Life Sci. 2020, 249, 117498. [Google Scholar] [CrossRef] [PubMed]
- Kobashigawa, L.C.; Xu, Y.C.; Padbury, J.F.; Tseng, Y.T.; Yano, N. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: An in vitro study. PLoS ONE 2014, 9, e104888. [Google Scholar] [CrossRef] [PubMed]
- Asensio-López, M.C.; Lax, A.; Pascual-Figal, D.A.; Valdés, M.; Sánchez-Más, J. Metformin protects against doxorubicin-induced cardiotoxicity: Involvement of the adiponectin cardiac system. Free Radic. Biol. Med. 2011, 51, 1861–1871. [Google Scholar] [CrossRef]
- Zilinyi, R.; Czompa, A.; Czegledi, A.; Gajtko, A.; Pituk, D.; Lekli, I.; Tosaki, A. The Cardioprotective Effect of Metformin in Doxorubicin-Induced Cardiotoxicity: The Role of Autophagy. Molecules 2018, 23, 1184. [Google Scholar] [CrossRef] [PubMed]
- Van, J.; Hahn, Y.; Silverstein, B.; Li, C.; Cai, F.; Wei, J.; Katiki, L.; Mehta, P.; Livatova, K.; DelPozzo, J.; et al. Metformin Inhibits Autophagy, Mitophagy and Antagonizes Doxorubicin-Induced Cardiomyocyte Death. Int. J. Drug Discov. Pharm. 2023, 2, 37–51. [Google Scholar] [CrossRef]
- Arinno, A.; Maneechote, C.; Khuanjing, T.; Prathumsap, N.; Chunchai, T.; Arunsak, B.; Nawara, W.; Kerdphoo, S.; Shinlapawittayatorn, K.; Chattipakorn, S.C.; et al. Melatonin and metformin ameliorated trastuzumab-induced cardiotoxicity through the modulation of mitochondrial function and dynamics without reducing its anticancer efficacy. Biochim. Biophys. Acta Mol. Basis. Dis. 2023, 1869, 166618. [Google Scholar] [CrossRef]
- Alhowail, A.H.; Aldubayan, M.A. The Impact of Metformin on the Development of Hypothyroidism and Cardiotoxicity Induced by Cyclophosphamide, Methotrexate, and Fluorouracil in Rats. Pharmaceuticals 2023, 16, 1312. [Google Scholar] [CrossRef]
- Sun, M.L.; Chen, W.; Wang, X.H. Reliability of Metformin’s protective effects against doxorubicin-induced cardiotoxicity: A meta-analysis of animal studies. Front. Pharmacol. 2024, 15, 1435866. [Google Scholar] [CrossRef]
- Osataphan, N.; Phrommintikul, A.; Leemasawat, K.; Somwangprasert, A.; Apaijai, N.; Suksai, S.; Sirikul, W.; Gunaparn, S.; Chattipakorn, S.C.; Chattipakorn, N. Effects of metformin and donepezil on the prevention of doxorubicin-induced cardiotoxicity in breast cancer: A randomized controlled trial. Sci. Rep. 2023, 13, 12759. [Google Scholar] [CrossRef]
- Furihata, T.; Maekawa, S.; Takada, S.; Kakutani, N.; Nambu, H.; Shirakawa, R.; Yokota, T.; Kinugawa, S. Premedication with pioglitazone prevents doxorubicin-induced left ventricular dysfunction in mice. BMC Pharmacol. Toxicol. 2021, 22, 27. [Google Scholar] [CrossRef] [PubMed]
- Pakravan, G.; Foroughmand, A.M.; Peymani, M.; Ghaedi, K.; Hashemi, M.S.; Hajjari, M.; Nasr-Esfahani, M.H. Downregulation of miR-130a, antagonized doxorubicin-induced cardiotoxicity via increasing the PPARγ expression in mESCs-derived cardiac cells. Cell Death Dis. 2018, 9, 758. [Google Scholar] [CrossRef]
- Pakravan, G.; Peymani, M.; Abedpoor, N.; Safaeinejad, Z.; Yadegari, M.; Derakhshan, M.; Nasr Esfahani, M.H.; Ghaedi, K. Antiapoptotic and anti-inflammatory effects of Pparγ agonist, pioglitazone, reversed Dox-induced cardiotoxicity through mediating of miR-130a downregulation in C57BL/6 mice. J. Biochem. Mol. Toxicol. 2022, 36, e23041. [Google Scholar] [CrossRef]
- Alhowail, A.H. Pioglitazone ameliorates doxorubicin-induced hypothyroidism and cardiotoxicity in rat models. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 9388–9395. [Google Scholar] [CrossRef]
- Chandra, M.; Miriyala, S.; Panchatcharam, M. PPARγ and Its Role in Cardiovascular Diseases. PPAR Res. 2017, 2017, 6404638. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.L.; Wang, M.L.; Lv, J.J.; Wei, J.; Wan, J. Glibenclamide exacerbates adriamycin-induced cardiotoxicity by activating oxidative stress-induced endoplasmic reticulum stress in rats. Exp. Ther. Med. 2018, 15, 3425–3431. [Google Scholar] [CrossRef] [PubMed]
- El-Agamy, D.S.; Abo-Haded, H.M.; Elkablawy, M.A. Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats. Exp. Biol. Med. 2016, 241, 1577–1587. [Google Scholar] [CrossRef]
- Aykan, D.A.; Yaman, S.; Eser, N.; Özcan Metin, T.; Seyithanoğlu, M.; Aykan, A.Ç.; Kurt, A.H.; Ergün, Y. Bisoprolol and linagliptin ameliorated electrical and mechanical isometric myocardial contractions in doxorubicin-induced cardiomyopathy in rats. Pharmacol. Rep. 2020, 72, 867–876. [Google Scholar] [CrossRef]
- Abbas, N.A.T.; Kabil, S.L. Liraglutide ameliorates cardiotoxicity induced by doxorubicin in rats through the Akt/GSK-3β signaling pathway. Naunyn. Schmiedebergs Arch. Pharmacol. 2017, 390, 1145–1153. [Google Scholar] [CrossRef]
- Tonon, C.R.; Monte, M.G.; Balin, P.S.; Fujimori, A.S.S.; Ribeiro, A.P.D.; Ferreira, N.F.; Vieira, N.M.; Cabral, R.P.; Okoshi, M.P.; Okoshi, K.; et al. Liraglutide Pretreatment Does Not Improve Acute Doxorubicin-Induced Cardiotoxicity in Rats. Int. J. Mol. Sci. 2024, 25, 5833. [Google Scholar] [CrossRef]
- HamaSalih, R.M. Effects of Semaglutide in Doxorubicin-Induced Cardiac Toxicity in Wistar Albino Rats. Cancer Manag. Res. 2024, 16, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, X.; Ruan, B.; Yang, H.; Yu, Y. Tirzepatide protects against doxorubicin-induced cardiotoxicity by inhibiting oxidative stress and inflammation via PI3K/Akt signaling. Peptides 2024, 178, 171245. [Google Scholar] [CrossRef] [PubMed]
- Dabour, M.S.; George, M.Y.; Daniel, M.R.; Blaes, A.H.; Zordoky, B.N. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC Cardio Oncol. 2024, 6, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Vafa, R.G.; Sabahizadeh, A.; Mofarrah, R. Guarding the heart: How SGLT-2 inhibitors protect against chemotherapy-induced cardiotoxicity: SGLT-2 inhibitors and chemotherapy-induced cardiotoxicity. Curr. Probl. Cardiol. 2024, 49, 102350. [Google Scholar] [CrossRef]
- Hsieh, P.L.; Chu, P.M.; Cheng, H.C.; Huang, Y.T.; Chou, W.C.; Tsai, K.L.; Chan, S.H. Dapagliflozin Mitigates Doxorubicin-Caused Myocardium Damage by Regulating AKT-Mediated Oxidative Stress, Cardiac Remodeling, and Inflammation. Int. J. Mol. Sci. 2022, 23, 10146. [Google Scholar] [CrossRef]
- Ulusan, S.; Gülle, K.; Peynirci, A.; Sevimli, M.; Karaibrahimoglu, A.; Kuyumcu, M.S. Dapagliflozin May Protect Against Doxorubicin-Induced Cardiotoxicity. Anatol. J. Cardiol. 2023, 27, 339–347. [Google Scholar] [CrossRef]
- Sabatino, J.; De Rosa, S.; Tammè, L.; Iaconetti, C.; Sorrentino, S.; Polimeni, A.; Mignogna, C.; Amorosi, A.; Spaccarotella, C.; Yasuda, M.; et al. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc. Diabetol. 2020, 19, 66. [Google Scholar] [CrossRef]
- Chang, H.Y.; Hsu, H.C.; Fang, Y.H.; Liu, P.Y.; Liu, Y.W. Empagliflozin attenuates doxorubicin-induced cardiotoxicity by inhibiting the JNK signaling pathway. Biomed. Pharmacother. 2024, 176, 116759. [Google Scholar] [CrossRef]
- Ali, F.E.M.; Hassanein, E.H.M.; Abd El-Ghafar, O.A.M.; Rashwan, E.K.; Saleh, F.M.; Atwa, A.M. Exploring the cardioprotective effects of canagliflozin against cisplatin-induced cardiotoxicity: Role of iNOS/NF-κB, Nrf2, and Bax/cytochrome C/Bcl-2 signals. J. Biochem. Mol. Toxicol. 2023, 37, e23309. [Google Scholar] [CrossRef]
- Dabour, M.S.; Abdelgawad, I.Y.; Grant, M.K.O.; El-Sawaf, E.S.; Zordoky, B.N. Canagliflozin mitigates carfilzomib-induced endothelial apoptosis via an AMPK-dependent pathway. Biomed. Pharmacother. 2023, 164, 114907. [Google Scholar] [CrossRef]
- Chen, M. Empagliflozin attenuates doxorubicin-induced cardiotoxicity by activating AMPK/SIRT-1/PGC-1α-mediated mitochondrial biogenesis. Toxicol. Res. 2023, 12, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale, M.L.; et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol. 2021, 20, 150. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.M.; Cho, S.; Jang, J.Y.; Kim, H.; Chun, S.; Choi, M.; Park, S.; Ko, Y.G. Cardioprotective Potential of an SGLT2 Inhibitor Against Doxorubicin-Induced Heart Failure. Korean Circ. J. 2019, 49, 1183–1195. [Google Scholar] [CrossRef]
- Gongora, C.A.; Drobni, Z.D.; Quinaglia Araujo Costa Silva, T.; Zafar, A.; Gong, J.; Zlotoff, D.A.; Gilman, H.K.; Hartmann, S.E.; Sama, S.; Nikolaidou, S.; et al. Sodium-Glucose Co-Transporter-2 Inhibitors and Cardiac Outcomes Among Patients Treated With Anthracyclines. JACC Heart Fail. 2022, 10, 559–567. [Google Scholar] [CrossRef]
- Liu, C.H.; Ho, Y.C.; Lee, W.C.; Huang, C.Y.; Lee, Y.K.; Hsieh, C.B.; Huang, N.C.; Wu, C.C.; Nguyen, N.U.N.; Hsu, C.C.; et al. Sodium-Glucose Co-Transporter-2 Inhibitor Empagliflozin Attenuates Sorafenib-Induced Myocardial Inflammation and Toxicity. Environ. Toxicol. 2024, 39, 4844–4858. [Google Scholar] [CrossRef]
- Belger, C.; Abrahams, C.; Imamdin, A.; Lecour, S. Doxorubicin-induced cardiotoxicity and risk factors. Int. J. Cardiol. Heart Vasc. 2023, 50, 101332. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gui, Y.; Ren, J.; Liu, X.; Feng, Y.; Zeng, Z.; He, W.; Yang, J.; Dai, C. Metformin Protects Against Cisplatin-Induced Tubular Cell Apoptosis and Acute Kidney Injury via AMPKα-regulated Autophagy Induction. Sci. Rep. 2016, 6, 23975. [Google Scholar] [CrossRef]
- Taghizadeh, F.; Hosseinimehr, S.J.; Zargari, M.; Karimpour Malekshah, A.; Talebpour Amiri, F.B. Gliclazide attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and caspase-3 activity. IUBMB Life 2020, 72, 2024–2033. [Google Scholar] [CrossRef]
- Mahmoud, M.F.; El Shazly, S.M. Pioglitazone protects against cisplatin induced nephrotoxicity in rats and potentiates its anticancer activity against human renal adenocarcinoma cell lines. Food Chem. Toxicol. 2013, 51, 114–122. [Google Scholar] [CrossRef]
- Salama, R.M.; Nasr, M.M.; Abdelhakeem, J.I.; Roshdy, O.K.; ElGamal, M.A. Alogliptin attenuates cyclophosphamide-induced nephrotoxicity: A novel therapeutic approach through modulating MAP3K/JNK/SMAD3 signaling cascade. Drug Chem. Toxicol. 2022, 45, 1254–1263. [Google Scholar] [CrossRef]
- Jo, C.H.; Kim, S.; Park, J.S.; Kim, G.H. Anti-Inflammatory Action of Sitagliptin and Linagliptin in Doxorubicin Nephropathy. Kidney Blood Press. Res. 2018, 43, 987–999. [Google Scholar] [CrossRef] [PubMed]
- El-Gohary, R.M.; Ghalwash, A.A.; Awad, M.M.; El-Shaer, R.A.A.; Ibrahim, S.; Eltantawy, A.F.; Elmansy, A.; Okasha, A.H. Novel insights into the augmented effect of curcumin and liraglutide in ameliorating cisplatin-induced nephrotoxicity in rats: Effects on oxidative stress, inflammation, apoptosis and pyroptosis via GSK-3β. Arch. Biochem. Biophys. 2023, 749, 109801. [Google Scholar] [CrossRef] [PubMed]
- Farrokh-Eslamlou, N.; Momtaz, S.; Niknejad, A.; Hosseini, Y.; Mahdaviani, P.; Ghasemnejad-Berenji, M.; Abdolghaffari, A.H. Empagliflozin protective effects against cisplatin-induced acute nephrotoxicity by interfering with oxidative stress and inflammation in Wistar rats. Naunyn. Schmiedebergs. Arch. Pharmacol. 2024, 397, 7061–7070. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.T.; Wu, C.C.; Liao, I.C.; Lin, Y.W.; Chen, Y.C.; Ho, C.H.; Lee, W.C.; Lin, Y.C.; Chen, Z.C.; Shih, J.Y.; et al. Dapagliflozin protects against doxorubicin-induced nephrotoxicity associated with nitric oxide pathway-A translational study. Free Radic. Biol. Med. 2023, 208, 103–111. [Google Scholar] [CrossRef]
- Chen, M.; Yi, Y.; Chen, B.; Zhang, H.; Dong, M.; Yuan, L.; Zhou, H.; Jiang, H.; Ma, Z. Metformin inhibits OCTN1- and OCTN2-mediated hepatic accumulation of doxorubicin and alleviates its hepatotoxicity in mice. Toxicology 2024, 503, 153757. [Google Scholar] [CrossRef]
- Taghizadeh, F.; Hosseinimehr, S.J.; Zargari, M.; Karimpour Malekshah, A.; Mirzaei, M.; Talebpour Amiri, F. Alleviation of cisplatin-induced hepatotoxicity by gliclazide: Involvement of oxidative stress and caspase-3 activity. Pharmacol. Res. Perspect. 2021, 9, e00788. [Google Scholar] [CrossRef]
- Kamel, G.A.M.; Elariny, H.A. Pioglitazone attenuates tamoxifen-induced liver damage in rats via modulating Keap1/Nrf2/HO-1 and SIRT1/Notch1 signaling pathways: In-vivo investigations, and molecular docking analysis. Mol. Biol. Rep. 2023, 50, 10219–10233. [Google Scholar] [CrossRef]
- Satyam, S.M.; Bairy, L.K.; Rehman, A.; Farook, M.; Khan, S.; Nair, A.A.; Binu, N.N.; Yehya, M.; Khan, M.M. Dapagliflozin: A Promising Strategy to Combat Cisplatin-Induced Hepatotoxicity in Wistar Rats. Biology 2024, 13, 672. [Google Scholar] [CrossRef]
- Du, P.; Liu, T.; Luo, P.; Li, H.; Tang, W.; Zong, S.; Xiao, H. SIRT3/GLUT4 signaling activation by metformin protect against cisplatin-induced ototoxicity in vitro. Arch. Toxicol. 2023, 97, 1147–1162. [Google Scholar] [CrossRef]
- Shigematsu, N.; Kawashiri, T.; Kobayashi, D.; Shimizu, S.; Mine, K.; Hiromoto, S.; Uchida, M.; Egashira, N.; Shimazoe, T. Neuroprotective effect of alogliptin on oxaliplatin-induced peripheral neuropathy in vivo and in vitro. Sci. Rep. 2020, 10, 6734. [Google Scholar] [CrossRef]
- Khasabova, I.A.; Khasabov, S.G.; Olson, J.K.; Uhelski, M.L.; Kim, A.H.; Albino-Ramírez, A.M.; Wagner, C.L.; Seybold, V.S.; Simone, D.A. Pioglitazone, a PPARγ agonist, reduces cisplatin-evoked neuropathic pain by protecting against oxidative stress. Pain 2019, 160, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Hussein, S.; Kamel, G.A.M. Pioglitazone ameliorates cisplatin-induced testicular toxicity by attenuating oxidative stress and inflammation via TLR4/MyD88/NF-κB signaling pathway. J. Trace. Elem. Med. Biol. 2023, 80, 127287. [Google Scholar] [CrossRef] [PubMed]
- Alafifi, S.A.; Wahdan, S.A.; Elhemiely, A.A.; Elsherbiny, D.A.; Azab, S.S. Modulatory effect of liraglutide on doxorubicin-induced testicular toxicity and behavioral abnormalities in rats: Role of testicular-brain axis. Naunyn. Schmiedebergs. Arch. Pharmacol. 2023, 396, 2987–3005. [Google Scholar] [CrossRef]
- Cheki, M.; Ghasemi, M.S.; Rezaei Rashnoudi, A.; Erfani Majd, N. Metformin attenuates cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells. Drug Chem. Toxicol. 2021, 44, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Serageldin, M.A.; Kassem, A.B.; El-Kerm, Y.; Helmy, M.W.; El-Mas, M.M.; El-Bassiouny, N.A. The Effect of Metformin on Chemotherapy-Induced Toxicities in Non-diabetic Breast Cancer Patients: A Randomised Controlled Study. Drug Saf. 2023, 46, 587–599. [Google Scholar] [CrossRef]
- Bakry, H.M.; Mansour, N.O.; ElKhodary, T.R.; Soliman, M.M. Efficacy of metformin in prevention of paclitaxel-induced peripheral neuropathy in breast cancer patients: A randomized controlled trial. Front. Pharmacol. 2023, 14, 1181312. [Google Scholar] [CrossRef]
- Iwakura, T.; Fukasawa, H.; Kitamura, A.; Ishibuchi, K.; Yasuda, H.; Furuya, R. Effect of dipeptidyl peptidase-4 inhibitors on cisplatin-induced acute nephrotoxicity in cancer patients with diabetes mellitus: A retrospective study. PLoS ONE 2020, 15, e0229377. [Google Scholar] [CrossRef]
- Galal, M.A.; Al-Rimawi, M.; Hajeer, A.; Dahman, H.; Alouch, S.; Aljada, A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int. J. Mol. Sci. 2024, 25, 4083. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yang, K.; Ren, Z.; Yin, D.; Zhou, Y. Metformin as anticancer agent and adjuvant in cancer combination therapy: Current progress and future prospect. Transl. Oncol. 2024, 44, 101945. [Google Scholar] [CrossRef]
- Jalali, F.; Fakhari, F.; Sepehr, A.; Zafari, J.; Sarajar, B.O.; Sarihi, P.; Jafarzadeh, E. Synergistic anticancer effects of doxorubicin and metformin combination therapy: A systematic review. Transl. Oncol. 2024, 45, 101946. [Google Scholar] [CrossRef]
- Wen, K.C.; Sung, P.L.; Wu, A.T.H.; Chou, P.C.; Lin, J.H.; Huang, C.F.; Yeung, S.J.; Lee, M.H. Neoadjuvant metformin added to conventional chemotherapy synergizes anti-proliferative effects in ovarian cancer. J. Ovarian Res. 2020, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhao, N.; Li, D.; Zou, G.; Chen, Y. Metformin improves the sensitivity of ovarian cancer cells to chemotherapeutic agents. Oncol. Lett. 2019, 18, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- El-Khayat, S.M.; Abouegylah, M.; Abdallah, D.; Geweil, A.G.; Elenbaby, A.M.; Zahra, O.S. The effect of metformin when combined with neoadjuvant chemotherapy in breast cancer patients. Med. Oncol. 2021, 39, 1. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, S.C.; Ku, J.L. Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget 2017, 8, 56546–56557. [Google Scholar] [CrossRef]
- Yip, K.L.; Tsai, T.N.; Yang, I.P.; Miao, Z.F.; Chen, Y.C.; Li, C.C.; Su, W.C.; Chang, T.K.; Huang, C.W.; Tsai, H.L.; et al. Metformin Enhancement of Therapeutic Effects of 5-Fluorouracil and Oxaliplatin in Colon Cancer Cells and Nude Mice. Biomedicines 2022, 10, 955. [Google Scholar] [CrossRef]
- Kordes, S.; Pollak, M.N.; Zwinderman, A.H.; Mathôt, R.A.; Weterman, M.J.; Beeker, A.; Punt, C.J.; Richel, D.J.; Wilmink, J.W. Metformin in patients with advanced pancreatic cancer: A double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 2015, 16, 839–847. [Google Scholar] [CrossRef]
- Yuan, F.; Cheng, C.; Xiao, F.; Liu, H.; Cao, S.; Zhou, G. Inhibition of mTORC1/P70S6K pathway by Metformin synergistically sensitizes Acute Myeloid Leukemia to Ara-C. Life Sci. 2020, 243, 117276. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.R.; Gu, J.J.; Zhang, Q.; Torka, P.; Sundaram, S.; Mavis, C.; Hernandez-Ilizaliturri, F.J. Metformin sensitizes therapeutic agents and improves outcome in pre-clinical and clinical diffuse large B-cell lymphoma. Cancer Metab. 2020, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, Q.H.; Alkharashi, L.A.; Alajami, H.; Alkharashi, I.; Alkharashi, L.; Alhinti, S.N. Pioglitazone enhances cisplatin’s impact on triple-negative breast cancer: Role of PPARγ in cell apoptosis. Saudi Pharm. J. 2024, 32, 102059. [Google Scholar] [CrossRef]
- Enz, N.; Vliegen, G.; De Meester, I.; Jungraithmayr, W. CD26/DPP4—A potential biomarker and target for cancer therapy. Pharmacol. Ther. 2019, 198, 135–159. [Google Scholar] [CrossRef]
- Klemann, C.; Wagner, L.; Stephan, M.; von Hörsten, S. Cut to the chase: A review of CD26/dipeptidyl peptidase-4′s (DPP4) entanglement in the immune system. Clin. Exp. Immunol. 2016, 185, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kawakita, E.; Koya, D.; Kanasaki, K. CD26/DPP-4: Type 2 Diabetes Drug Target with Potential Influence on Cancer Biology. Cancers 2021, 13, 2191. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, J.; Li, X.; Tian, R.; Shang, K.; Dong, X.; Cao, B. Angiogenesis is promoted by exosomal DPP4 derived from 5-fluorouracil-resistant colon cancer cells. Cancer Lett. 2021, 497, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Wenjing, H.; Shao, Y.; Yu, Y.; Huang, W.; Feng, G.; Li, J. Exendin-4 enhances the sensitivity of prostate cancer to enzalutamide by targeting Akt activation. Prostate 2020, 80, 367–375. [Google Scholar] [CrossRef]
- Fujiyoshi, S.; Honda, S.; Ara, M.; Kondo, T.; Kobayashi, N.; Taketomi, A. SGLT2 is upregulated to acquire cisplatin resistance and SGLT2 inhibition reduces cisplatin resistance in hepatoblastoma. J. Hepatobiliary Pancreat. Sci. 2024, 31, 223–233. [Google Scholar] [CrossRef]
- Zeng, Y.; Jiang, H.; Zhang, X.; Xu, J.; Wu, X.; Xu, Q.; Cai, W.; Ying, H.; Zhou, R.; Ding, Y.; et al. Canagliflozin reduces chemoresistance in hepatocellular carcinoma through PKM2-c-Myc complex-mediated glutamine starvation. Free Radic. Biol. Med. 2023, 208, 571–586. [Google Scholar] [CrossRef]
- Huang, H.; Kung, F.L.; Huang, Y.W.; Hsu, C.C.; Guh, J.H.; Hsu, L.C. Sensitization of cancer cells to paclitaxel-induced apoptosis by canagliflozin. Biochem. Pharmacol. 2024, 223, 116140. [Google Scholar] [CrossRef]
- Karim, S.; Alghanmi, A.N.; Jamal, M.; Alkreathy, H.; Jamal, A.; Alkhatabi, H.A.; Bazuhair, M.; Ahmad, A. A comparative in vitro study on the effect of SGLT2 inhibitors on chemosensitivity to doxorubicin in MCF-7 breast cancer cells. Oncol. Res. 2024, 32, 817–830. [Google Scholar] [CrossRef]
- Okada, J.; Matsumoto, S.; Kaira, K.; Saito, T.; Yamada, E.; Yokoo, H.; Katoh, R.; Kusano, M.; Okada, S.; Yamada, M. Sodium Glucose Cotransporter 2 Inhibition Combined With Cetuximab Significantly Reduced Tumor Size and Carcinoembryonic Antigen Level in Colon Cancer Metastatic to Liver. Clin. Color. Cancer 2018, 17, e45–e48. [Google Scholar] [CrossRef]
- Abdelmoneim, M.; Aboalela, M.A.; Naoe, Y.; Matsumura, S.; Eissa, I.R.; Bustos-Villalobos, I.; Sibal, P.A.; Takido, Y.; Kodera, Y.; Kasuya, H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. Int. J. Mol. Sci. 2023, 24, 13353. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.; Luo, J.; Liu, M.; Luo, Z. Pleiotropic Effects of Metformin on the Antitumor Efficiency of Immune Checkpoint Inhibitors. Front. Immunol. 2021, 11, 586760. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.H.; Yang, W.H.; Xia, W.; Wei, Y.; Chan, L.C.; Lim, S.O.; Li, C.W.; Kim, T.; Chang, S.S.; Lee, H.H.; et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol. Cell 2018, 71, 606–620.e7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Zhang, Q.S.; Li, Z.Q.; Zhou, J.W.; Du, J. Metformin attenuates PD-L1 expression through activating Hippo signaling pathway in colorectal cancer cells. Am. J. Transl. Res. 2019, 11, 6965–6976. [Google Scholar] [PubMed]
- Spyrou, N.; Vallianou, N.; Kadillari, J.; Dalamaga, M. The interplay of obesity, gut microbiome and diet in the immune check point inhibitors therapy era. Semin. Cancer Biol. 2021, 73, 356–376. [Google Scholar] [CrossRef]
- Sun, L.; Xie, C.; Wang, G.; Wu, Y.; Wu, Q.; Wang, X.; Liu, J.; Deng, Y.; Xia, J.; Chen, B.; et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 2018, 24, 1919–1929. [Google Scholar] [CrossRef]
- Yang, W.; Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell. Mol. Immunol. 2021, 18, 866–877. [Google Scholar] [CrossRef]
- Chiang, C.H.; Chen, Y.J.; Chiang, C.H.; Chen, C.Y.; Chang, Y.C.; Wang, S.S.; See, X.Y.; Horng, C.S.; Peng, C.Y.; Hsia, Y.P.; et al. Effect of metformin on outcomes of patients treated with immune checkpoint inhibitors: A retrospective cohort study. Cancer Immunol. Immunother. 2023, 72, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, J.; Guo, H.; Wu, W.; Yang, J.; Mao, J.; Fan, W.; Qiao, H.; Wang, Y.; Yan, X.; et al. Prognostic impact of metformin in solid cancer patients receiving immune checkpoint inhibitors: Novel evidences from a multicenter retrospective study. Front. Pharmacol. 2024, 15, 1419498. [Google Scholar] [CrossRef]
- Jia, X.; Qian, J.; Chen, H.; Liu, Q.; Hussain, S.; Jin, J.; Shi, J.; Hou, Y. PPARγ agonist pioglitazone enhances colorectal cancer immunotherapy by inducing PD-L1 autophagic degradation. Eur. J. Pharmacol. 2023, 950, 175749. [Google Scholar] [CrossRef]
- Gao, R.; Liu, Z.; Meng, M.; Song, X.; He, J. Neurogenesis-Associated Protein, a Potential Prognostic Biomarker in Anti-PD-1 Based Kidney Renal Clear Cell Carcinoma Patient Therapeutics. Pharmaceuticals 2024, 17, 451. [Google Scholar] [CrossRef]
- Zuo, B.; Li, T.; Liu, X.; Wang, S.; Cheng, J.; Liu, X.; Cui, W.; Shi, H.; Ling, C. Dipeptidyl peptidase 4 inhibitor reduces tumor-associated macrophages and enhances anti-PD-L1-mediated tumor suppression in non-small cell lung cancer. Clin. Transl. Oncol. 2023, 25, 3188–3202. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.T.; Liu, L.; Cheng, M.Z.; Gao, Y.; Zhou, W.J. The Effects of 6 Common Antidiabetic Drugs on Anti-PD1 Immune Checkpoint Inhibitor in Tumor Treatment. J. Immunol. Res. 2022, 2022, 2651790. [Google Scholar] [CrossRef]
- Chen, D.; Liang, H.; Huang, L.; Zhou, H.; Wang, Z. Liraglutide enhances the effect of checkpoint blockade in lung and liver cancers through the inhibition of neutrophil extracellular traps. FEBS Open Bio 2024, 14, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- De Meo, M.L.; Spicer, J.D. The role of neutrophil extracellular traps in cancer progression and metastasis. Semin. Immunol. 2021, 57, 101595. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.W.; Venkatesh, N.; Msaouel, P.; McQuade, J.L. The Influence of Obesity on Outcomes with Immune Checkpoint Blockade: Clinical Evidence and Potential Biological Mechanisms. Cells 2023, 12, 2551. [Google Scholar] [CrossRef]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef]
- Aurilio, G.; Piva, F.; Santoni, M.; Cimadamore, A.; Sorgentoni, G.; Lopez-Beltran, A.; Cheng, L.; Battelli, N.; Nolè, F.; Montironi, R. The Role of Obesity in Renal Cell Carcinoma Patients: Clinical-Pathological Implications. Int. J. Mol. Sci. 2019, 20, 5683. [Google Scholar] [CrossRef]
- Cortellini, A.; Bersanelli, M.; Buti, S.; Cannita, K.; Santini, D.; Perrone, F.; Giusti, R.; Tiseo, M.; Michiara, M.; Di Marino, P.; et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: When overweight becomes favorable. J. Immunother. Cancer 2019, 7, 57. [Google Scholar] [CrossRef]
- Jenkins, B.J.; Blagih, J.; Ponce-Garcia, F.M.; Canavan, M.; Gudgeon, N.; Eastham, S.; Hill, D.; Hanlon, M.M.; Ma, E.H.; Bishop, E.L.; et al. Canagliflozin impairs T cell effector function via metabolic suppression in autoimmunity. Cell Metab. 2023, 35, 1132–1146.e9. [Google Scholar] [CrossRef]
- Ding, L.; Chen, X.; Zhang, W.; Dai, X.; Guo, H.; Pan, X.; Xu, Y.; Feng, J.; Yuan, M.; Gao, X.; et al. Canagliflozin primes antitumor immunity by triggering PD-L1 degradation in endocytic recycling. J. Clin. Investig. 2023, 133, e154754. [Google Scholar] [CrossRef]
- Maurea, N.; Quagliariello, V.; Bonelli, A.; Paccone, A.; Conforti, G.; Caronna, A.; Buccolo, S.; Iovine, M.; Cerrone, F.; Botti, G. TheSGLT-2 inhibitor dapagliflozin enhanced the anticancer activities and exerts cardioprotective effects during exposure to ipilimumab through NLRP3 inflammasome and pro-fibrotic cytokines. Eur. Heart J. 2021, 42 (Suppl. S1), ehab724. [Google Scholar] [CrossRef]
- Quagliariello, V.; De Laurentiis, M.; Cocco, S.; Rea, G.; Bonelli, A.; Caronna, A.; Lombari, M.C.; Conforti, G.; Berretta, M.; Botti, G.; et al. NLRP3 as Putative Marker of Ipilimumab-Induced Cardiotoxicity in the Presence of Hyperglycemia in Estrogen-Responsive and Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2020, 21, 7802. [Google Scholar] [CrossRef] [PubMed]
- Perelman, M.G.; Brzezinski, R.Y.; Waissengrin, B.; Leshem, Y.; Bainhoren, O.; Rubinstein, T.A.; Perelman, M.; Rozenbaum, Z.; Havakuk, O.; Topilsky, Y.; et al. Sodium-glucose co-transporter-2 inhibitors in patients treated with immune checkpoint inhibitors. Cardiooncology 2024, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Corleto, K.A.; Strandmo, J.L.; Giles, E.D. Metformin and Breast Cancer: Current Findings and Future Perspectives from Preclinical and Clinical Studies. Pharmaceuticals 2024, 17, 396. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Jeong, S.M.; Shin, D.W.; Cho, M.; Cho, J.H.; Kim, J. The Associations of Aspirin, Statins, and Metformin With Lung Cancer Risk and Related Mortality: A Time-Dependent Analysis of Population-Based Nationally Representative Data. J. Thorac. Oncol. 2021, 16, 76–88. [Google Scholar] [CrossRef]
- Tseng, C.H. Metformin and Risk of Malignant Brain Tumors in Patients with Type 2 Diabetes Mellitus. Biomolecules 2021, 11, 1226. [Google Scholar] [CrossRef]
- Tarhini, Z.; Manceur, K.; Magne, J.; Mathonnet, M.; Jost, J.; Christou, N. The effect of metformin on the survival of colorectal cancer patients with type 2 diabetes mellitus. Sci. Rep. 2022, 12, 12374. [Google Scholar] [CrossRef]
- Kim, J.; Bae, Y.J.; Kang, H.T. Metformin Use May Increase Risk of Pancreatic Cancer in Diabetic Women: An Analysis of the Korean National Health Insurance Service-National Health Screening Cohort Database. Korean J. Fam. Med. 2022, 43, 327–333. [Google Scholar] [CrossRef]
- Tseng, C.H. Use of metformin and risk of kidney cancer in patients with type 2 diabetes. Eur. J. Cancer 2016, 52, 19–25. [Google Scholar] [CrossRef]
- Currie, C.J.; Poole, C.D.; Gale, E.A. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 2009, 52, 1766–1777. [Google Scholar] [CrossRef]
- Goossens, M.E.; Buntinx, F.; Zeegers, M.P.; Driessen, J.H.; De Bruin, M.L.; De Vries, F. Influence of metformin intake on the risk of bladder cancer in type 2 diabetes patients. Br. J. Clin. Pharmacol. 2015, 80, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- El-Arabey, A.A. New insight for metformin against bladder cancer. Genes Environ. 2017, 39, 13. [Google Scholar] [CrossRef] [PubMed]
- Urpilainen, E.; Puistola, U.; Boussios, S.; Karihtala, P. Metformin and ovarian cancer: The evidence. Ann. Transl. Med. 2020, 8, 1711. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Berchuck, A.; Chase, A.; Grout, B.; Deurloo, C.M.; Pearce, L.C.; Pike, M.C.; Richardson, J.; Terry, K.L.; Webb, P.M.; et al. Metformin use and survival in people with ovarian cancer: A population-based cohort study from British Columbia, Canada. Neoplasia 2024, 56, 101026. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.Y.; Martinez-Outschoorn, U.E.; Schilder, R.J.; Kim, C.H.; Richard, S.D.; Rosenblum, N.G.; Johnson, J.M. Metformin as a Therapeutic Target in Endometrial Cancers. Front. Oncol. 2018, 8, 341. [Google Scholar] [CrossRef]
- O’Connor, L.; Bailey-Whyte, M.; Bhattacharya, M.; Butera, G.; Hardell, K.N.L.; Seidenberg, A.B.; Castle, P.E.; Loomans-Kropp, H.A. Association of metformin use and cancer incidence: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2024, 116, 518–529. [Google Scholar] [CrossRef]
- Wang, M.; Noghabaei, G.; Raeisi, T.; Li, D.; Alizadeh, H.; Alizadeh, M. Metformin and risk of hematological cancers in patients with diabetes: A systematic review and meta-analysis. Ann. Saudi Med. 2024, 44, 126–134. [Google Scholar] [CrossRef]
- Mesquita, L.A.; Spiazzi, B.F.; Piccoli, G.F.; Nogara, D.A.; da Natividade, G.R.; Garbin, H.I.; Wayerbacher, L.F.; Wiercinski, V.M.; Baggio, V.A.; Zingano, C.P.; et al. Does metformin reduce the risk of cancer in obesity and diabetes? A systematic review and meta-analysis. Diabetes Obes. Metab. 2024, 26, 1929–1940. [Google Scholar] [CrossRef]
- Xie, H.; Li, M.; Zheng, Y. Associations of metformin therapy treatment with endometrial cancer risk and prognosis: A systematic review and meta-analysis. Gynecol. Oncol. 2024, 182, 15–23. [Google Scholar] [CrossRef]
- Vicentini, M.; Ballotari, P.; Venturelli, F.; Ottone, M.; Manicardi, V.; Gallo, M.; Greci, M.; Pinotti, M.; Pezzarossi, A.; Giorgi Rossi, P. Impact of Insulin Therapies on Cancer Incidence in Type 1 and Type 2 Diabetes: A Population-Based Cohort Study in Reggio Emilia, Italy. Cancers 2022, 14, 2719. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, J.W.; Wu, L.C.; Lai, M.S.; Chuang, L.M. Oral insulin secretagogues, insulin, and cancer risk in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2012, 97, E1170–E1175. [Google Scholar] [CrossRef] [PubMed]
- Bowker, S.L.; Majumdar, S.R.; Veugelers, P.; Johnson, J.A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 2006, 29, 254–258. [Google Scholar] [CrossRef]
- Chen, Y.; Mushashi, F.; Son, S.; Bhatti, P.; Dummer, T.; Murphy, R.A. Diabetes medications and cancer risk associations: A systematic review and meta-analysis of evidence over the past 10 years. Sci. Rep. 2023, 13, 11844. [Google Scholar] [CrossRef] [PubMed]
- Cozma, L.S.; Luzio, S.D.; Dunseath, G.J.; Langendorg, K.W.; Pieber, T.; Owens, D.R. Comparison of the effects of three insulinotropic drugs on plasma insulin levels after a standard meal. Diabetes Care 2002, 25, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Tuccori, M.; Filion, K.B.; Yin, H.; Yu, O.H.; Platt, R.W.; Azoulay, L. Pioglitazone use and risk of bladder cancer: Population based cohort study. BMJ 2016, 352, i1541. [Google Scholar] [CrossRef]
- Mehtälä, J.; Khanfir, H.; Bennett, D.; Ye, Y.; Korhonen, P.; Hoti, F. Pioglitazone use and risk of bladder cancer: A systematic literature review and meta-analysis of observational studies. Diabetol. Int. 2018, 10, 24–36. [Google Scholar] [CrossRef]
- Tang, H.; Shi, W.; Fu, S.; Wang, T.; Zhai, S.; Song, Y.; Han, J. Pioglitazone and bladder cancer risk: A systematic review and meta-analysis. Cancer Med. 2018, 7, 1070–1080. [Google Scholar] [CrossRef]
- Dormandy, J.; Bhattacharya, M.; van Troostenburg de Bruyn, A.R. PROactive investigators. Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes: An overview of data from PROactive. Drug Saf. 2009, 32, 187–202. [Google Scholar] [CrossRef]
- Colmers, I.N.; Bowker, S.L.; Majumdar, S.R.; Johnson, J.A. Use of thiazolidinediones and the risk of bladder cancer among people with type 2 diabetes: A meta-analysis. CMAJ 2012, 184, 675–683. [Google Scholar] [CrossRef]
- Filipova, E.; Uzunova, K.; Kalinov, K.; Vekov, T. Pioglitazone and the Risk of Bladder Cancer: A Meta-Analysis. Diabetes Ther. 2017, 8, 705–726. [Google Scholar] [CrossRef]
- Malhotra, B.; Hiteshi, P.; Khalkho, P.; Malik, R.; Bhadada, S.K.; Bhansali, A.; Shafiq, N.; Malhotra, S.; Kumar, N.; Rajput, R.; et al. Bladder cancer with pioglitazone: A case-control study. Diabetes Metab. Syndr. 2022, 16, 102637. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Habel, L.A.; Quesenberry, C.P.; Strom, B.L.; Peng, T.; Hedderson, M.M.; Ehrlich, S.F.; Mamtani, R.; Bilker, W.; Vaughn, D.J.; et al. Pioglitazone Use and Risk of Bladder Cancer and Other Common Cancers in Persons With Diabetes. JAMA 2015, 314, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wang, Y.; Yang, S.; He, G.; Jiang, Z.; Gang, X.; Wang, G. Antidiabetic medications and the risk of prostate cancer in patients with diabetes mellitus: A systematic review and meta-analysis. Pharmacol. Res. 2022, 177, 106094. [Google Scholar] [CrossRef]
- Tseng, C.H. Pioglitazone does not affect the risk of kidney cancer in patients with type 2 diabetes. Metabolism 2014, 63, 1049–1055. [Google Scholar] [CrossRef]
- Tseng, C.H. Pioglitazone and breast cancer risk in female patients with type 2 diabetes mellitus: A retrospective cohort analysis. BMC Cancer 2022, 22, 559. [Google Scholar] [CrossRef]
- Keith, R.L.; Blatchford, P.J.; Merrick, D.T.; Bunn, P.A., Jr.; Bagwell, B.; Dwyer-Nield, L.D.; Jackson, M.K.; Geraci, M.W.; Miller, Y.E. A Randomized Phase II Trial of Pioglitazone for Lung Cancer Chemoprevention in High-Risk Current and Former Smokers. Cancer Prev. Res. 2019, 12, 721–730. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Zhang, J.; Zeng, F.Y.; Zhu, Y.Z. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol. Res. 2023, 192, 106786. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.W.; Lin, C.L.; Liao, K.F. Association of hepatocellular carcinoma with thiazolidinediones use: A population-based case-control study. Medicine 2020, 99, e19833. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, P.P.; Sun, X.C.; Hu, T.T. Thiazolidinediones and risk of colorectal cancer in patients with diabetes mellitus: A meta-analysis. Saudi J. Gastroenterol. 2018, 24, 75–81. [Google Scholar] [CrossRef]
- See, L.C.; Wu, C.Y.; Tsai, C.Y.; Lee, C.C.; Chen, J.J.; Jenq, C.C.; Chen, C.Y.; Chen, Y.C.; Yen, C.L.; Yang, H.Y. PPAR-γ agonist pioglitazone and the risks of malignancy among type2 diabetes mellitus patients. Acta Diabetol. 2024. [Google Scholar] [CrossRef]
- Zhao, Z.; He, X.; Sun, Y. Hypoglycemic agents and incidence of pancreatic cancer in diabetic patients: A meta-analysis. Front. Pharmacol. 2023, 14, 1193610. [Google Scholar] [CrossRef] [PubMed]
- Butler, P.C.; Elashoff, M.; Elashoff, R.; Gale, E.A. A critical analysis of the clinical use of incretin-based therapies: Are the GLP-1 therapies safe? Diabetes Care 2013, 36, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Dicembrini, I.; Montereggi, C.; Nreu, B.; Mannucci, E.; Monami, M. Pancreatitis and pancreatic cancer in patientes treated with Dipeptidyl Peptidase-4 inhibitors: An extensive and updated meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2020, 159, 107981. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Han, K.; Kwon, H.S.; Yoo, S.J. Risk of Pancreatic Cancer and Use of Dipeptidyl Peptidase 4 Inhibitors in Patients with Type 2 Diabetes: A Propensity Score-Matching Analysis. Endocrinol. Metab. 2023, 38, 426–435. [Google Scholar] [CrossRef]
- Ng, L.; Foo, D.C.; Wong, C.K.; Man, A.T.; Lo, O.S.; Law, W.L. Repurposing DPP-4 Inhibitors for Colorectal Cancer: A Retrospective and Single Center Study. Cancers 2021, 13, 3588. [Google Scholar] [CrossRef]
- Pradhan, R.; Yu, O.H.Y.; Platt, R.W.; Azoulay, L. Dipeptidyl peptidase-4 inhibitors and the risk of skin cancer among patients with type 2 diabetes: A UK population-based cohort study. BMJ Open Diabetes Res. Care 2023, 11, e003550. [Google Scholar] [CrossRef]
- Garczorz, W.; Kosowska, A.; Francuz, T. Antidiabetic Drugs in Breast Cancer Patients. Cancers 2024, 16, 299. [Google Scholar] [CrossRef]
- Ali, S.; Fortune, K.; Masur, J.; Viscuse, P.V.; Devitt, M.E.; Dreicer, R.; Skelton, W.P. 4th. Impact of DPP4 Inhibition on Survival in Patients With Metastatic Renal Cell Carcinoma and Type 2 Diabetes Mellitus. Clin. Genitourin. Cancer 2024, 22, 102173. [Google Scholar] [CrossRef]
- Lisco, G.; De Tullio, A.; Disoteo, O.; Piazzolla, G.; Guastamacchia, E.; Sabbà, C.; De Geronimo, V.; Papini, E.; Triggiani, V. Glucagon-like peptide 1 receptor agonists and thyroid cancer: Is it the time to be concerned? Endocr. Connect. 2023, 12, e230257. [Google Scholar] [CrossRef]
- Hegedüs, L.; Moses, A.C.; Zdravkovic, M.; Le Thi, T.; Daniels, G.H. GLP-1 and calcitonin concentration in humans: Lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide. J. Clin. Endocrinol. Metab. 2011, 96, 853–860. [Google Scholar] [CrossRef]
- Bethel, M.A.; Patel, R.A.; Thompson, V.P.; Merrill, P.; Reed, S.D.; Li, Y.; Ahmadi, S.; Katona, B.G.; Gustavson, S.M.; Ohman, P.; et al. Changes in Serum Calcitonin Concentrations, Incidence of Medullary Thyroid Carcinoma, and Impact of Routine Calcitonin Concentration Monitoring in the EXenatide Study of Cardiovascular Event Lowering (EXSCEL). Diabetes Care 2019, 42, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Bezin, J.; Gouverneur, A.; Pénichon, M.; Mathieu, C.; Garrel, R.; Hillaire-Buys, D.; Pariente, A.; Faillie, J.L. GLP-1 Receptor Agonists and the Risk of Thyroid Cancer. Diabetes Care 2023, 46, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Uppsala Monitoring Centre. Vigibase. Available online: https://who-umc.org/vigibase (accessed on 14 November 2024).
- Silverii, G.A.; Monami, M.; Gallo, M.; Ragni, A.; Prattichizzo, F.; Renzelli, V.; Ceriello, A.; Mannucci, E. Glucagon-like peptide-1 receptor agonists and risk of thyroid cancer: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2024, 26, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Song, R.; Cheng, R.; Liu, C.; Guo, R.; Tang, W.; Zhang, J.; Zhao, Q.; Li, X.; Liu, J. Use of GLP-1 Receptor Agonists and Occurrence of Thyroid Disorders: A Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2022, 13, 927859. [Google Scholar] [CrossRef]
- Elashoff, M.; Matveyenko, A.V.; Gier, B.; Elashoff, R.; Butler, P.C. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 2011, 141, 150–156. [Google Scholar] [CrossRef]
- Pinto, L.C.; Falcetta, M.R.; Rados, D.V.; Leitão, C.B.; Gross, J.L. Glucagon-like peptide-1 receptor agonists and pancreatic cancer: A meta-analysis with trial sequential analysis. Sci. Rep. 2019, 9, 2375. [Google Scholar] [CrossRef]
- Nreu, B.; Dicembrini, I.; Tinti, F.; Mannucci, E.; Monami, M. Pancreatitis and pancreatic cancer in patients with type 2 diabetes treated with glucagon-like peptide-1 receptor agonists: An updated meta-analysis of randomized controlled trials. Minerva Endocrinol. 2023, 48, 206–213. [Google Scholar] [CrossRef]
- Ayoub, M.; Faris, C.; Juranovic, T.; Chela, H.; Daglilar, E. The Use of Glucagon-like Peptide-1 Receptor Agonists in Patients with Type 2 Diabetes Mellitus Does Not Increase the Risk of Pancreatic Cancer: A U.S.-Based Cohort Study. Cancers 2024, 16, 1625. [Google Scholar] [CrossRef]
- Dankner, R.; Murad, H.; Agay, N.; Olmer, L.; Freedman, L.S. Glucagon-Like Peptide-1 Receptor Agonists and Pancreatic Cancer Risk in Patients With Type 2 Diabetes. JAMA Netw. Open 2024, 7, e2350408. [Google Scholar] [CrossRef]
- Wang, L.; Berger, N.A.; Kaelber, D.C.; Xu, R. Association of GLP-1 Receptor Agonists and Hepatocellular Carcinoma Incidence and Hepatic Decompensation in Patients With Type 2 Diabetes. Gastroenterology 2024, 167, 689–703. [Google Scholar] [CrossRef]
- Skriver, C.; Friis, S.; Knudsen, L.B.; Catarig, A.M.; Clark, A.J.; Dehlendorff, C.; Mørch, L.S. Potential preventive properties of GLP-1 receptor agonists against prostate cancer: A nationwide cohort study. Diabetologia 2023, 66, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kim, C.H. Malignancies associated with DPP4 inhibitors and GLP1 receptor agonists: Data from a large real-world database. J. Clin. Oncol. 2020, 38 (Suppl. S15), 1567. [Google Scholar] [CrossRef]
- Wang, L.; Xu, R.; Kaelber, D.C.; Berger, N.A. Glucagon-Like Peptide 1 Receptor Agonists and 13 Obesity-Associated Cancers in Patients With Type 2 Diabetes. JAMA Netw. Open 2024, 7, e2421305. [Google Scholar] [CrossRef] [PubMed]
- Popovic, D.S.; Patoulias, D.; Popovic, L.S.; Karakasis, P.; Papanas, N.; Mantzoros, C.S. Tirzepatide use and the risk of cancer among individuals with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2024, 213, 111758. [Google Scholar] [CrossRef] [PubMed]
- Caruso, I.; Di Gioia, L.; Di Molfetta, S.; Caporusso, M.; Cignarelli, A.; Sorice, G.P.; Laviola, L.; Giorgino, F. The real-world safety profile of tirzepatide: Pharmacovigilance analysis of the FDA Adverse Event Reporting System (FAERS) database. J. Endocrinol. Investig. 2024, 47, 2671–2678. [Google Scholar] [CrossRef]
- Lin, H.W.; Tseng, C.H. A Review on the Relationship between SGLT2 Inhibitors and Cancer. Int. J. Endocrinol. 2014, 2014, 719578. [Google Scholar] [CrossRef]
- Wang, F.; Hendryx, M.; Liu, N.; Bidulescu, A.; Mitra, A.K.; Luo, J. SGLT2 Inhibitor Use and Risk of Breast Cancer Among Adult Women with Type 2 Diabetes. Drug Saf. 2024, 47, 125–133. [Google Scholar] [CrossRef]
- Chung, C.T.; Lakhani, I.; Chou, O.H.I.; Lee, T.T.L.; Dee, E.C.; Ng, K.; Wong, W.T.; Liu, T.; Lee, S.; Zhang, Q.; et al. Sodium-glucose cotransporter 2 inhibitors versus dipeptidyl peptidase 4 inhibitors on new-onset overall cancer in Type 2 diabetes mellitus: A population-based study. Cancer Med. 2023, 12, 12299–12315. [Google Scholar] [CrossRef]
- Pelletier, R.; Ng, K.; Alkabbani, W.; Labib, Y.; Mourad, N.; Gamble, J.M. The association of sodium-glucose cotransporter 2 inhibitors with cancer: An overview of quantitative systematic reviews. Endocrinol. Diabetes Metab. 2020, 3, e00145. [Google Scholar] [CrossRef]
- Kohler, S.; Lee, J.; George, J.T.; Inzucchi, S.E.; Zinman, B. Bladder cancer in the EMPA-REG OUTCOME trial. Diabetologia 2017, 60, 2534–2535. [Google Scholar] [CrossRef]
- Alzenaidi, A.; Alkhalidi, H. PSUN250 Empagliflozin Induced Bladder Cancer in an Adult Patient With Latent Autoimmune Diabetes. J. Endocr. Soc. 2022, 6, A392. [Google Scholar] [CrossRef]
- Spiazzi, B.F.; Naibo, R.A.; Wayerbacher, L.F.; Piccoli, G.F.; Farenzena, L.P.; Londero, T.M.; da Natividade, G.R.; Zoldan, M.; Degobi, N.A.H.; Niches, M.; et al. Sodium-glucose cotransporter-2 inhibitors and cancer outcomes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2023, 198, 110621. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, Y.; Wang, S.; Cao, L.; Zhao, R.; Ma, X.; Yang, Q.; Zhang, L.; Yang, Q. Pharmacological targets of SGLT2 inhibition on prostate cancer mediated by circulating metabolites: A drug-target Mendelian randomization study. Front. Pharmacol. 2024, 15, 1443045. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Dai, Q.; Shi, W.; Zhai, S.; Song, Y.; Han, J. SGLT2 inhibitors and risk of cancer in type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Diabetologia 2017, 60, 1862–1872. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Kang, B.; Li, S.; Fan, S.; Zhou, J. Sodium-glucose cotransporter 2 inhibitors and cancer: A systematic review and meta-analysis. J. Endocrinol. Investig. 2024, 47, 2421–2436. [Google Scholar] [CrossRef]
- Goodwin, P.J.; Chen, B.E.; Gelmon, K.A.; Whelan, T.J.; Ennis, M.; Lemieux, J.; Ligibel, J.A.; Hershman, D.L.; Mayer, I.A.; Hobday, T.J.; et al. Effect of Metformin vs. Placebo on Invasive Disease-Free Survival in Patients With Breast Cancer: The MA.32 Randomized Clinical Trial. JAMA 2022, 327, 1963–1973. [Google Scholar] [CrossRef]
- Hegedüs, L.; Sherman, S.I.; Tuttle, R.M.; von Scholten, B.J.; Rasmussen, S.; Karsbøl, J.D.; Daniels, G.H. LEADER Publication Committee on behalf of the LEADER Trial Investigators. No Evidence of Increase in Calcitonin Concentrations or Development of C-Cell Malignancy in Response to Liraglutide for Up to 5 Years in the LEADER Trial. Diabetes Care 2018, 41, 620–622. [Google Scholar] [CrossRef]
Cancer Type | Anti-Diabetic Drugs and Their Impact on Cancer-Related Signaling |
---|---|
Brain cancer | - Metformin targets GB-initiating cells through the AMPK-FOXO3 axis [141] - Insulin facilitates GB proliferation and survival by activating the Akt pathway [49] - Glibenclamide inhibits GB growth by promoting intracellular acidification through downregulation of Kir4.1 and MCT1 expression at specific doses [142] - Pioglitazone’s impact on GB is heterogeneous; significantly dampens cell viability and proliferation in only a subset, without increasing differentiation or affecting the Wnt/β-catenin pathway to a notable extent [143] - Linagliptin exerts anti-tumor effects on GB cells potentially through modulation of proteins involved in the cell cycle and adhesion via phosphorylated NF-kB regulation [144] - Exenatide attenuates GB cell migration and invasion through the GLP-1R/SIRT3 signaling pathway [106] - Canagliflozin reduces GB cell proliferation and glucose uptake by favoring AMPK phosphorylation and suppressing p70 S6 kinase and S6 ribosomal protein activity [123] |
Thyroid cancer | - At concentrations of 0.1 mM and above, metformin increases the percentage of apoptotic cells and promotes G0/G1 phase cell cycle arrest, with no effect on the DNA repair response at concentrations as low as 0.3 mM [145] - Both human insulin and insulin glargine facilitate thyroid cell proliferation at high doses, enhancing the phosphorylation of IR, Akt, and ERK1/2 in a dose-dependent manner, with glargine showing longer-lasting effects; however, therapeutic doses do not stimulate cell proliferation [50] - PPAR-γ agonistic effect of pioglitazone prevents metastatic thyroid cancer by promoting adipocyte-like trans-differentiation of thyroid carcinoma cells [146] - Saxagliptin boosts migration and invasion of PTC through the Nrf2/HO-1 signaling pathway [89] - Liraglutide may mitigate cell growth and migration in both PTC and MTC by modulating the PI3K/Akt/mTOR pathway in a dose- and time-dependent manner [101] - Canagliflozin reduces cell viability and colony formation while lowering pro-tumor chemokines, such as CXCL8 and CCL2, which are involved in enhanced cell migration and endothelial proliferation [124] |
Breast cancer | - Metformin promotes survival of dormant ER+ by upregulating AMPK [25] - Insulin can regulate breast cancer growth by activating both insulin and IGF receptors [147] - Glipizide blocks angiogenesis by modulating VEGF/VEGFR2 signaling [67] - Pioglitazone mitigates cancer cell proliferation and migration by modulating the JAK/STAT3 signaling pathway [75] - DPP-4i favors EMT and metastatic potential through the CXCL12/CXCR4 signaling pathway [87] - At high concentrations, liraglutide may promote cancer progression via the NOX4/ROS/VEGF signaling pathway [109] - Ipragliflozin attenuates cell proliferation by modifying membrane dynamics and simulating glucose deprivation effects [129] |
Lung cancer | - Metformin reduces oncogenic markers like HES1 and REDD1, while modulating p-mTOR and p53 levels, resulting in diminished tumor cell proliferation [37] - Insulin favors the proliferation and migration of cancer cells by upregulating the PI3K/Akt pathway [51] - Glibenclamide targets SUR1 to inhibit cell growth, migration, and EMT by reducing p70S6K activity and increasing the tumor suppressor KLF4 [148] - In combination with celecoxib, pioglitazone decreases tumor weight and increases survival by mitigating NF-κB-mediated proliferation [76] - Vildagliptin inhibits lung metastases by hindering autophagy, promoting apoptosis, and modulating the cell cycle [149] - Liraglutide hinders lung cancer cell proliferation, migration, and EMT, while also demonstrating anti-aging effects by debilitating cellular senescence and ER stress] [150] - Canagliflozin disrupts HIF-1α stabilization, impairing mitochondrial function and survival pathways by inhibiting mTOR and HDAC2 [133] |
Hepatocellular carcinoma | - Metformin activates AMPK to disrupt lipid metabolism, enhances apoptosis and oxidative stress via p38MAPK activation [41] - Insulin promotes cell proliferation and survival by activating PI3K/Akt and Ras/MAPK pathways [52] - Glibenclamide inhibits Kv channels, resulting in a dose- and calcium-dependent decrease in the adhesion and proliferation of tumor cells [63] - Pioglitazone shows anti-fibrotic and hepatoprotective effects, potentially by modulating the MAPK and AMPK signaling pathways [79] - Linagliptin inhibits tumor cell growth by modulating ADORA3, inducing apoptosis and increasing cAMP levels [151] - Liraglutide may enhance anti-tumor immune responses through the IL-6/STAT3 signaling pathway [117] - Canagliflozin may mitigate liver steatosis, fibrosis, and tumor development, while promoting healthier adipose tissue with lower oxidative stress [130] |
Pancreatic cancer | - Metformin facilitates apoptosis in cancer cells by modulating histone acetyltransferases (PCAF, p300, CBP) and SIRT1 expression [152] - Insulin induces the growth and fibrosing responses of PaSC through activation of the IR/IGF-1R, which in turn enhance Akt/mTOR/p70S6K signaling and reduce FOXO1, contributing to cell proliferation and extracellular matrix production [153] - Gliclazide favors DNA repair in cancer cells by stimulating NER and non-NHEJ pathways, without affecting these processes in normal human cells [154] - Pioglitazone blocks metastasis by altering inflammation-related gene expression, including CEA and COX-2 [80] - Saxagliptin promotes β-cell proliferation by elevating stromal cell-derived factor-1α [90] - Liraglutide inhibits cancer growth and promotes apoptosis by downregulating the PI3K/Akt and ERK1/2 signaling pathways [103] - Canagliflozin exhibits anti-tumor activity in cancer cells by downregulating the PI3K/Akt/mTOR pathway and impairing glycolysis [136] |
Colorectal cancer | - Metformin mitigates cancer cell proliferation by targeting INHBA, inhibiting TGF-β/PI3K/Akt signaling and causing G1/S cell cycle arrest [155] - Insulin promotes cancer progression and metastasis by upregulating ACAT1 [53] - Glibenclamide and miR-223, by inhibiting NLRP3 in cancer cells, mitigate cell growth and migration, but miR-223 has a more pronounced effect on apoptosis and cytokine secretion, though neither fully prevents metastasis [156] - Pioglitazone mitigates cancer stem cell viability and increases MET, aiding in cancer suppression [82] - Sitagliptin attenuates cancer metastasis by reducing cell invasion, motility, and EMT through DPP4-dependent mechanisms [94] - GLP-1 RAs diminish cell cycle progression and promote apoptosis through the PI3K/Akt/mTOR pathway [119] - Canagliflozin shows potential efficacy by disrupting cellular metabolism and inducing ER stress, which in turn promotes autophagy and apoptosis via SIRT3 upregulation [135] |
Bladder cancer | - Metformin suppresses the migration and proliferation of cancer cells and promotes apoptosis, likely by inhibiting the PI3K/Akt/mTOR pathway [157] - Both high-dose human insulin and insulin glargine promote tumor cell proliferation by activating Akt phosphorylation through a PI3K-independent pathway [158] - Pioglitazone causes DNA damage and promotes malignant transformation by altering gene expression and inducing EMT [69] - DDP-4i may reduce tumor aggressiveness by impairing cancer cell viability, proliferation, migration, and invasion [159] - Empagliflozin induces dysplastic changes in urothelium, with decreased expression of CK-7 and CK-8 and increased expression of CK-20 and Ki-67, suggesting heightened proliferative activity [160] |
Prostate cancer | - Metformin induces oxidative stress in cancer cells by promoting ROS and disrupting oxidative phosphorylation, leading to redox imbalance and enhanced apoptosis [40] - Glipizide inhibits angiogenesis via the HMGIY/Angiopoietin-1 signaling pathway, without affecting cancer cell proliferation [161] - Pioglitazone alleviates inflammation in periprostatic WAT, potentially impacting cancer progression by modulating adipose tissue-related inflammatory responses [73] - Exenatide may lower tumor cancer progression through the inhibition of ERK-MAPK signaling [162] - Canagliflozin inhibits tumor cell growth by mitigating mitochondrial respiration and ATP production. This mechanism involves activation of AMPK, reduced lipid synthesis, and decreased glucose uptake [138]. |
Ovarian cancer | - Metformin alleviates cell proliferation by activating the AMPK/GSK3β pathway, resulting in cyclin D1 degradation and G1 phase cell cycle arrest [34] - Through IGF-I, insulin induces COX-2 expression, which enhances VEGF production and PGE2 biosynthesis. This process activates PI3K, MAPK, and PKC pathways and promotes SKOV-3 cell migration by favoring uPA over PAI-1 via the PI3K/AKT pathway [163]. - Glibenclamide dampens angiogenesis and metastasis in ovarian cancer by reducing cellular invasion and migration through suppression of PDGF-AA secretion [65] - Ciglitazone and troglitazone reduce ovarian cancer cell proliferation, while pioglitazone has no effect, suggesting that the observed impact is PPAR-γ independent [164] - Sitagliptin promotes apoptosis via caspase 3/7 activation and suppresses migration and invasiveness in SKOV-3 cells, while also reducing the production of MMPs and TIMPs [165] - Exenatide may lower ovarian cancer aggressiveness by debilitating cell migration, inducing apoptosis, and modulating metalloproteinase expression [114] |
Endometrial cancer | - Metformin activates AMPK, leading to enhanced TET2 gene expression and suppression of cancer cell growth [32] - Insulin stimulates aromatase activity in both endometrial glands and stroma, suggesting that hyperinsulinemia may increase the risk of estrogen-dependent endometrial neoplasia by enhancing local estrogen production [166] - Pioglitazone demonstrates significant dose-dependent anti-cancer activity by improving body weight, survival time, and uterine tissue weight [167] - DPP-4 overexpression accelerates carcinoma progression by enhancing cell proliferation, invasion, and HIF-1a-VEGFA signaling, while pharmacological inhibition with sitagliptin shows potential as an effective therapeutic strategy [92] - Tirzepatide mitigates tumor growth by altering glycolysis and ErbB signaling in obese mice, while enhancing glycosylation and phospholipase D signaling in lean mice [113] |
Other malignancies | - Metformin inhibits the invasion and proliferation of cervical cancer cells by regulating the insulin signaling pathway and upregulating the expression of the tumor suppressor IGFBP7 [168] - Metformin mitigates MPM cell proliferation and promotes apoptosis by decreasing Notch1 activation [169] - Sitagliptin affects gastric cancer cell proliferation by reducing MAGE-A3 expression through the inactivation of YAP [170] - Dapagliflozin exerts cytotoxic effects in RCC by decreasing glucose uptake, disrupting cell cycle progression, and promoting apoptosis [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kounatidis, D.; Vallianou, N.G.; Karampela, I.; Rebelos, E.; Kouveletsou, M.; Dalopoulos, V.; Koufopoulos, P.; Diakoumopoulou, E.; Tentolouris, N.; Dalamaga, M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024, 14, 1479. https://doi.org/10.3390/biom14111479
Kounatidis D, Vallianou NG, Karampela I, Rebelos E, Kouveletsou M, Dalopoulos V, Koufopoulos P, Diakoumopoulou E, Tentolouris N, Dalamaga M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules. 2024; 14(11):1479. https://doi.org/10.3390/biom14111479
Chicago/Turabian StyleKounatidis, Dimitris, Natalia G. Vallianou, Irene Karampela, Eleni Rebelos, Marina Kouveletsou, Vasileios Dalopoulos, Petros Koufopoulos, Evanthia Diakoumopoulou, Nikolaos Tentolouris, and Maria Dalamaga. 2024. "Anti-Diabetic Therapies and Cancer: From Bench to Bedside" Biomolecules 14, no. 11: 1479. https://doi.org/10.3390/biom14111479
APA StyleKounatidis, D., Vallianou, N. G., Karampela, I., Rebelos, E., Kouveletsou, M., Dalopoulos, V., Koufopoulos, P., Diakoumopoulou, E., Tentolouris, N., & Dalamaga, M. (2024). Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules, 14(11), 1479. https://doi.org/10.3390/biom14111479